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On loop near-rings

D. Ramakotaiah and C. Santhakumari

A new class of algebraic systems known as loop near-rings are
introduced, which includes near-rings and consequently rings.
Different types of radicals are introduced in a loop near-ring N »
which coincide with the Jacobson radical when N happens to be a

ring, and several characterizations of these radicals are obtained.

Introduction

The notion of a loop near-ring arises out of an axiomatization of the
algebraic systems of mappings of the additive loop G into & which fix
the identity of G . Every near-domain (additively non-associative near-
field) in the sense of Pilz [3 , Definition 8.41] is a loop near-ring. We
introduce a right quasi-regular element in a different way from the usual
tradition, and this seems to define three types of right quasi-regular

elements as there are three types of modular maximal right ideals.

This paper is divided into four sections. 1In §1, loop near-rings,
loop near-ring loops are introduced and examples of such systems are
presented. Right ideals, ideals, and modular right ideals are introduced
in §2, and a characterization of the unique maximal ideal contained in a
modular right ideal is obtained. 1In §3, N-loops of type V ,

V-primitive ideals, V-primitive loop near-rings, V-modular right ideals
for V =0, 1, 2 , and various radicals are introduced and we characterize

the ideals JV(N) in terms of the largest ideals of N contained in

V-modular right ideals in ¥ for V =0, 1, 2 . In §4, we introduce the
notion of "right quasi-regular element of type V " for V =0, 1, 2 ,

which generalizes the notion of a right quasi-regular element as introduced
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in [4]. If N happens to be a ring all these three notions coincide with
the notion of a right quasi-regular element as introduced in ring theory.
Characterization of the radicals in terms of quasi-regular elements is

obtained.

1. Fundamental definitions and simple consequences
For definitions of loops, subloops, normal subloops, see [2]. We
begin this section with the following:

DEFINITION 1.1. A system N = (N, +, *, 0) is called a loop near-

ring if the following conditions are satisfied:
(i) (N, +, 0) 1is a loop which we denote by vt ;
(ii) (¥, *) is a semigroup;
(iii) a*(b+ec) = a*b + a*¢ for all a, b, ¢ in W ;

(iv) 0*a =0 for all a in N, where O is the identity of
the loop 1V+ .

For any a Dbelonging to an additive loop, we shall denote the unique

right and left additive inverses of g by a and a respectively.
r l

Using Definition 1.1 (iii), it is easy to verify that a0 =0 ,

(a'b)r = a’br . (a'b)Z = a'bZ for all a, b in N .

Throughout this paper N ealways stands for a loop near-ring. We
abbreviate (¥, +, *, 0) by N . The identity element of IV+ will be
denoted by O . Multiplication in most cases will be indicated by

Justaposition; so we write wmm 1instead of n*m .

EXAMPLE 1.2, If G is an additive loop, then the set of all
mappings of G 1into itself fixing the identity of (G has the structure ¢

a loop near-ring under addition and composition of mappings [Z, p. 68].

EXAMPLE 1.3. Every near-domain (additively non-associative near-

field) [3, Definition 8.411 is a loop near-ring.

EXAMPLE 1.4. Let (G, +, 0) be an additive loop, where O is the
identity element of G . Defineab =b forall O0# a and b in G ;

define Ob =0 . Then (G, +, 0) 4is a loop near-ring.

Of course every near-ring is a loop near-ring.
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. Subloop near-rings, isomorphisms, and homomorphisms of loop near-
rings are defined in the usual way. Left (right) identities, left (right)

invertible elements, and nilpotent elements are defined as in near-rings.

We introduce the notion of WN-loops, ~N-loop homomorphisms in the

usual way.

DEFINITION 1.5. An additive loop (G, +, 0) is called an WN-loop
provided there exists a mapping (g, #n) »gn of G x N > (¢ such that

(i) gln+m) =gn + gm ,
(ii) g(mm) = (gn)m for all g €G , n, m € N .

Clearly ¥ is an N-loop. If O is the identity of the loop G ,
g0 =0 and On = (00)n = 0(0n) =00 =0 for all = € N . Further

(gn), = gn, and (gn); = gn, .

We abbreviate (G, +, 0) by G . The identity element of an N-loop
G will be denoted by O .

EXAMPLE 1.6. If G is an additive loop and N is the loop near-
ring of all mappings of G into itself fixing the identity element, then

G has the structure of an N-loop.

If G is an N-loop and A and K are subsets of G and N
respectively, then the set {8k | 8§ €A, ¥k € X} will be denoted by AK .

DEFINITION 1.7. A subloop A of an N-loop (¢ 1is called an
N-subloop of G if ANC A .

+
The N-subloops in N are called N-loop modules of N .

DEFINITION 1.8. Suppose ¢ and G' are WN-loops. A mapping

f : G> G 1is called an N-loop homomorphism provided
(1) flxty) = flz) + fly) for all x,y in G,
(2) flzn) = flz)n for all z in G and n in ¥ .

An N-loop homomorphism f of G into G' is called an WN-loop

isomorphism if f is a bijection of ¢ into ¢’

EXAMPLE 1.9. Let G be an N-loop and let g € G . Then the

mapping n > gn is an N-loop homomorphism of vt into G .

DEFINITION 1.10. The kernel af an N-loon homomorvhism of an HN-loop
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G is called an N-loop kernel of G .

We now obtain necessary and sufficient conditions for a nonempty

subset of an WN-loop G to be an N-loop kernel of G .
THEOREM 1.11. A nonempty subset K of an N-loop G is an N-loop
kernel of G if and only if
(i) (X, +) is a normal subloop of G,

(it) (g+k)n+gnr€l( forall g €G, k€K, ad n €N .

Proof. Let ¢ : G+ G' be an N-loop homomorphism and let
K = ker(¢) . Then K is a normal subloop of G [2, p. 60]. Let g €G ,
k € K,and n € N . Consider

o((gtk)nsgn ) = 6 ((g+k)n) + ¢(gm,) = o(g+k)n + o(g)n,
= ¢(g)n + ¢(gin, = ¢(g)0 = o',

where 0' is the identity of G' . Therefore (g+k)n + gn, € X for all

g€G, k€K, 6 and n € N. Therefore K satisfies conditions (Z) and
(i2). Conversely let G be an N-loop and X be a nonempty subset of

G , satisfying (%) and (ii). We wish to show that G|X has the structure
of an N-loop. For g+ K, g' + K in G|K , define

(g+K) + (g'+K) = (g+g') + K . Then it can be shown that G|X has the
structure of a loop [Z, p. 61]. Put (g+K)n = gn + K . Suppose
g+K=9g'+K, g€g'+K., Then g =g' +% , where k € X . Now
gn = (g'+k)n . Therefore gn + g'nr = (g'+k)n + g'nr € X . Hence,

(gn+g 'np) + K= (g'n+g'nr) + K . BSince cancellation laws hold good in a

loop and since G|K 1is a loop we have (gn+kK) = g'n + K . Hence the map
(g+k, n) » (g+K)n of G|K x N » G|K is well defined. Let g+K € G|k and
n,m € N, Then

(g+K) (n+m) = g(n+m) + K = (gn+gm) + K = (gn+K) + (gm+K) = (g+K)n + (g+K)m
and
(g+K)nm = g(nm) + K = (gn)m + K = (gn+K)m = ((g+K)n)m .

Therefore G|K has the structure of an WN-loop. Now the mapping
¢ : x> x4k is an N-loop homomorphism of G onto G|K , z € ker($) if
and only if ¢(x) = 0 (where 0 is the identity of G|X ), and ¢(z) =0
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if and only if x + K =K,and x + K= K if and only if x € KX . Hence
K = ker(¢) . Hence K is an WN-loop kernel of an N-loop G .

In a similar way it can be shown that a nonempty subset X of G 1is
an N-loop kernel of G , if and only if (K, +) is a normal subloop of
(G, +) and gng + (gtk)n € XK for all g €G, k € X ,and n €N .

The factor loop of an N-loop G by an N-loop kernel X of G is
denoted by G - K .

REMARK 1.12. By Theorem 1.11, it can be easily shown that every
N-loop kernel of (G 1is an N-subloop of G .

We now have the following:

THEOREM 1.13. Let h : G+ G' be an N-loop epimorphism. Then h
induces a one-to-one correspondence between the N-subloops (N-loop
kernels) of G containing ker(h) and the N-subloops (N-loop kermels)
of G¢' by K (cG) »h(K)

Proof. If K is a subloop (normal subloop) of G then HK(X) is a

subloop (normal subloop) of @' . Conversely if KXK' is a subloop {normal

subloop) of G' then h-l(K’) is a subloop (normal subloop) of ¢ [Z,
iv, Lemma 1.6]. The rest of the proof would follow in the usual way and

hence is omitted.

THEOREM 1.14. The intersection of any family of N-loop kermels of
an N-loop G tis an N-loop kermel of G .

Proof. Let {Kﬁ}aeA be a family of WN-loop kernels of an N-loop

G . By [Z, iv, Theorem 1.2]. N Ka is an WN-loop kernel of G .
o€
LEMMA 1.15. The set S of all N-loop kermels of an N-loop G
form a commutative semigroup under addition.

Proof. Let A and B be ~N-loop kernels of an N-loop G :
A+B=1{a+tb | a €4,b €B} . Now A and B are normal subloops of G
(Theorem 1.11). Since the set of all normal subloops of an additive loop
form a commutative semigroup under addition [2, iv, Theorem 1.4], A4 + B
is a normal subloop of G and A + B=B +4 ; further
(A+B) + C = A + (B+«C) for all A, B, C € § . We wish to show that
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(g+(a+b))n+gnr€A +B forall g €G, n €N , and a+b € A+B . Since

B is a normal subloop of G, g + (a+B) = (g+a) + B . But
{(g+ta) + b' , where b' € B .

g + (a+b) € g + (a+tB) . Hence g + (a+b)
Since B is an WN-loop kernel of G and b' € B ,

{{((g+a)+b')n+(g+a)n } + B = B =0 + B = {(gra)n+(g+a)n } + B

Since G - B is a loop, {(g+a)+b')n + B = (g+a)n + B . Now

{(g+(a+b))n+gnr} + B = {((g+a)+b')n+gnr} + B = ((gm)n+gnr) +B=a +B,

vhere a' = (g+a)n + gn, €A , since g €4 and 4 1is an N-loop kernel
of G . Therefore (g+(a+b)}n + gn, €A + B . Hence A +B isan N-loop

kernel of G . Therefore the set of all WN-loop kernels of an WN-loop &

is a commutative semigroup under addition.

LEMMA 1.16. If G <s an N-loop, then for every g € G ,

gl = {gn | n € N} 4s an N-subloop of G .

Proof. Let gn, gn' € g . Then gn + gn' = g(n+n') € gV and
g0 =0 € gV . Since gn, gn' € ¢ and G is a loop, there exist unique
elements x, y € G such that gn = gn' + x =y + gn' . Further there
exist unique elements m, m' € N such that n=n' +m=m' + n'. Hence
gn=gn' +gm=gm' +gn' . Since x and y are unique, gm=x and

gn' =y . Therefore x, y € g8 . Hence ¢gN is a subloop of G .

2. Modular right ideals

In this section we introduce the notion of a modular right ideal in a
loop near-ring and obtain a characterization of the unique maximal ideal

contained in a modular right ideal.

DEFINITION 2.1, By a right ideal of a loop near-ring N we mean an

N-loop kernel of il as an N-loop.

In view of Theorem 1.11, a nonempty subset L of a loop near-ring N
is a right ideal of ¥ if and only if (L, +) is a normal subloop of IV+
and (x+n)m + nn,, €L forall x €L , n,m €N ., PFurther, if L is a

right ideal of N , then LNCIL

Nil and nilpotent right ideals in N are defined in the usual way.
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DEFINITION 2.2. A right ideal L of N 1is called an ideal of N
ir ML CL .

REMARK 2.3, If P 1is an ideal of N then N|P is a loop near-ring
in which (a+P)(b+P) =ab + P for all a+ P, b +P in N|P .

LEMMA 2.4, If L and Q are two ideals of N, then L + @ is an
ideal of N .

Proof, Let I and § be two ideals of N . By Lemma 1.15, L + @
is a right ideal of N . Let x+y € [+ . For every n €N ,
nlzty) =nx + ny €L + @ ., Hence L + @ is an ideal of N .

We now introduce the notion of a modular right ideal in a loop near-
ring.

DEFINITION 2.5, A right ideal L of ¥ is said to be a modular
right ideal of N if there exists an element e € ¥ such that

n+en, €L forall n € N. e is said to be a left identity modulo L
LEMMA 2.6, 4 »right ideal L of N <is a modular right ideal if and
only if there exists an element e 1in N such that en, +n € L for all
n €N .
The proof of this lemma is easy and will be omitted.

LEMMA 2.7. If L <s a proper modular right ideal with e as a left
identity modulo L then e £ L .

Proof. Suppose e € L . Then en € L for all n € N . Since e it
a left identity modulo L , n + en, €L for all »n € N . Then

Ay _ - = = I's \ -
(n+enrj + L =L 0+ L \en+enr) + L

+
Since N - L is a loop, n+L =en +L . Since en €L , en+ L =1 .
Therefore n + L =L . Hence n € L . Then L =N , a contradiction.

Therefore e ¢ L .

LEMMA 2.8. Every proper modular right ideal can be extended to a
maximal modular right ideal.

The proof of this lemma would follow in the usual way.

We now characterize the unique maximal ideal contained in a modular

right ideal. For this we require the following notation.

https://doi.org/10.1017/50004972700008959 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008959

424 D. Ramakotaiah and C. Santhakumari

Let L be a modular right ideal of N . We denote the set
{a €N | Mac L} vy (L :0)

THEOREM 2.9. If L <s a modular right ideal of N then (L : N)
is an ideal in N and it is the largest ideal contained in L .

We break this theorem into several lemmas and prove one after the

other.
LEMMA 2.9.1. If L[ is a modular right ideal of N , then
(L : WN) crL.

Proof, Let a € (L : N) and let e be a left identity modulo I .
Since a € (L : N) , NacL . Then ea € L . Since e is a left
identity modulo L , a + ea, €L for all g € N . Then

(a+ear) +L=1L= (ea+ear) +L .

Since ¥ _-L isa loop, a+L=ea+L . Since ea €L , ea+L =1L,

Hence a + L =L . Therefore a € L . Hence (L : N)< L .

LEMMA 2.9.2. (L : N) is a subloop of N' .

Proof. Clearly O € (L : N) . Let n, n' € (L : N) . Since
(L : N) <L, n,n' €L . Now for eachm € N, m(ntn') =mn + m' € L and
hence n +mn' € (L : N) . Since L is a subloop of vt , there exist
unique elements a, a' in L such that n' =n + a =a' +n . Then for
any m €N, m' =mn +ma =ma' + nm . Since L[ is a normal subloop of

¥ and since mi, mn' € L , we have
L=L+m' =L+ (m+ma) = (L+mm) + ma =L + ma .
Then ma €L for all m € N . Hence a € (L : N) . Further
L=m'+L=(ma'+m)+ L =ma"+ (m+L) =ma' +L .
Hence ma' € L for all m € N . Therefore a' € (L : N) . Hence (L : N)
is a subloop of wt .

LEMMA 2.9.3. (L : N) is a normal subloop of .

Proof. By Lemma 2.9.2, (L : #) is a subloop of N' . Let
a € (L : N) and n € N . We wish to show that n + (L : N) = (L : N) + n.
Since a € (L : N) , a €L , and since L is a normal subloop of W

n+L=L+n. But n+a €n+tl . Hence n+a=>b +n , wvhere b €L
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Then for any r € N, rm + ra =rb + rn . Since L is a normal subloop
of N and since ra €L , (rmtra) + L = rn + (ratl) = rm + L . Hence
(rb+rn) + L = rn + L . Since N - L isa loop, »b + L =L . Hence

rvh €L for all » € N . Therefore b € (L : N) . Hence n+a=> +n
where b € (L : N) . Therefore n+ (L : N) c (L : N) +n . By a similar
argument it can be shown that (L : N) + n<n + (L : V) . Therefore

n+ (L :N)=(L:N)+n. Let n,m €N and a € (L : N) . We wish to
show that (n#m) + (L : N) =n + (me(L : N)) . Since a € (L : N) ,

a €L , and since L is a normal subloop of wt , (n+m) + L =n + (msL)
for all n, m € N . Now (n+m) + a € {(n+m) + L . Hence

(n+m) + a =n + (m+b) where b € L . We show that b € (L : N) . For
every r € ¥, {((rn+rm)+ra) + L = (en+(rmerb)) + L . Since L 1is a

normal subloop of ¥ and since ra €L ,

((rn+z=m)+ra] + L = (rn+rm) + (ra+L)

(rm+rm) + L .
Therefore

(pntrm) + L .

(en+(rm+rb)) + L = ((rn+rm)+ra) + L

Since Voo is a loop, (rmtrb) + L = rm + L . Hence rb + L =1L .
Then rb €L for all r € N . Hence b € (L : N) . Therefore

{n+m) + (L : N) S n + (m+(L : N)) . The other inclusion is also true.
Hence (n+m) + (L : N) =n + (m+(L : N)) . By a similar argument it can be
shown that (L : N) + (mn) = ((L : N)+m) + n for all m, n € N . There-

fore (L : N) is a normal subloop of N
LEMMA 2.9.4. (L : N) 4s an ideal of N .

Proof., (L : N) is a normal subloop of IV+ by Lemma 2.9.3. Let

a €L :N), n,n" €N . Now for every m € N ,

m{(a-m)n'+nnr"} = (ma+tmm)n' + (mn)n; €L,
since ma € L and L 1is a right ideal of N . Therefore
(atn)n' + rm; €(L :V) . Let a €(L : N) and n €N ; then

N(na) = (Mm)a S Na € L . Therefore na € (L : N) for all n € ¥ . Hence
(L : N) is an ideal of ¥ .

LEMMA 2.9.5. (L : V) 4is the largest ideal of N contained in L .

Proof. Tlet P be an ideal of ¥ contained in L . Let p € P .
Then Np €S PC L . Hence p € (L : N} . Therefore PC (L : N) . Hence
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(L : N) 1is the largest ideal of N contained in L .

Proof of Theorem 2.9. The proof of this theorem follows from Lemmas

2.9.1 to 2.9.5.

3. A characterization of the ideals JV(N)

Let G be an N-loop. If A 1is a nonempty subset of G then the
set A(A) = {n €N | gn =0 for all g € A} is called the annihilating
set of A in N .

LEMMA 3.1. If G <s an N-loop and g € G , then
A(g) ={n € N | gn =0} is an N-loop kermel of at .

+
Proof. The mapping f : n + gn is an N-loop homomorphism of N
into G and hence ker(f) = A(g) 1is a right ideal of N .

We remark that if G is an N-loop, then A4(G) = N A(g) is an
geG

ideal in N and A(G) is called the annihilating ideal of G in N .

We introduce various types of N-loops as in near-rings. Let G be

an HN-loop not equal to {0} .

DEFINITION 3.2. An element ¢ € G 1is called an N-generator of G
if gV =G .

DEFINITION 3.3. G 1is said to be a faithful N-loop if A(G) = (0)

DEFINITION 3.4. (G is said to be an irreducible MN-loop provided G

has no nontrivial ~N-loop kernels.

DEFINITION 3.5. An WN-loop G 1is said to be a minimal ~N-loop
provided G has only the trivial N-subloops (0) and G .

DEFINITION 3.6. An irreducible N-loop G with a generator g is
called an N-loop of type O .

DEFINITION 3.7. An WN-loop of type O is called an WN-loop of type
1 if for each g € G either gN = (0) or gl =G .

DEFINITION 3.8. An WN-loop G 1is said to be an N-loop of type 2
if G is minimal and GV # (0)

LEMMA 3.9. If G <is a faithful N-loop then N is isomorphic to a
Loop near-ring of zero fixing mappings of G into itself, and we can
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identify n € N with the mapping G + G : g + gn .

The proof is easy and will be omitted.

LEMMA 3.10. Let G be a faithful N-loop with an N-generator g .
Then N 1is a near-ring if and only if G is a group.

Proof. Suppose N is a near-ring. It is enough to show that '+'

in G 1is associative. Now G =gN . Let x,y, 3 €G . Then x = any >

+
y=gn,, z=gng, where nys Ny Mg € N . Since N 1is associative,

z + (g+2) = gn) + (gnyrgny) = gln *+(nymg)) = g((nymy) )

= (gnl+gn2) + gn3 = (x-i-y) + 3 .
Hence G 1is a group. Conversely suppose that (G 1is a group. Let
z,y, 2 €V such that (a2+y) + 2 # x + (y+2) . Since G 1is faithful,

there exists a g € G such that g((ax+y)+z) # g(x+(y+2)) , for othervise,
g((x+y)+2) = g(z+(y+2z)) for all g € ¢ . Then

((z+y)+z) + (x+(y+z))P € 4(G¢) = (0)

Therefore

((awy)ea) + (orlgsa)), = 0 = (or(yea) + (or(ysa)),

Then (x+y) + z = 2 + (y+z) , which is not true. Therefore, for some
g €6, gllzwy)+z) # glat(y+z)) . Then (gatgy) + gz # gz + (gy+gz) ,
which contradicts that (G is a group. Therefore, for all x, y, 2 in

+
N (x+y) + 2 = x + (y+3) . Hence N is associative and consequently N

3

is a near-ring.

LEMMA 3.11. Every W-loop of type 2 is an H-loop of type 1 and
hence an N-loop of type O .

Proof. The proof of this lemma will follow as in the case of near-

rings (see [11]).

COROLLARY 3.12. If N contains a unity element and G is an N-loop
of type 1, then G is an N-loop of type 2 .

The proof of this corollary will follow as in the case of near-rings

(see [1]).

EXAMPLE 3.13. Let G = {1, 2, 3, 4, 5, 6} . Addition in G is
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defined as shown below:

O Fow -+
[ XNV, I A AV e L
w O v &
N OFoHEo N W W
Vi = 0N D W
[aadE VS A B © ) WP Sl O I AV
E= N VTR SR T« N [}

Then (G, +) 1is a loop with identity 1 and G can be generated by
any one of 3, 4, 5, 6 [2, p. 58]. H = {1, 2} is the only subloop of &
which is different from {1} and @ .

Define

=
n

{f:6~6¢1 1r=1},

=
n

{r:e»¢| =1, #rca,

=
i

5 {f:6~6¢]| 1r=1, BF = {1}} .

Then it is easy to verify that

(1) G is an No-loop of type 2,

(2) ¢ is an IVl—loop of type O but not of type 1 ,

(3} ¢ is an 1V2-loop' of type 1 but (G 1is not an Nz—loop of

type 2 .

LEMMA 3.14, Let G be an N-loop and let P be an ideal of N
such that P < A(G) . Then G has the structure of an N|P-loop.

Proof. Define g{(n+P) =gn . Suppose n + P =#x' + P, Then
n=n'"+p where p € P . Now gn =g(n'+p) = gn' + gp = gn' . Hence the
mapping (g, n+P) + g(n+P) of G x N|P + G is well defined. It can be
easily verified that ( has the structure of an N|P-loop.

LEMMA 3.15. Let P be an ideal of N and let G be an N|P-loop.
Then G has the structure of an N-loop and P c A(G) .

Proof. Let g € G and n €N . Define gn = g(n+P) . Then it can
be easily verified that G has the structure of an N-loop and P EA(G)
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COROLLARY 3.16. Let G be an N-loop and let P be an ideal of N
such that P c A(G) . Then the N-loop kernels of G are the same as the
N|P-loop kernels of G .

The proof is easy and will be omitted.

We are now in a position to introduce various radicals for loop near-

rings as in the case of near-rings.
DEFINITION 3.17. JV(N) is defined as the intersection of all

annihilating ideals of WN-loops of type V in N for V=0, 1,2 . 1In
case N possesses no N-loops of type V then JV(N) is defined as N

itself.

DEFINITION 3.18. D(¥N) is defined as the intersection of all modular
maximal right ideals of N . In case N has no modular maximal right

ideals, D(N) is defined as N itself.

DEFINITION 3.19. A loop near-ring ¥ is said to be a V-primitive
loop near-ring if there exists an N-loop G of type V such that
A(¢) = {(0) .

DEFINITION 3.20. An ideal P of N is called a V-primitive ideal

provided N!P is a V-primitive loop near-ring.

COROLLARY 3.21.. 4n ideal P of N is V-primitive if and only if
there exists an N-loop G of type V with A(G) = P .

The proof is easy and will be omitted.
We remark that JV(N) is the intersection of all V-primitive ideals
of N for V=0,1, 2,

COROLLARY 3.22. If L <8 a right ideal in N , then
(L : ¥) = (0 : N+-L) where 0 1is the identity of the loop v .

Proof. o« € (L : N) if and only if No € L ,if and only if
(8"-L)a = 0, if and only if a« € (0 : N'-L)

DEFINITION 3.23. A modular right ideal L of N is said to be a
V-modular right ideal provided VoL is an N-loop of type V

We observe that a O-modular right ideal is a modular maximal right

ideal and a 2-modular right ideal is a maximal N-subloop of vt . Hence
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D(N) is the intersection of all O-modular right ideals.

We now characterize V-primitive ideals of a loop near-ring in terms

of V-modular right ideals.

LEMMA 3.24. L <s a V-modular right ideal of N if and only if
(L : V) is a V-primitive ideal of W .

Proof. L is a V-modular right ideal if and only if N - L is an
N-loop of type V, if and only if (0 : N'-I) is a V-primitive ideal.
Since (0 : IV+—L) = (L :¥), (L:0VN) is a V-primitive ideal.

LEMMA 3.25. 4n ideal P of N is a V-primitive ideal if and only
if P = (L : N),where L is a V-modular right ideal of N .

Proof. If P = (L : N), where L is a V-modular right ideal of ¥ ,
then, by Lemma 3.2k, P is a V-primitive ideal of N . Suppose that P
is a V-primitive ideal of N . Then there exists an MN-loop G of type
V such that P = A(G) . Let g be an DN-generator of G . Then
G = gN . Now the mapping ¢ : N > G defined by ¢{n) = gn is an N-loop
homomorphism of ¥ onto G . Let L = ker(¢) and let g = ge for some

e €N . Now for every n € N ,
glnten,) = gn + glen) = gn + (gedn, =gn + gn_ = glnm) =70 .
Therefore n + en, €L for all n € N . Therefore L is a modular right

ideal with e as a left identity modulo L . Since (G 1is of type V ,
vt oL is an WN-loop of type V . Therefore L is a V-modular right
ideal. Now P = A(G) = (0 : #'-L) = (L : W)

COROLLARY 3.26. JV(IV) =N (L : N) where L ranges over all
L

V-modular right ideals.

Proof, JV(IV) =1 P where P ranges over all V-primitive ideals of

P
N . Since P is a V-primitive ideal if and only if P = (L : V), where
L is a V-modular right ideal of ¥, J (N) =N (L : N), where L ranges

L

over all V-modular right ideals of W .

The following results will follow in a similar way as in the case of

near-rings (see [4]).
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THEOREM 3.27. J(¥) is the intersection of all V-modular right
ideals L in N for V=1, 2 .
LEMMA 3.28. If {La | @ € A} is a family of right ideals of W ,

then N (2, :®) =(n L
0.€A 0.€A

o N)

THEOREM 3.29. (D(N) : N) = JO(N) .
COROLLARY 3.30. J _(N) <s the largest ideal of N contained in

0
D(N)

DEFINITION 3.31. An ideal I of N is said to be a modular ideal

if and only if L 1is a modular right ideal.

THEOREM 3.32. Any modular maximal ideal L of N is a O-primitive
ideal.

4. AQuasi-regular elements of type V

The notion of a quasi-regular element in near-rings has been
introduced by various authors in different ways. However in the case of

loop near-rings we introduce three types of quasi-regular elements.

DEFINITION 4.1. An element =2 of a loop near-ring N is called a
right quasi-regular element of type UV if there is no V-modular right

ideal containing all elements of the form x + zxr , x €N .

We remark that every right quasi-regular element of type 0 is a
right quasi-regular element of type 1 , and every right quasi-regular

n

element of type 1 is a right quasi-regular element of type 2 .

DEFINITION 4.2. A right ideal (loop module) L of N is a quasi-
regular right ideal (loop module) of type V if every element of L is
a right quasi-regular element of type V , and an ideal L of N is

called a quasi-regular ideal of type V provided L is a quasi-regular

right ideal of type V .

We remark that a quasi-regular right ideal of type 0 is a quasi-
regular right ideal of type 1 , and a quasi-regular right ideal of type 1
is a quasi-regular right ideal of type 2 .

By Corollary 2.8 it will follow that a left identity modulo a proper
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modular right ideal L can not be a right quasi-regular element of type
0.

LEMMA 4.3. An element 2z of N is a right quasi-regular element of
type O <if and only if the minimal right ideal containing all elements of
the form x + 2z, , = € N, coincides with N .

The proof is easy and will be omitted.

Now we prove the following important lemma.

LEMMA 4.4, Any nilpotent element of N is a right quasi-regular
element of type V , V =0,1,2.

Proof. Let 2 be a nilpotent element of ¥ and 2" = 0 where =2
is a positive integer. Let L be a V-modular right ideal containing all

elements of the form x + 2L, , & €N . Now for each x« € N |

n-1

w+zx,, zo+z(2T) 5 ..., 2 mz(zn'lx]

belong to L . Hence

w+az zmzexp, e zn_lmzn:cr belong to L . Since x + sz, € L,

(xfzxr) + L = (zwzxp] +L . since N' - L 1is a loop, we have

x+L =zx+L . Since zx + zexr € L and since L 1is a normal subloop

+
of N ,

2 _ 2 _ 2
[ao+z xr) +L =L+ [a&z xp) = (L+x) + = z,

- 2, _ -
-(L+zx)+zxr-L+[zm+zxr)_L.

Therefore & + zzxr €L forall x ¢ N, Since &+ zzxr € L and

22x+z3xr€L , We have X + 2z

3

x, €L for all x € N . Proceeding in

this way we finally get x + zn:cr €L for all x € N . Now

x + znxp =x €L . Hence L =V, a contradiction. Hence there is no
V-modular right ideal of N containing all elements of the form x + 3x,

x € N ., Therefore 2z is a right quasi-regular element of type V ,
V=0,1,2.
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COROLLARY 4.5. Any nil right ideal (loop module) of N <is a quasi-
regular right ideal of type V , V =0,1, 2.

The proof of this is a direct consequence of Lemma L.L.

We now characterize the ideals J(¥) in terms of right quasi-regular

elements of type V .

LEMMA 4.6. Jyl¥) is a quasi-regular ideal of type V ,
v=o0,1,2.

Proof. If JV(N) = N, there is nothing to prove. Suppose
JV(N) #N . Let 2z be an element of JV(N)’ and assume that 2z 1is not a

right quasi-regular element of type V . Then there exists a V-modular
right ideal, say L , such that L contains all elements of the form

x 42T, , & €N . Since =z € JV(N) , 3 Dbelongs to every V-modular

right ideal and in particular 2z € L . So 3zx €L for all x € N . Since

x+ 2z, €L, (x+zxr] +L = (zx+zxr) +L . since N' - L is a loop,

x+L=2x+L . Therefore £ +L =L . Hence x €L . Then L =0V, a
contradiction. Therefore 2 1is a right quasi-regular element of type V .

Hence JV(N) is a quasi-regular ideal of type V .

THEOREM 4.7. JV(N) is the largest quasi-regular right ideal of type
V=i, 2.

Proof. By Lemma 4.6, J(N) is a quasi-regular right ideal of type

V . Now we shall show that JV(N) contains all the quasi-regular right
ideals of type V , V =1,2 . If JV(N) = N there is nothing to prove.

Suppose JU(N) # N . Let ¢ be a quasi-regular right ideal of type V ,
V=1, 2 . Suppose & ¢~JV(N) . Then there exists a V-modular right

ideal, V =1, 2 , say L , such that & §_L . Let e Dbe a left identity

modulo L . Now N=L+¢ and e=n+s vwhere n €L , g € Q. Since

L is a right ideal, ea + sa, = (n+s)a + sa, €L , for all a € ¥ . Since
e is a left identity modulo L , g + ea, €L for all q € N . Therefore
for each a € N | (a+ear] + L = (ea+ear] +L . since N' _ L isa loop,

a+L =e¢a+L . Now (a+sar) +L = (ea+sar] +L =1L . Therefore

https://doi.org/10.1017/50004972700008959 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008959

434 D. Ramakotaiah and C. Santhakumari

a +sa, € L for all a € N. So s can not be a right quasi-regular
element of type V , V =1, 2 . Since s € § , s is a right quasi-
regular element of type V , V =1, 2 ; a contradiction. Therefore
¢ < L and hence QEJV(N) , V=1,2.

COROLLARY 4.8. J, (i) contains all nil right ideals of W,
V=1,2.

Proof. Since a nil right ideal is a quasi-regular right ideal of
type V , by Theorem k4.7, JV(IV) contains all nil right ideals of ¥ .

COROLLARY 4.9. JV(N) contains all nilpotent right ideals of N ,
V=1, 2.

THEOREM 4.10. D(N) <s the largest quasi-regular right ideal of type

Proof. Let =z be an element of D(N) and suppose L is a

O-modular right ideal conteining all elements of the form & + zxr s

x €N . Now L >DOD(N) and hence z € L . Since for each z € N ,

. + .
x + 2z, €L, (mzxr) +L = (zmzxp) +L . Since N - L is a loop, we
have £+ L =2x +L . Since 3 €L , 3x €L . Therefore x+L =1 .
Hence & € L . Then L = N , a contradiction. Therefore there is no

O-modular right ideal of # containing all elements of the form x + zxp ,

x €N . Hence =z 1is a right quasi-regular element of type O, and
therefore D(N) is a quasi-regular right ideal of type 0 . Now we shall
show that D(N¥) contains all the quasi-regular right ideals of type O .
If D(N) = N there is nothing to prove. Suppose D(N) # ¥ . Let & be
any quasi-regular right ideal of type O and let L be any O-modular
right ideal. If & i L , then N=L + & . Now proceeding as in Theorem

L.7, we get a contradiction. Therefore € C L and hence &< D(¥) .
As there are near-rings where the radicals JV(IV) and D(N) are

different, from Theorems 4.7 and 4.10 we observe that the three types of

quasi-regular right ideals which we introduced are distinct.
COROLLARY 4.11. D(N) contains all nil right ideals.
COROLLARY 4.12. D(N) contains all nilpotent right ideals.
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THEOREM 4.13. JO(N) ig the largest quasizregular ideal of type O .

Proof. By Lemma 4.6, JO(H) is a quasi-regular ideal of type O .

Let L be any quasi-regular ideal of type O . Since a quasi-regular
ideal of type 0 is a quasi-regular right ideal of type 0 , L S_D(N)
Since JO(N) is the largest ideal contained in D(#) , it follows that

Lc JO(N)
COROLLARY 4.14. JO(N) contains all the nil ideals of N .

COROLLARY 4.15. JO(N) contains all the nilpotent ideals of N .
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