BULL. AUSTRAL. MATH. SOC. VOL. 29 (1984), 303-308.

ALGEBRAS GENERATED BY SYMMETRIC IDEMPOTENTS

DAVID CHOATE

Let F be a field. If A is an F-algebra with involution that is generated (as a space) by symmetric idempotents, then A is a subdirect product of copies of F if and only if every idempotent in A is symmetric.

1. Introduction

This paper arose from the study of the questions raised by Herstein [2] concerning when the vector space generated by the symmetric idempotents in a simple ring with involution is equal to itself. If S is a simple ring and C(S) the centroid of S, then C(S) is a field and S is a C(S)-algebra. Let $E^*(S)$ be the C(S)-subspace generated by the non-zero symmetric idempotents. Chaung and Lee [1, Example 4] showed that $E^*(S)$ can be a ring and yet not be S itself. Observe that if $E^*(S)$ is a ring, then $E^*(S)$ is an algebra generated as a vector space by symmetric idempotents, the object of our investigation.

Let F be a field. In this paper we show that if A is an F-algebra with involution * that is generated (as a space) by symmetric idempotents, then A is a subdirect product of copies of F if and only if every idempotent in A is symmetric.

Received 14 November 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

2. A commutivity condition

In this section we require only that A be an F-algebra generated by idempotents. If we ask when A is commutative, then we are led to

THEOREM 1. Suppose F is a field and A is an F-algebra generated by idempotents. The following are equivalent:

- (i) A is commutative;
- (ii) A has no non-zero nilpotent elements;
- (iii) A is F-isomorphic to a subdirect product of copies of $\it F$.

Proof. Take A to be commutative. We let I denote the set of non-zero idempotents in A. Any non-zero element in A can be written in the form $\lambda_1 e_1 + \ldots + \lambda_n e_n$ where $0 \neq \lambda_i \in F$, $0 \neq e_i \in I$, e_i 's distinct, and n is minimal. We call n the length of the element. If A has a non-zero nilpotent element, then choose one of minimal length among all such elements. Denote the element by w and express it as above. So for each $i=1,\ldots,n$,

$$w - we_i = \sum \lambda_j (e_j - e_j e_i)$$
,

where $j=1,\ldots,n$ and $j\neq i$, is an element of length less than n or $w-we_i$ is zero. But $w-we_i$ is nilpotent; so the latter must hold and $w=we_i$. Observe that

$$\omega^2 = (\lambda_1 + \ldots + \lambda_n)\omega$$

and then inductively we have

$$0 = w^k = (\lambda_1 + \dots + \lambda_n)^{k-1} w ,$$

where k is the index of nilpotency of w . Consequently,

$$\left(\lambda_1 + \ldots + \lambda_n\right)^{k-1} = 0$$

or

$$\lambda_1 + \ldots + \lambda_n = 0$$
.

Let x_j be the product of the idempotents $e_j, e_{j+1}, \ldots, e_n$, $j = 1, \ldots, n$. Then

$$wx_1 = we_1x_2 = wx_2 = \dots = we_n = w$$
,

but

$$wx_1 = (\lambda_1 e_1 + \dots + \lambda_n e_n) x_1$$

$$= \lambda_1 x_1 + \dots + \lambda_n x_1$$

$$= (\lambda_1 + \dots + \lambda_n) x_1$$

$$= 0$$

So w = 0 and A has no non-zero nilpotent elements. Thus (i) implies (ii).

One obtains (iii) from (ii) by recalling that in a ring without nilpotent elements the idempotents are central. So we may consider A to be commutative and without nilpotent elements. Using an F-algebra version of the Krull-McCoy Theorem, that a ring without nilpotent elements is isomorphic to a subdirect product of integral domains, we have that A is a subdirect product of F-algebras, A_i , i running over some index set A, where each A_i is without zero divisors. Each A_i , being an F-homomorphic image of A, must also be generated as an F-vector space by idempotents. Since $A_i \neq (0)$, it contains a non-zero idempotent. But since A_i is a ring without zero divisors, this idempotent is a unit element, say 1_i . In fact, since the idempotents in A must go into 0 or 1_i under the ith projection F-homomorphism, each element of A_i is of the form $1_i \cdot \lambda \in F$ and consequently A_i is a field which is isomorphic to F.

It is immediate that (iii) implies (i).

A corollary to this theorem is of interest when A is noncommutative.

COROLLARY 1. Suppose F be a field and A is an F-algebra generated by idempotents. All of the nilpotent elements in A are found in its commutator ideal.

Proof. Let C be the commutator ideal of A . Then A/C is a

commutative F-algebra generated by idempotents. If n is a nilpotent element in A, then n+C is a nilpotent element in A/C. By Theorem 1 we must have n+C=C, or $n\in C$.

3. A *-version

We now suppose that A is an F-algebra with involution * that is generated by symmetric idempotents and ask when A is commutative.

THEOREM 2. Suppose F is a field and A is an F-algebra with involution generated by symmetric idempotents. The algebra A is commutative if and only if every idempotent in A is symmetric.

Proof. Suppose every idempotent in A is symmetric. Then if e_1 and e_2 are idempotents in A, so is $e_1+e_1e_2-e_1e_2e_1$. Then we must have

Consequently, $e_1e_2 = e_2e_1$ for any two symmetric idempotents in A. This is enough to show that A is commutative.

Now suppose that A is commutative. We let S denote the set of non-zero symmetric idempotents in A. Any non-zero element in A can be written in the form $\lambda_1 e_1 + \ldots + \lambda_n e_n$ where $0 \neq \lambda_i \in F$, $0 \neq e_i \in S$, e_i 's distinct, n minimal. We call n the length of the element. If A has an idempotent that is not symmetric, then choose one of minimal length among all such elements. Denote this element by e and express it as above. So for each $i=1,\ldots,n$,

$$e - ee_i = \sum \lambda_j (e_j - e_j e_i)$$
,

where $j=1,\ldots,n$ and $j\neq i$, is an idempotent of length less than n, and hence $e-ee_j$ must be symmetric. So we know

$$e - ee_i = e^* - e^*e_i$$

for each i . Multiplying by λ_i we have

$$\lambda_i e - e(\lambda_i e_i) = \lambda_i e^* - e^*(\lambda_i e_i) .$$

Summing over i from 1 to n we get

$$(\lambda_1 + \ldots + \lambda_n)e - e = (\lambda_1 + \ldots + \lambda_n)e^* - e^*e$$
.

If $\lambda_1+\ldots+\lambda_n=0$ then $e=e^*e$ which implies e is symmetric. If $\lambda_1+\ldots+\lambda_n=1$, then $e^*e=e^*$. So $e=e^*e$. Thus we may assume below that

$$\lambda_1 + \dots + \lambda_n \neq 0, 1$$
.

Let x_i be the product of the idempotents e_i , e_{i+1} , ..., e_n , $i=1,\ldots,n$. If we multiply

$$e = \lambda_1 e_1 + \dots + \lambda_n e_n$$

by $x_{_{\!\!\!1}}$, then we obtain

$$ex_1 = \lambda_1 x_1 + \dots + \lambda_n x_1$$
$$= (\lambda_1 + \dots + \lambda_n) x_1.$$

After squaring and subtracting we have

$$\left[\left(\lambda_1 + \dots + \lambda_n \right)^2 - \left(\lambda_1 + \dots + \lambda_n \right) \right] x_1 = 0.$$

This implies $x_1 = 0$. Now set $e - ee_i = s_i$, i = 1, ..., n. Then

$$0 = ex_{1}$$

$$= ee_{1} x_{2}$$

$$= e-s_{1} x_{2}$$

$$= ex_{2} - s_{1}x_{2}$$

$$= ee_{2} x_{3} - s_{1}x_{2}$$

$$= ex_{3} - s_{2}x_{3} - s_{1}x_{2}$$

$$\vdots$$

$$= e - s_{n} - s_{n-1}x_{n} - s_{n-2}x_{n-1} - \dots - s_{1}x_{2}.$$

Since s_i and x_i , i = 1, ..., n , are symmetric elements, e is symmetric.

COROLLARY 2. Suppose F is a field and A is an F-algebra with involution * generated by symmetric idempotents. If e is an idempotent in A, then e - e * is an element in its commutator ideal.

Proof. We again denote the commutator ideal of A by C. Define $C^* = \{c^*; c \in C\}$. Since $C = C^*$ we know A/C is a commutative F-algebra having involution which is generated by symmetric idempotents. If e is an idempotent in A, then e + C is an idempotent in A/C. By Theorem 2 we know $e + C = e^* + C$, or $e - e^* \in C$.

If we combine Theorem 1 and Theorem 2, then we immediately obtain

THEOREM 3. Suppose F is a field and A is an F-algebra with involution generated by symmetric idempotents. The following are equivalent:

- (i) A is commutative;
- (ii) every idempotent in A is symmetric;
- (iii) A has no non-zero nilpotent elements;
- (iv) A is F-isomorphic to a subdirect product of copies of ${\it F}$.

References

- [1] C.L. Chaung and P.H. Lee, "Idempotents in simple rings", J. Algebra 56 (1979), 510-515.
- [2] I.N. Herstein, Rings with involution (University of Chicago Press, Chicago, 1979).

Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125, USA.