
J. Plasma Phys. (2024), vol. 90, 905900403 © The Author(s), 2024.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377824000771

The effects of finite electron inertia on
helicity-barrier-mediated turbulence

T. Adkins 1,†, R. Meyrand 1 and J. Squire 1

1Department of Physics, University of Otago, Dunedin 9016, New Zealand

(Received 14 April 2024; revised 29 May 2024; accepted 30 May 2024)

Understanding the partitioning of turbulent energy between ions and electrons in weakly
collisional plasmas is crucial for the accurate interpretation of observations and modelling
of various astrophysical phenomena. Many such plasmas are ‘imbalanced’, wherein the
large-scale energy input is dominated by Alfvénic fluctuations propagating in a single
direction. In this paper, we demonstrate that when strongly-magnetised plasma turbulence
is imbalanced, nonlinear conservation laws imply the existence of a critical value of
the electron plasma beta (the ratio of the thermal to magnetic pressures) that separates
two dramatically different types of turbulence in parameter space. For betas below the
critical value, the free energy injected on the largest scales is able to undergo a familiar
Kolmogorov-type cascade to small scales where it is dissipated, heating electrons. For
betas above the critical value, the system forms a ‘helicity barrier’ that prevents the
cascade from proceeding past the ion Larmor radius, causing the majority of the injected
free energy to be deposited into ion heating. Physically, the helicity barrier results from the
inability of the system to adjust to the disparity between the perpendicular-wavenumber
scalings of the free energy and generalised helicity below the ion Larmor radius;
restoring finite electron inertia can annul, or even reverse, this disparity, giving rise to
the aforementioned critical beta. We relate this physics to the ‘dynamic phase alignment’
mechanism (that operates under yet lower beta conditions and in pair plasmas), and
characterise various other important features of the helicity barrier, including the nature
of the nonlinear wavenumber-space fluxes, dissipation rates, and energy spectra. The
existence of such a critical beta has important implications for heating, as it suggests that
the dominant recipient of the turbulent energy, ions or electrons, can depend sensitively
on the characteristics of the plasma at large scales.
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1. Introduction

Many astrophysical plasma systems are weakly collisional, with their characteristic
dynamical timescales approaching those associated with inter-particle collisions. A key
question in the context of such plasmas is what determines the partitioning of turbulent
free energy between ions and electrons, given that they lack an obvious means of thermal
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equilibration. Indeed, two-temperature states are expected or observed in a variety of
contexts, e.g. accretion discs around black holes (Ichimaru 1977; Quataert & Gruzinov
1999), the intracluster medium (Takizawa 1999; Kunz, Jones & Zhuravleva 2022), and
the solar wind (Cranmer 2009). In the latter context, the Alfvénic turbulence launched
by low-frequency motions in the corona (De Pontieu et al. 2007; Tomczyk et al. 2007) is
observed to preferentially heat protons over electrons (Hansteen & Leer 1995; Cranmer
et al. 2009; Bandyopadhyay et al. 2023), while heavier minor ions (e.g. helium or oxygen)
are heated even more efficiently (Kohl et al. 1997). This is somewhat puzzling, however,
as theories of Alfvénic turbulence at low plasma beta (the ratio of the thermal to magnetic
pressures) predict that all of the heating from a Kolmogorov (1941) style cascade of
free energy occurs on electrons (Howes et al. 2008a; Schekochihin et al. 2009; Howes
2010; Kawazura, Barnes & Schekochihin 2019; Schekochihin, Kawazura & Barnes 2019).
Furthermore, such a cascade is unable to easily transfer energy to the small parallel
scales required to excite ion-cyclotron waves (ICWs) that can cause efficient perpendicular
ion heating (Kennel & Engelmann 1966; Isenberg & Vasquez 2011). Although there
are other possible mechanisms that will preferentially heat ions, they either impose
constraints on the turbulence that are contradicted by observations or the understanding
thereof remains limited. For example, compressive fluctuations are able to cause parallel
ion heating (Schekochihin et al. 2009), but are unlikely to have sufficient power to
explain the temperature difference between ions and electrons (Howes et al. 2012). In a
similar vein, mechanisms such as random-walk scattering from ion-Larmor-radius-scale
electric-field fluctuations (so-called ‘stochastic heating’; Chandran et al. 2010) and
sub-ion-Larmor-radius kinetic-Alfvén-wave (KAW) turbulence (Arzamasskiy et al. 2019;
Isenberg & Vasquez 2019) are capable of dissipating a significant fraction of the turbulent
energy so long as fluctuations remain of sufficiently large amplitude. Whether solar-wind
fluctuations are capable of doing this robustly enough to explain the observed ion heating
remains unclear (Howes et al. 2008b; Chandran et al. 2011).

A possible explanation for the preferential heating of ions that also explains a number
of other solar-wind observations is the so-called ‘helicity barrier’ (Meyrand et al. 2021):
when the turbulence is imbalanced (i.e. when there is a significant disparity in the
energies of the forwards- and backwards-propagating fluctuations), as it is in the solar
wind, free energy is prevented from cascading past the ion Larmor radius ρi and reaching
smaller perpendicular scales, where it would, presumably, dissipate on electrons. Instead,
the turbulence grows to large amplitudes, creating fine parallel structure that excites
ICW fluctuations and heats the ions, which then absorb the majority of the injected
power (Squire et al. 2022; Squire, Meyrand & Kunz 2023). This helicity-barrier-mediated
turbulence has many features that agree with measurements of the low-beta solar wind,
including those of the ion velocity distribution function (see, e.g., Marsch 2006; He et al.
2015; Bowen et al. 2022), helicity (Huang et al. 2021; Zhao et al. 2021), and properties
of the steep spectral slopes of the electromagnetic fields in the ‘transition range’ on scales
comparable to the ion Larmor radius. These transition range spectra have been observed
for decades (Leamon et al. 1998; Alexandrova et al. 2009; Sahraoui et al. 2009) and,
more recently, by Parker Solar Probe (PSP) (Bowen et al. 2020a; Duan et al. 2021; Bowen
et al. 2024). The helicity barrier may also have an important impact on plasmas in other
astrophysical contexts, such as in the interpretation of images from the Event Horizon
Telescope (Wong & Arzamasskiy 2024).

This paradigm remains incomplete, however, as research exploring the impact of the
helicity barrier in imbalanced solar-wind turbulence has thus far been conducted without
accounting for the effects of electron kinetics. In particular, the assumption of a vanishing
electron inertial scale de = ρe/

√
βe (where ρe is the electron Larmor radius and βe
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is the electron plasma beta) has resulted in the neglect of electron Landau damping,
which is particularly significant on scales comparable to de (Schekochihin et al. 2009;
Zocco & Schekochihin 2011; Zhou, Liu & Loureiro 2023a). Given that these effects
will undoubtedly play a role in determining the partitioning of turbulent energy between
ions and electrons, accounting for them is a necessary extension of the helicity-barrier
paradigm to the low-beta regime most relevant to the lower corona. In this paper, we
consider the effects of finite electron inertia in imbalanced helicity-barrier-mediated
turbulence. Using equations derived in a low-beta asymptotic limit of gyrokinetics,
we demonstrate the existence of a critical value of the electron beta βe below which,
for a given value of the energy imbalance in the outer-scale fluctuations, the helicity
barrier will not form, allowing free energy to cascade to small perpendicular scales. This
effect is shown to arise from the constraints placed on the turbulent dynamics by the
simultaneous conservation of both free energy and (generalised) helicity across the ion
Larmor scale ρi and the electron inertial scale de. At perpendicular scales significantly
larger than ρi or smaller than de, both the free energy and the helicity display the
same perpendicular-wavenumber scaling, meaning that they can, in principle, cascade
simultaneously. This is not the case on scales between ρi and de: below the aforementioned
critical beta, the helicity exhibits a shallower scaling with perpendicular wavenumber
than the free energy, whereas above it, it exhibits a steeper scaling. In the former case,
fluctuations are able to compensate for this disparity in scaling by becoming increasingly
misaligned at small scales through ‘dynamic phase alignment’ (Loureiro & Boldyrev
2018; Milanese et al. 2020), allowing the cascade of energy to proceed to small scales
uninterrupted. In the latter case, however, fluctuations cannot account for this disparity
because they are unable to become more than maximally aligned, eventually leading
to the breakdown of the constant-flux solution and the formation of a helicity barrier
that prevents energy from cascading past ρi. The existence of this critical beta thus has
important consequences for turbulent heating, acting as a ‘switch’ that determines whether
the majority of turbulent fluctuations are dissipated on ions (above the critical beta) or
electrons (below it) as a function of the equilibrium parameters of the system.

The remainder of this paper is organised as follows. Section 2 motivates and outlines
the model equations used for theoretical arguments and simulations throughout this work
(§ 2.1), before considering their linear phase velocity (§ 2.2) and nonlinearly conserved
invariants (§ 2.3). Details of the numerical implementation are briefly discussed in § 2.4.
Section 3 considers the dynamics of imbalanced turbulence within these model equations.
We begin by outlining a theory of balanced turbulence assuming a constant-flux cascade
of energy (§ 3.1), which exhibits good agreement with numerical simulations. The effect
of helicity conservation is then considered in § 3.2, from which the critical value of βe
discussed previously is shown to follow. The principal characteristics of the helicity barrier
are outlined in § 3.3 in order to motivate our testing of this critical beta that occurs in § 3.4,
with the prediction being robustly supported by numerical simulations. We then briefly
discuss the relationship between the helicity barrier and dynamic phase alignment, before
summarising and discussing the implications of our results in § 4.

2. Isothermal kinetic reduced electron heating model

Standard magnetised plasma turbulence phenomenologies (see, e.g., Goldreich &
Sridhar 1995; Boldyrev 2006; Schekochihin 2022) imply that fluctuations at scales much
smaller than those associated with the variation of the local magnetic field B0 = B0b0 are
highly anisotropic in space, viz., they satisfy k‖ � k⊥ for characteristic wavenumbers k‖
and k⊥ parallel and perpendicular to b0. This anisotropy, which appears to be satisfied
in the solar wind (Chen et al. 2013; Chen 2016), allows even small-scale fluctuations to
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have frequencies well below the frequency Ωs of the Larmor motion of the particles.
Averaging, then, the Vlasov–Maxwell system over this fast Larmor timescale in the
presence of such anisotropy leads to the gyrokinetic system of equations (Howes et al.
2006; Schekochihin et al. 2009; Abel et al. 2013), which has seen recent application
to the study of kinetic plasma turbulence in astrophysical plasmas (see, e.g., Howes
et al. 2008b, 2011; Kawazura et al. 2019). A further simplification can be made by
expanding in the limit of low plasma beta, wherein there is minimal coupling between
Alfvénic and ion-compressive fluctuations because the ion-thermal speed is much lower
than the Alfvén speed (Schekochihin et al. 2019). This allows ion kinetics to be neglected
even at the ion-Larmor scale. The resultant system of equations is known as the
‘kinetic reduced electron heating model’ (KREHM, Zocco & Schekochihin 2011; Loureiro
et al. 2016), which couples the equations of reduced magnetohydrodynamics (RMHD,
Kadomtsev & Pogutse 1974; Strauss 1976) and electron reduced magnetohydrodynamics
(ERMHD, Schekochihin et al. 2009; Boldyrev et al. 2013) to the electron kinetic
physics. Although the KREHM equations are formally derived with the electron beta
ordered comparable to the electron–ion mass ratio βe = 8πn0eT0e/B2

0 ∼ me/mi (Zocco
& Schekochihin 2011; Adkins et al. 2022), they remain valid for all βe � 1 assuming
an order-unity equilibrium-temperature-ratio between ions and electrons τ ≡ T0i/T0e ∼ 1
(n0e is the equilibrium density of electrons).

In pursuit of further simplicity, we will assume the electrons to be isothermal along
exact (equilibrium plus perturbed) field lines. Formally, this amounts to neglecting the
parallel gradient of the parallel electron-temperature perturbation that would otherwise
appear in the electron momentum equation (see (2.2)). The effect of this is to decouple
the lowest-order fluid moments from the remainder of the kinetic hierarchy (higher-order
velocity moments of the kinetic distribution function). Such an approximation is easily
justified when investigating dynamics on timescales much slower than the electron
parallel-streaming rate, which is typically the case at scales comparable to, or larger
than, the ion-Larmor radius k⊥ρi � 1 (see, e.g., Schekochihin et al. 2009, 2019; Abel &
Cowley 2013; Zielinski et al. 2017). We note, however, that the typical dynamical timescale
associated with the resultant isothermal KREHM equations becomes comparable to the
electron parallel-streaming rate on scales around the electron-inertial scale k⊥de ∼ 1 (see
§ 2.2). This means that the isothermal approximation breaks down at smaller perpendicular
scales, where the effects of electron Landau damping are significant (Zhou et al. 2023a).
Nevertheless, even though the isothermal approximation cannot be formally derived, we
view the isothermal KREHM equations (which are three-dimensional, having neglected
the kinetic physics) as a useful, perhaps even necessary, intermediate step between the
simpler RMHD or ERMHD systems and the more complicated KREHM system (which
is four-dimensional). In particular, it allows us to investigate the dynamics of the ‘fluid’
moments of the system without Landau damping obscuring important features of the
dynamics. We will discuss the limitations of the isothermal approximation in detail in
§ 4.1.

2.1. Model equations
The equations of isothermal KREHM are

dδne

dt
+ n0e∇‖u‖e = 0, (2.1)

men0e
du‖e

dt
+ T0e∇‖δne = −en0e

(
1
c

∂A‖
∂t

+ ∇‖φ
)

, (2.2)
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where vthe = √
2T0e/me is the thermal speed of electrons, me their mass, and −e their

charge. Equation (2.1) is the electron continuity equation, describing the advection of
the perturbed electron density δne by the E × B flow due to the perturbed electrostatic
potential φ:

d
dt

= ∂

∂t
+ u⊥ · ∇⊥, u⊥ = c

B0
b0 × ∇⊥φ, (2.3)

and their compression or rarefaction due to the perturbed parallel electron flow u‖e along
the exact magnetic field. The latter includes the perturbation of the magnetic-field direction
arising from the parallel component of the magnetic-vector potential A‖:

∇‖ = b · ∇ = ∂

∂z
+ δB⊥

B0
· ∇⊥, δB⊥ = −b0 × ∇⊥A‖. (2.4)

Equation (2.2) is the electron parallel momentum equation, consisting of a balance
between electron inertia, the parallel pressure gradient (which, here, is simply the parallel
density gradient, due to the assumption of isothermality), and the parallel electric field
appearing on the right-hand side. Since an electron flow uncompensated by an ion flow is
a current (the ion thermal speed is formally small), u‖e is related to A‖ by Ampére’s law:

− en0eu‖e = j‖ = c
4π

b0 · (∇⊥ × δB⊥) ⇒ u‖e = c
4πen0e

∇2
⊥A‖. (2.5)

Finally, the electron-density perturbation is related to φ by quasineutrality:

δne

n0e
= δni

n0i
= −τ̄−1 eφ

T0e
≡ −Z

τ
(1 − Γ̂0)

eφ
T0e

, (2.6)

where the operator Γ̂0 can be expressed, in Fourier space, in terms of the modified Bessel
function of the first kind: Γ0 = I0(αi)e−αi , where αi = (k⊥ρi)

2/2. This becomes 1 − Γ̂0 ≈
−ρ2

i ∇2
⊥/2 at large scales k⊥ρi � 1, and 1 − Γ̂0 ≈ 1 at small scales k⊥ρi 
 1; the former

limit is why (2.6) is sometimes referred to as the gyrokinetic Poisson equation.
Using (2.5) and (2.6), we can write (2.1) and (2.2) as

d
dt

τ̄−1 eφ
T0e

− c
4πen0e

∇‖∇2
⊥A‖ = 0, (2.7)

d
dt

(
A‖ − d2

e∇2
⊥A‖

) = −c
(

∂φ

∂z
+ ∇‖τ̄−1φ

)
. (2.8)

Together, (2.7) and (2.8) form a closed pair of equations describing the evolution of the
electromagnetic potentials φ and A‖ of a strongly-magnetised, low-beta plasma in the
absence of electron Landau damping. At scales k⊥de � 1, we recover from (2.7) and
(2.8) the finite-Larmor-radius-MHD (FLR-MHD) system studied in Meyrand et al. (2021),
which itself reduces to RMHD and ERMHD at large (k⊥ρi � 1) and small (k⊥ρi 
 1)
scales, respectively. In the ultra-low-beta limit βe � me/mi, in which the electron-inertial
length becomes larger than the ion-Larmor radius de 
 ρi, we also recover equations
describing inertial-Aflvèn-wave turbulence considered by Loureiro & Boldyrev (2018)
and Milanese et al. (2020). To reiterate, (2.7) and (2.8) can be simply obtained from the
KREHM system (which itself can be derived from gyrokinetics in the low-beta limit)
by neglecting higher-order moments of the electron kinetic distribution function. Thus,
our model equations share all of KREHM’s physical characteristics apart from electron
Landau damping.
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2.2. Phase velocity
Linearising and Fourier-transforming (2.7) and (2.8), we find forwards- and
backwards-propagating modes of frequency ω = ±k‖vph(k⊥), where the perpendicular-
wavenumber-dependent phase velocity is given by

vph(k⊥) = k⊥ρs

(
1 + τ̄

1 + k2
⊥d2

e

)1/2

vA. (2.9)

Here, ρs = √
Z/2τρi is the ion-sound radius, related to the (thermal) sound speed by

cs = ρs/Ωi and vA = B0/
√

4πn0imi is the Alfvén speed. Equation (2.9) has the asymptotic
behaviour

lim
k⊥→0

vph(k⊥) = vA, lim
k⊥→∞

vph(k⊥) =
(

1 + τ/Z
2

)1/2

vthe, (2.10)

meaning that we recover Alfvén waves and the electron parallel-streaming rate at the
largest and smallest scales, respectively. Its behaviour in the intermediate region, however,
depends on the relative sizes of the ion-sound radius ρs and electron-inertial scale
de, a competition that is controlled (ignoring any τ or Z dependence) by the ratio of
the electron beta to the electron–ion mass ratio βe(me/mi)

−1. In particular, (2.9) is an
increasing function of (perpendicular) wavenumber for βe 
 me/mi, and a decreasing
one for βe � me/mi, viz.,

vph(k⊥) ∝
{

k⊥ρs, βe 
 me/mi,

(k⊥de)
−1, βe � me/mi,

(2.11)

for wavenumbers in the intermediate region. The associated waves are known as kinetic
Alfvén waves (KAWs), for βe 
 me/mi, and inertial Alfvén waves, for βe � me/mi. This
behaviour of the phase velocity is manifest in figure 1, where we plot (2.9) for different
values of βe.1 Note that for βe ∼ me/mi, the curve is non-monotonic; see the inset of
figure 1. Crucially, the increase, or otherwise, of (2.9) with k⊥ determines when the helicity
barrier must form, and so whether or not a significant fraction of energy is able to cascade
towards small scales; this is discussed in § 3.2.

The eigenfunctions associated with the forwards- and backwards-propagating modes
can be expressed, in Fourier space, as

Θ±
k ≡

√
1 + k2

⊥d2
e

[
c

B0

vph(k⊥)/vA

(k⊥ρs)2
τ̄−1φk ∓ A‖k√

4πn0imi

]
. (2.12)

Apart from the prefactor multiplying the square brackets and the difference in vph(k⊥), this
definition is identical to that adopted in Meyrand et al. (2021). These generalised Elsässer
potentials have the property that on the largest scales k⊥ � ρ−1

i , d−1
e , they reduce to the

1It is worth clarifying that βe itself is not a parameter of the isothermal KREHM system of equations (2.7) and (2.8)
due to the fact that they are asymptotically derived under the low-beta ordering βe ∼ me/mi. This means that, formally,
βe should only appear when normalised to the electron–ion mass ratio, viz., βe(me/mi)

−1 is the true parameter that we
will vary throughout this paper. On a similar note, the isothermal KREHM system is derived assuming that k⊥ρi ∼ 1,
meaning that we are (formally) allowed to make k⊥ρi as large as we would like. Physically, however, the isothermal
KREHM system only applies to wavenumbers k⊥ � ρ−1

e , and so dynamics at scales k⊥ρi � √
me/mi are only valid in

an asymptotic sense.
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FIGURE 1. The phase velocity (2.9), normalised to the Alfvén speed, plotted as a function
of perpendicular wavenumber k⊥ρi, and for τ = Z = 1. The colours indicate the value of
βe(me/mi)

−1 for a given line, with the solid black line showing the FLR-MHD case (de → 0).
The dotted lines are the scalings (2.11). The vertical shaded region indicates wavenumbers
k⊥ρe > 1 for which the model ceases to apply. The inset panel shows the case of βe = me/mi,
with the horizontal dashed line indicating vph/vA = 1.

standard RMHD Elsässer potentials (Elsässer 1950), viz.,

lim
k⊥→0

b0 × ∇⊥Θ± = z± ≡ u⊥ ± δB⊥√
4πn0imi

. (2.13)

These potentials (2.12) provide a natural basis for our investigation of imbalanced
turbulence in isothermal KREHM.

2.3. Nonlinear invariants
Most turbulent systems possess at least one nonlinear invariant: a quantity that is conserved
by nonlinear interactions but may have localised sources (e.g. forcing or equilibrium
gradients) and sinks (e.g. viscosity or particle collisions). Gyrokinetics conserves the
so-called free energy, which is the sum of quadratic norms of the magnetic perturbations,
and the perturbations of the distribution functions of both ions and electrons. In the
isothermal KREHM system (2.7) and (2.8), the free energy takes the form (Zocco &
Schekochihin 2011; Loureiro et al. 2016; Adkins et al. 2022):

W =
∫

d3r
V

[
e2n0e

2T0e

(
φτ̄−1φ

) + e2n0e

2T0e

(
τ̄−1φ

)2 +
∣∣∇⊥A‖

∣∣2 + d2
e

(∇2
⊥A‖

)2

8π

]
, (2.14)

where V is the plasma volume. The contributions to (2.14) are, from left to right, the
energies associated with perturbations of the electrostatic potential, electron density,
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(perpendicular) magnetic field and electron parallel velocity. At large scales k⊥ �
ρ−1

i , d−1
e , this becomes

W ≈ n0imi

2

∫
d3r
V

(
|u⊥|2 + |δB⊥|2

4πn0imi

)
= n0imi

4

∫
d3r
V

(∣∣z+∣∣2 + ∣∣z−∣∣2
)

, (2.15)

recovering the usual expression for the free energy in RMHD (see, e.g., Schekochihin et al.
2009).

Free energy is normally the quantity whose cascade from large (injection) to small
(dissipation) scales determines the properties of the plasma’s turbulent state (Schekochihin
et al. 2008, 2009), as in hydrodynamic turbulence (see, e.g., Alexakis & Biferale 2018, and
references therein). Isothermal KREHM, however, possesses another invariant that also
plays an important role: the generalised helicity,

H = −e2n0evA

cT0e

∫
d3r
V

τ̄−1φ
(
A‖ − d2

e∇2
⊥A‖

)
. (2.16)

This reduces to the MHD cross-helicity at k⊥ � ρ−1
i , d−1

e , viz.,

H ≈ n0imi

∫
d3r
V

u⊥ · δB⊥√
4πn0imi

= n0imi

4

∫
d3r
V

(∣∣z+∣∣2 − ∣∣z−∣∣2
)

, (2.17)

and is proportional to the magnetic helicity at ρ−1
i � k⊥ � d−1

e (due to perpendicular
pressure balance; see Schekochihin et al. 2009). The presence of this generalised helicity
places an additional constraint on the dynamical states accessible by the system, as
the turbulence must now evolve in such a way as to conserve both (2.14) and (2.16)
simultaneously. The remainder of this paper is devoted to demonstrating how and when
these constraints give rise to different turbulent states, and the consequences that this may
have for plasma heating.

2.4. Numerical setup
In what follows, the isothermal KREHM system (2.7)–(2.8) is solved using a modified
version of the pseudospectral code TURBO (Teaca et al. 2009) in a triply-periodic box
of size Lx = Ly = Lz = L with n2

⊥ × nz Fourier modes. A third-order Williamson (1980)
algorithm is used for the time-stepping. Time is measured in units of the parallel Alfvén
time tA = Lz/vA. Hyperdissipation in both the perpendicular and parallel directions is
introduced by replacing the time derivative of the left-hand sides of (2.7) and (2.8) by

d
dt

+ ν⊥∇6
⊥ + νz

∂6

∂z6
. (2.18)

The coefficients ν⊥ and νz are adaptive, viz., they are re-evaluated at each timestep to
ensure that dissipation occurs near the grid scale, maximising the inertial range (details
of the numerical implementation can be found in Meyrand et al. 2024). Fluctuations are
forced at large scales at k⊥ = 4π/L, |kz| = 2π/L through the form of negative damping
(Meyrand et al. 2021); this method allows the rates of free-energy and helicity injection to
be controlled exactly while producing sufficiently random motions to generate turbulence.
All of the simulations listed in table 1 have τ = Z = 1, though we will retain dependencies
on these parameters in analytical expressions for the sake of completeness.
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Resolution σε ρi/L de/L βe(me/mi)
−1 Sims

High resolution

—
—

—
–

CF-res 10243 0.80 0.100 0.100 1.00 1
HB-res 10243 0.80 0.100 0.050 4.00 1
RMHD 10243 0.80 — — — 1

Comparison

—
—

—
–

CF 2563 0.80 0.100 0.100 1.00 1
HB 2563 0.80 0.100 0.050 4.00 1

ULB 2563 0.80 — 0.100 — 1

Beta scan

—
—

—
—

—
—

—
—

—
—

—

— 2563 0.20 0.100 (0.004, 0.110) (0.83, 625.00) 10
— 2563 0.30 0.100 (0.015, 0.110) (0.83, 44.40) 8
— 2563 0.40 0.100 (0.015, 0.110) (0.83, 44.40) 8
— 2563 0.50 0.100 (0.015, 0.110) (0.83, 44.40) 8
— 2563 0.60 0.100 (0.040, 0.110) (0.83, 6.25) 8
— 2563 0.70 0.100 (0.040, 0.110) (0.83, 6.25) 8
— 2563 0.80 0.100 (0.040, 0.110) (0.83, 6.25) 8
— 2563 0.90 0.100 (0.060, 0.110) (0.83, 2.78) 6
— 2563 0.99 0.100 (0.100, 0.110) (0.83, 1.00) 2

Resolution scan

—
—

—
—

–

— 643 (0.55, 0.65) 0.100 — — 3
— 1283 (0.25, 0.35) 0.100 — — 3
— 1923 (0.15, 0.25) 0.100 — — 3
— 2563 (0.10, 0.20) 0.100 — — 3

TABLE 1. The parameters used for the isothermal KREHM simulations considered in this paper.
All simulations have τ = Z = 1. Values in parentheses indicate the minimum and maximum
values for the corresponding column, with the final column (‘Sims’) indicating the number
of simulations in a given set. A dash in an entry indicates that the physical simulation being
considered does not contain that physical parameter.

3. Imbalanced Alfvénic turbulence

Observations show that solar-wind turbulence is imbalanced, meaning it is
energetically dominated by outward-propagating Alfvénic structures associated with z+

(inward-propagating structures are associated with z−). It must, therefore, possess a
non-zero cross-helicity (2.17). Writing the free energy (2.14) and (generalised) helicity
(2.16) in terms of the generalised Elsässer potentials (2.12) as

W = n0imi

4

∑
k

(∣∣k⊥Θ+
k

∣∣2 + ∣∣k⊥Θ−
k

∣∣2
)

, (3.1)

H = n0imi

4

∑
k

∣∣k⊥Θ+
k

∣∣2 − ∣∣k⊥Θ−
k

∣∣2

vph(k⊥)/vA
, (3.2)

it is clear that the same will be true of the isothermal KREHM system given a difference
in the Θ± energies. We quantify this energy imbalance by the ratio of the free energy to
the helicity

σ̃c = H
W

, (3.3)
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which reduces to the normalised cross-helicity (or RMHD imbalance) σc at large scales:

lim
k⊥→0

σ̃c = σc =
∫

d3r
(∣∣z+∣∣2 − ∣∣z−∣∣2

)
∫

d3r
(|z+|2 + |z−|2) � 1. (3.4)

Measured values of (3.4) often exceed |σc| � 0.8 in the solar-wind, particularly in
near-Sun regions (McManus et al. 2020). Despite this, a comprehensive theory of
imbalanced turbulence remains elusive, even in the (simpler) context of RMHD
(Lithwick, Goldreich & Sridhar 2007; Chandran 2008; Beresnyak & Lazarian 2009b;
Perez & Boldyrev 2009; Chandran & Perez 2019; Schekochihin 2022). As such, the
phenomenological theory presented in the following sections lays no claim to being
comprehensive; instead, it should be viewed as a useful framework through which the
effect of finite electron inertia can be explored in imbalanced turbulence.

3.1. Constant-flux cascade
Consider the case where (free) energy (2.14) and (generalised) helicity (2.8) are
injected into our isothermal KREHM system at constant rates εW and εH , respectively,
by some large-scale stirring of turbulent fluctuations (due to, e.g., reflection of
outwards-propagating fluctuations; Velli, Grappin & Mangeney 1989). We denote the
resultant injection imbalance, the ratio of the injected flux of helicity to that of the energy,
as σε = |εH|/εW . Given that both the energy and helicity are nonlinear invariants, the
only available route to their dissipation is through some nonlinear transfer to small scales.
Motivated by this, we assume, for the moment, that there is a local, Kolmogorov (1941)
style cascade that carries a constant flux of injected energy and helicity from the outer
(injection) scale, through some putative inertial range, to the dissipation scale.

It follows immediately from this that the rates of energy injection into the forward- and
backward-propagating fluctuations

ε± = εW ± εH

2
= 1 ± σε

2
εW, (3.5)

will be equal to the associated flux of Θ± energy through the inertial range. We estimate
these energy fluxes from (3.1) as

1
n0eT0e

dW±
dt

∼ (
t±nl

)−1
(
k⊥Θ±

k⊥

)2

c2
s

∼ ε± = const., (3.6)

where here, and in what follows, Θ±
k⊥ refers to the characteristic amplitude of the Elsässer

potentials at the scale k−1
⊥ , rather than to the Fourier transform of the field (2.12). Formally,

Θ±
k⊥ can be defined by

(
k⊥Θ±

k⊥

)2

c2
s

= 1
n0eT0e

∫ ∞

k⊥
dk′

⊥E±
⊥(k′

⊥), E±
⊥(k⊥) = 2πk⊥

∫ ∞

−∞
dk‖

n0imi

4

〈∣∣k⊥Θ±
k

∣∣2
〉
,

(3.7)

where E±
⊥(k⊥) is the one-dimensional perpendicular energy spectrum of Θ± (cf. (3.1)),

and in which the brackets denote an ensemble average. An alternative definition would
be via a second-order structure function (see, e.g., Davidson 2013). Perturbations of other
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quantities, such as potential, velocity, and magnetic field, will similarly be taken to refer
to their characteristic amplitude at a given perpendicular scale.

In order to proceed, we need an expression for the nonlinear times appearing in (3.6).
However, as we will discuss shortly, determining exactly what these nonlinear times are
is not a straightforward task, remaining an open research question even in the RMHD
regime (Schekochihin 2022). As such, let us henceforth consider the balanced regime,
assuming that the rates of energy injection into the backwards- and forwards-propagating
fluctuations are comparable, and that they have the same scaling with perpendicular
wavenumber, such that their ratio is constant at all scales, viz.,

ε+ ∼ ε− ∼ εW,
Θ+

k⊥

Θ−
k⊥

= const. (3.8)

Then, the nonlinear times in (3.6) can straightforwardly be taken to be the nonlinear
E × B advection rate associated with either field, which, comparing (2.3) and (2.12), and
neglecting any possible anisotropy in the perpendicular plane, can be written as

(
t±nl

)−1 ∼ k⊥u⊥∼Ωi

(
τ̄ 2

1 + τ̄

)1/2

(k⊥ρs)
3
(

Θ∓
k⊥

ρscs

)
. (3.9)

Combining (3.6), (3.9) and (3.8), we obtain an estimate for the fluctuations of the Elsässer
potentials

Θ±
k⊥

ρscs
∼

(
εW

Ωi

)1/3 (
1 + τ̄

τ̄ 2

)1/6

(k⊥ρs)
−5/3 , (3.10)

and the associated spectra

E±
⊥(k⊥) ∝

(
1 + τ̄

τ̄ 2

)1/3

(k⊥ρs)
−7/3 ∝

{
k−5/3

⊥ , k⊥ρi � 1,

k−7/3
⊥ , k⊥ρi 
 1.

(3.11)

These are the standard Kolmogorov-style scalings for both RMHD and KAW turbulence,
respectively (see, e.g., Goldreich & Sridhar 1995; Cho & Lazarian 2004; Schekochihin
et al. 2009), which hold even in the presence of finite electron inertia (only the magnetic
energy exhibits a transition at k⊥de ∼ 1; see (3.16)). However, simulations of forced
RMHD turbulence have consistently shown scaling exponents closer to −3/2, whereas
those of KAW turbulence appear to be closer to −8/3. The departure of both exponents
from those derived here has been shown to arise due to intermittency effects (see, e.g.,
Boldyrev 2006; Chandran, Schekochihin & Mallet 2015; Mallet & Schekochihin 2017
in the former case, or Boldyrev & Perez 2012; Meyrand & Galtier 2013; Zhou, Liu &
Loureiro 2023b, in the latter), which we have not attempted to account for here. Given that
our aim is not a comprehensive theory of turbulence, but instead to highlight the effect
of helicity conservation in such an environment, we consider agreement with either the
derived spectra (3.11) or those corrected for intermittency to be sufficient evidence that the
system is undergoing a constant-flux cascade. We will compare with a scaling exponent
of −3/2 where necessary as it is well-motivated in balanced turbulence and supported by
observations of imbalanced turbulence (Chen et al. 2020).

Perhaps the most important feature not captured by the scalings (3.10) and (3.11) is the
imbalance, viz., the difference in amplitudes between each of the fields: we have assumed
that Θ+

k⊥ ∼ Θ−
k⊥ , which clearly will not be the case if ε+ 
 ε−. One way of rectifying this

would be to relax the first assumption in (3.8) and assume that the relevant nonlinear time
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for each field is the E × B advection rate associated with the counter-propagating field,
which yields, via a straightforward generalisation of the argument given previously,

Θ±
k⊥ ∝

[(
ε±)2

ε∓

]1/3

⇒ Θ+
k⊥

Θ−
k⊥

∼ ε+

ε− = const. (3.12)

This is the conclusion at which Lithwick et al. (2007) arrived in the context of
strongly-imbalanced RMHD turbulence. Though there is numerical evidence to suggest
that this approximately holds for the ratio of their associated energies (Beresnyak &
Lazarian 2008, 2009a, 2010; Mallet & Schekochihin 2011; Schekochihin 2022), evidence
for it holding throughout the inertial range is less clear. Previous work (see, e.g., Perez
& Boldyrev 2010; Mallet & Schekochihin 2011) suggests that the stronger field typically
has a steeper spectrum than the weaker one, although this difference in their slopes tends
to decrease as numerical resolution is increased. Another potential issue following from
(3.12) is that the ratio of the nonlinear times for each field must scale as t+nl/t−nl ∼ ε+/ε−

(this follows from combining (3.9) and (3.12)). As pointed out by Lithwick et al. (2007),
this has the counterintuitive implication that the weaker Θ−

k⊥ perturbation, which is
advected by Θ+

k⊥ at a faster rate (t−nl)
−1, can nevertheless coherently advect Θ+

k⊥ at the slower
rate (t+nl)

−1. Though they propose a disparity between the spatial and temporal coherences
of each field as a possible explanation for this, such a state is hard to justify in general;
for a possible alternative explanation, see § 9.6 of Schekochihin (2022). Finally, while the
assumption that the counter-propagating field is the only source of nonlinear advection is
guaranteed to be satisfied in the RMHD regime (k⊥ρi � 1), this is not obviously true at
sub-ion scales (k⊥ρi 
 1). The dispersive nature of KAWs makes nonlinear interactions
between co-propagating perturbations (i.e. Θ± with Θ±) possible at these scales, meaning
that it is, in principle, possible to support a turbulent cascade with a single component
Θ± (Cho 2011; Kim & Cho 2015; Voitenko & De Keyser 2016). Given, however, that
these subtleties take us beyond the main focus of this work, we will not engage further
with them here, having highlighted our reasons for presenting only a balanced turbulence
phenomenology when deriving the scaling predictions (3.11).

For completeness, we include the scalings of the two contributions to the free energy
at RMHD scales (see (2.15)): the kinetic energy associated with the E × B flow ∝ |u⊥|2,
and the energy contained in perpendicular magnetic field fluctuations ∝ |δB⊥|2. Defining
their spectra, analogously to (3.7), as

EK
⊥(k⊥) = 2πk⊥

∫ ∞

−∞
dk‖

e2n0e

2T0e
ρ2

s

〈|k⊥φk|2
〉
, (3.13)

EB
⊥(k⊥) = 2πk⊥

∫ ∞

−∞
dk‖

〈|k⊥A‖k|2
〉

8π
, (3.14)

respectively, and comparing the definitions of the free-energy (2.14) and (3.1), we find the
following scalings:

EK
⊥(k⊥) ∼ τ̄ 2

1 + τ̄
(k⊥ρs)

2E±
⊥(k⊥) ∝

{
k−5/3

⊥ , k⊥ρi � 1,

k−1/3
⊥ , k⊥ρi 
 1,

(3.15)
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and

EB
⊥(k⊥) ∼ 1

1 + k2
⊥d2

e

E±
⊥(k⊥) ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k−5/3
⊥ , k⊥ � ρ−1

i , d−1
e ,

k−7/3
⊥ , ρ−1

i � k⊥ � d−1
e ,

k−11/3
⊥ , d−1

e � k⊥ � ρ−1
i ,

k−13/3
⊥ , k⊥ 
 ρ−1

i , d−1
e .

(3.16)

To test these predictions, we consider the simulations in table 1 labelled ‘high
resolution’. The first two simulations, CF-res (‘constant flux’) and HB-res (‘helicity
barrier’), differ only in their values of the electron inertial length (or, equivalently, the
electron beta), having de = ρi and de = ρi/2, respectively. The third is a simulation
of RMHD, included for comparison. As we explain in the following, both simulations
CF-res and RMHD are expected to saturate via a constant-flux cascade: this is what we
indeed find, with their spectra, plotted in figure 2, showing good agreement with the
theoretical predictions (3.10), (3.15), and (3.16), up to the aforementioned corrections due
to intermittency. This serves as numerical confirmation of the turbulence phenomenology
presented above across the RMHD, ERMHD, ultra-low-beta and sub-de regimes (see,
e.g., Schekochihin et al. 2009; Meyrand & Galtier 2010; Loureiro & Boldyrev 2018),
at least without detailed consideration of the difficulties relating to imbalance discussed
previously. We note, however, that figure 2(a) appears to support the idea that both Θ±

fields have the same scaling despite their difference in amplitude, as in (3.8), although
with the caveat that they do not have the same dissipation scale.

3.2. Effect of helicity conservation
As we noted in § 2.3, the fact that the generalised helicity (2.16) must be conserved by the
system places an additional constraint on the dynamics that we did not account for in the
theory presented in the preceding section. Let us rectify this now. It will be instructive to
consider, for the moment, a theory of constant-flux turbulence in φ and A‖ variables, rather
than the Θ± ones more appropriate for imbalanced turbulence that were used in § 3.1.

To begin, we can, from the definition (2.14), estimate the energy flux as

1
n0eT0e

dW
dt

∼ t−1
nl

(
1 + τ̄

τ̄ 2

) (
eφk⊥

T0e

)2

∼ εW = const., (3.17)

where tnl is some nonlinear time associated with the cascade; we will remain agnostic
to exactly what this is. Note that in writing (3.17), we have assumed that the energy can
be adequately represented by the first two terms in (2.14), viz., those associated with the
electrostatic potential fluctuations. This is justified by the fact that the contributions to the
free energy from φ and A‖ must at least be in equipartition in order for the turbulence to
be imbalanced (recall (2.12) and (3.1)). Analogously to (3.17), we can estimate the helicity
flux from (2.16) as

1
n0eT0e

dH
dt

∼ t−1
nl

vA

cs

(
1 + k2

⊥d2
e

τ̄

)(
eφk⊥

T0e

) (
A‖k⊥

ρsB0

)
cos αk⊥ ∼ εH = const., (3.18)

where cos αk⊥ is (the cosine of) some perpendicular-wavenumber-dependent phase angle
between the φ and A‖ fluctuations. This could be formally defined in terms of the Fourier

https://doi.org/10.1017/S0022377824000771 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000771


14 T. Adkins, R. Meyrand and J. Squire

FIGURE 2. One-dimensional perpendicular energy spectra for the ‘high-resolution’ simulations
in table 1: CF (blue), HB (red) and RMHD (green). Solid and dashed lines correspond to (a)
E+

⊥(k⊥) and E−
⊥(k⊥) or (b) EK

⊥(k⊥) and EB
⊥(k⊥), respectively. The insets panels show the local

scaling exponents α(... ) = d log E(... )
⊥ /d log k⊥ for each spectrum. The inertial-range scalings

(3.10), (3.15) and (3.16) are shown by black dotted lines (with −5/3 scalings replaced with −3/2,
as discussed following (3.11)). Note that the axis of the (scale-invariant) RMHD simulation has
been rescaled for comparison with the other two cases. Both simulations CF (constant flux) and
RMHD are expected to saturate via a constant-flux cascade, and show good agreement with the
predicted scalings, whereas simulation HB (helicity barrier) exhibits entirely different scalings.
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components φk and A‖k as

cos αk⊥ =

∫ ∞

−∞
dk‖Re

〈
φk(A‖k)

∗〉
(∫ ∞

−∞
dk‖

〈|φk|2
〉)1/2 (∫ ∞

−∞
dk‖

〈|A‖k|2
〉)1/2 , (3.19)

wherein ‘∗’ denotes the complex conjugate, and the brackets denote an ensemble average,
as previously. Taking the ratio of (3.18) to (3.17), using equipartition between the energies
to relate the amplitudes of φ and A‖, and recalling the definition of the injection imbalance
σε = |εH|/εW , it is straightforward to show that

εH ∼ εW

(
vph

vA

)−1

cos αk⊥ ⇒ cos αk⊥ ∼ σε

vph

vA
. (3.20)

Finally, given that 0 < | cos αk⊥| � 1, it follows directly from (3.20) that

σε

vph(k⊥)

vA
� 1. (3.21)

This inequality must be satisfied everywhere in perpendicular-wavenumber space in order
for the system to support a constant flux of helicity from large to small scales; if it is
anywhere violated, then the assumption of constant flux breaks down. It is important to
clarify that this latter statement does not only apply to the helicity flux, but also that of the
free energy: if the system is not able to simultaneously cascade both invariants via constant
flux, it is unable to support a constant flux of either free energy or helicity individually.
This means that the nature of the turbulence is fundamentally different depending on
whether or not the inequality (3.21) is satisfied; if it is, we obtain the constant-flux-type
turbulence discussed in § 3.1; if it is not, then the system will inevitably form a helicity
barrier (Meyrand et al. 2021; Squire et al. 2022), the exact dynamics of which we shall
discuss in detail in § 3.3. For now, the phrase ‘helicity barrier’ can simply serve as a
placeholder term for the turbulent state that occurs in the absence of a constant-flux
cascade within isothermal KREHM.

Due to the perpendicular-wavenumber dependence of the phase velocity (2.9), there are
a number of regimes of (3.21) to consider.

(i) FLR-MHD (βe 
 me/mi): In this regime, the phase velocity is a strictly increasing
function of perpendicular wavenumber (this is the solid black in figure 1; see also
(2.11)), meaning that, no matter the injection imbalance, (3.21) will always be
violated at sufficiently small scales. The physical reason for this is clear from the
first expression in (3.20). Given a constant energy flux εW , the increase in the phase
velocity causes the helicity flux εH to decrease with increasing k⊥, which cannot be
compensated for by, e.g., increasing cos αk⊥ (i.e. further aligning the fluctuations),
since the latter is bounded from above. This means that the assumption of constant
flux cannot be satisfied, which, in this system, manifests itself through the formation
of a helicity barrier. In a finite simulation domain, however, the resolution may not
be sufficient to allow the phase velocity to increase to a value at which it would
violate (3.21). As such, if the dissipation scale of the turbulence kdiss

⊥ is less than
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some critical perpendicular wavenumber

kdiss
⊥ � kcrit

⊥ , kcrit
⊥ ρi = 1

σε

(
2

1 + Z/τ

)1/2

, (3.22)

then the system is able to support a constant-flux cascade. This prediction is tested
numerically in § 3.4.

(ii) Isothermal KREHM (βe � me/mi): In this intermediate regime, the phase velocity
increases with perpendicular wavenumber, but eventually reaches a constant value
at small scales (see figure 1). Using the fact that the maximum value of the phase
velocity is given by the second expression in (2.10), we can rewrite (3.21) as

βe � βcrit
e , βcrit

e = 2Z
1 + τ/Z

me

mi

1
σ 2

ε

. (3.23)

There is thus a critical value of the plasma beta below which a constant-flux
cascade can occur, allowing the free energy and helicity to reach the smallest
scales. In particular, (3.23) predicts a constant-flux solution is always possible for
βe � me/mi: it is below this value of βe that the phase velocity begins to decrease
with perpendicular wavenumber, and we find ourselves in the ultra-low beta regime.

(iii) Ultra-low beta (βe � me/mi): This is the opposite of regime (i), in that the phase
velocity is a strictly decreasing function of perpendicular wavenumber (see (2.11)).
This means that, since σε � 1, the inequality (3.21) will always be satisfied,
regardless of the injection imbalance. This once again follows from the first
expression in (3.20): the decrease in the phase velocity would cause εH to increase
with increasing k⊥, but, unlike in regime (i), this always can be compensated for
by decreasing cos αk⊥ , and so a constant-flux cascade is always allowed. This is the
phenomenon of ‘dynamic phase alignment’ (Loureiro & Boldyrev 2018; Milanese
et al. 2020), wherein φ and A‖ fluctuations become increasingly misaligned at small
scales in order to maintain a constant flux of both free energy and helicity. The
relationship between the helicity barrier and dynamic phase alignment is discussed
further in § 3.5.

It is worth noting that while the inequality (3.21) was derived here using the above
heuristic scaling arguments, it can be put on a rigorous footing. In regimes (i) and (ii),
where the phase velocity (2.9) is an increasing function of perpendicular wavenumber, it
is possible to prove, following an argument identical to that used in Meyrand et al. (2021)
(see also Alexakis & Biferale 2018), that the perpendicular fluxes of free energy ΠW(k⊥)
and helicity ΠH(k⊥) must satisfy the inequality |ΠH(k⊥)|/|ΠW(k⊥)| � vA/vph(k⊥) in order
for a constant-flux solution to exist (the presence of the phase velocity arises from the
perpendicular-wavenumber dependence of the scale-by-scale helicity; see (3.2)). This
inequality implies (3.21), since |ΠH(k⊥)|/|ΠW(k⊥)| = σε in a constant-flux cascade, by
definition. One cannot apply the same argument in regime (iii), where the phase velocity
is a decreasing function of perpendicular wavenumber: this is inconsequential, however,
because (3.21) will always be satisfied in this regime, and so a constant-flux solution is
always possible. Given, then, that the inequality (3.21) can only be violated in the regimes
where rigorous proof exists, we regard it as a stronger condition than might be implied
by the heuristic arguments that were initially used to derive it. The resultant prediction,
and subsequent numerical confirmation, of the existence of the critical beta (3.23) is
the central result of this paper. However, in order to be able to test this prediction, one
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must have an understanding of the dynamics associated with the helicity barrier, to which
we now turn our focus. The impatient reader, or one already familiar with the helicity
barrier, may wish to skip ahead to § 3.4, working backwards where further clarification is
required.

3.3. The helicity barrier
To explore the dynamics of the helicity barrier within isothermal KREHM, we compare
simulations CF and HB from the set ‘comparison’ in table 1. Importantly, these
simulations lie on either side of the critical beta (3.23), with values of de that differ by
a factor of two, but have parameters that are otherwise identical. The injection imbalance
of σε = 0.8 used for both simulations corresponds to a critical beta βcrit

e (me/mi)
−1 = 1.56:

simulation CF, which saturates via constant flux, has βe/β
crit
e = 0.64, whereas simulation

HB, which forms a helicity barrier, has βe/β
crit
e = 2.56. The choice of these specific values,

however, is inconsequential: simulations on either side of βcrit
e display almost identical

behaviour regardless of the choice of σε. We have chosen these particular simulations
because they provide illustrative examples of the behaviour of the system with and without
the helicity barrier, despite their very similar parameters.

3.3.1. Energy fluxes
In figure 3, we plot the spectral energy fluxes Π±(k⊥) associated with the potentials

Θ± from these two simulations, calculated by summing the contributions of the nonlinear
transfers above and below the particular k⊥ of interest. Simulation CF, with βe/β

crit
e < 1,

behaves as expected: the fluxes of both Θ+ and Θ− are approximately stationary
(in time), constant (as a function of perpendicular wavenumber), and equal to their
injected values (3.5). Note, from figure 3(a), that the entirety of the injected free energy
εW = ε+ + ε− is carried by the turbulence to small scales, where it is then dissipated by
the perpendicular hyperdissipation (2.18). This provides a posteriori justification of the
constant-flux assumption made in § 3.1.

The simulation HB, with βe/β
crit
e > 1, however, displays very different behaviour. While

the flux of Θ− remains approximately stationary and constant at ε− (more so, in fact, than
simulation CF), the flux of Θ+ in the inertial range is a decreasing function of both time
and perpendicular wavenumber, whereas the largest scales display rapid fluctuations. Of
particular note, readily apparent from figure 3(b), is the fact that only a small fraction of
the injected energy is cascaded to small scales, remaining limited to ≈ 2ε− = (1 − σε)εW ,
irrespective of the turbulent amplitudes, which are much larger than in simulation CF
(see figure 5). This is the helicity barrier: the breakdown of the constant-flux assumption,
due to a violation of the inequality (3.21), causes the system to form a ‘barrier’ that
prevents all but the balanced portion of the injected energy from cascading to small
perpendicular scales.

3.3.2. Dissipation
The remaining energy must, therefore, find another route to thermalisation, which it

does so by accessing small parallel scales. In figure 4, we plot the free energy W and its
parallel and perpendicular (hyper)dissipation rates, denoted D‖ and D⊥, respectively, as a
function of time for both simulations. It is clear that D‖ � D⊥ at all times in simulation
CF, allowing the free energy to quickly saturate on perpendicular dissipation, as expected
from a system undergoing a constant-flux cascade. Conversely, in simulation HB, the ratio
of the parallel dissipation rate to the total dissipation rate, viz.,

Rdiss = D‖
D‖ + D⊥

, (3.24)
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FIGURE 3. Time evolution of the spectral energy fluxes Π±(k⊥) computed directly from the
nonlinear terms in (2.7) and (2.8), normalised to the total energy flux εW . Simulations CF and
HB from table 1 are shown in panels (a) and (b), respectively. The colours indicate the value
of time corresponding to a given line, whereas the solid black lines correspond to the average
value of each flux over the last 20 % of the simulation time. The horizontal dashed lines indicate
the values of the flux (3.5) expected if the system is able to maintain a constant flux; we have
included a line corresponding to ε− in the upper panel of (b) for ease of comparison. It is clear
that the total flux reaching small scales in the presence of the helicity barrier is significantly
smaller than in the constant flux case (note that, in both cases, the decrease in the flux at small
scales is due to the presence of perpendicular hyperdissipation).
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FIGURE 4. The free energy and its dissipation rates as a function of time for simulations CF
(blue) and HB (red). The top panel shows the free energy, whereas middle panel shows the
parallel and perpendicular dissipation rates, D‖ and D⊥, in dashed and solid lines, respectively.
The bottom panel shows the dissipation ratio (3.24). It is clear that Rdiss � 1 for the constant-flux
case, while Rdiss grows slowly to ≈ 1 for the helicity-barrier one.

is an increasing function of time; we plot this explicitly in the lower panel of figure 4.
Both this ratio (henceforth termed the dissipation ratio) and the free energy eventually
saturate at late times when the large-scale turbulent amplitudes reach sufficiently high
levels that the energy removed by parallel dissipation (at small parallel scales) can balance
the fraction of the injected energy that is unable to cascade (Meyrand et al. 2021).
This saturation is, of course, unphysical, since it breaks the assumption of anisotropy
(k‖ � k⊥) used to derive the isothermal KREHM system, and depends on the details
of the parallel dissipation (e.g. the specific value of νz; see Meyrand et al. 2021). As
such, the only dynamics relevant to real physical systems are those that occur before
this saturation, a period of time that we shall henceforth refer to as the pseudostationary
phase.

3.3.3. Perpendicular energy spectra
What is the impact of these dynamics on the measured perpendicular energy spectra?

In figure 5, we plot the time evolution of the E±
⊥(k⊥) spectra (3.7) for both simulations,

with their high-resolution counterparts (see table 1) plotted in figure 2(a). As expected,
simulation CF agrees well with the constant-flux cascade predictions of § 3.1: both
E±

⊥(k⊥) have approximately the same ∼ k−3/2
⊥ slope in the inertial range, differing by

only their outer-scale amplitudes. In simulation HB, the weaker spectrum E−
⊥(k⊥) behaves

similarly, quickly saturating with a ∼ k−3/2
⊥ slope. However, given that the Θ+ flux is a

decreasing function of perpendicular wavenumber, the associated E+
⊥(k⊥) spectrum cannot

reach such a stationary state. Instead, during the start of the pseudostationary phase, it
forms a spectral break around k⊥ρi ∼ 1, with the location of this spectral break then
migrating to larger scales. The slope below the break is consistently measured to be ∼ k−4

⊥ ,
across all simulations in table 1 that exhibited a helicity barrier. The higher-resolution
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FIGURE 5. Time evolution of the perpendicular spectra E±
⊥(k⊥) for simulations CF and HB

in table 1, shown in panels (a) and (b), respectively. The colours indicate the value of time
corresponding to a given line, whereas the dotted black lines indicate approximate scalings
of the spectra. The inset panels show the scaling exponents α± = d log E±

⊥/d log k⊥ for each
spectrum. In the helicity barrier case, the E+

⊥(k⊥) spectrum clearly forms a spectral break that
moves towards large scales in time.

simulation HB-res (see table 1) plotted in figure 2 also shows a spectral flattening at
smaller scales k⊥ρi � 1, consistent with observations of the spectral ‘transition range’ in
near-Sun solar-wind plasmas (Bowen et al. 2020a; Duan et al. 2021; Bowen et al. 2024).
In addition, the reduction of the Θ+ flux to small scales (in comparison with simulation
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FIGURE 6. Real-space snapshots of the E × B flow u⊥ (see (2.3)) for the simulations CF-res
(left) and HB-res (right). The colours indicate the magnitude of u⊥ relative to its (spatial)
root-mean-square value, whereas the coordinate directions are as shown. Although the structure
of the turbulence in simulation CF-res is typical of a constant-flux cascade (though note
the significant small-scale plasmoid activity due to finite de effects; see Zhou et al. 2023b),
this is not the case for simulation HB-res: the majority of the energy resides in large-scale
structures because it is prevented from cascading to small scales by the helicity barrier. The
dramatic difference between these two cases is made even more surprising by the fact that
the simulations differ only in their value of the electron inertial length, having de = ρi and
de = ρi/2, respectively.

CF; see figure 3) causes the outer-scale energy, and thus the normalised cross-helicity σc,
to increase in time (while both the energy injection rate εW and the injection imbalance
σε remain constant). As discussed previously, this will continue until the large-scale
amplitudes reach sufficient levels that saturation can occur on parallel dissipation. Both
Meyrand et al. (2021) and Squire et al. (2023) found that the position of the break is
correlated with σc finding that, approximately, its location in perpendicular-wavenumber
space evolved as k⊥ρi ∼ (1 − σc)

1/4. We have not attempted to verify such a scaling here
due to the relatively small inertial range at this resolution, and the fact that said scaling may
be complicated by the finite de effects present in these simulations. Nevertheless, although
a dynamical theory that explains these features remains the focus of ongoing work, the
existence of the break, as well as the steep spectral scaling below it, are both persistent
features of helicity-barrier-mediated turbulence.

It should be clear from the previous discussion that the helicity barrier state is
dramatically different from that associated with a constant-flux cascade, viz., the nature
of the turbulence is fundamentally changed depending on whether or not the inequality
(3.21) is satisfied. The surprising element of this is the fact that these two states can lie so
close to one another in parameter space: we recall that the electron inertial scales for the
simulations that we have been considering in this section only differ by a factor of two,
being de = ρi for the constant-flux case and de = ρi/2 for the helicity-barrier case. Indeed,
the real-space snapshots of the turbulence shown in figure 6 are completely different,
despite this small difference in physical parameters.

3.4. Breaking the barrier
To briefly summarise the findings of the previous section, the helicity barrier has three key
features: (i) it only allows the balanced fraction (≈ 2ε−) of the free energy to cascade to
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small scales (§ 3.3.1); (ii) the remainder of the free energy remains at large perpendicular
scales where it dissipates on small parallel ones, meaning that the ratio of the parallel
dissipation to the total dissipation Rdiss (see (3.24)) is an increasing function of time during
the pseudostationary phase (§ 3.3.2); and (iii) the spectrum of Θ+ displays a sharp spectral
break, with an approximate ∼ k−4

⊥ scaling below it, which widens (moves towards larger
scales) over time (§ 3.3.3).

We now wish to test the predictions of § 3.2 across a wide range of βe and σε. This
requires the ability to efficiently determine whether or not a helicity barrier has formed
in a given simulation. While feature (i) is the clearest measure of the helicity barrier,
calculating the spectral energy fluxes Π±(k⊥) is computationally expensive, making it
unfeasible to use across a large simulation set. Similarly, feature (iii) is not a reliable
measure of helicity-barrier formation at early times because it requires the spectral
slopes both above and below the break to be sufficiently well resolved, which is not
always possible at lower resolutions. As such, we choose to exploit the fact that the
dissipation ratio (3.24) is an increasing function of time during the pseudostationary phase,
viz., simulations that, on average, have dRdiss/dt ≈ 0 will be undergoing a constant-flux
cascade, while those with dRdiss/dt � 0 will have formed a helicity barrier. This is by
no means a unique measure of helicity-barrier formation, but will prove sufficient and
appropriate for our purposes here. We emphasise that while the dissipation ratio provides
a useful measure when applied to our simulations, it should not be viewed as a diagnostic
to be measured with spacecraft data, wherein other features of the helicity barrier (such
as energy fluxes, spectral slopes, or implied heating rates) would be more appropriate.
Indeed, it is only a useful measure within subsidiary limits of gyrokinetics such as
isothermal KREHM, since artificial parallel dissipation must be added to allow saturation
in the absence of other dissipative mechanisms on small parallel scales at k⊥ρi � 1 (e.g.
ICW heating of ions around k‖de ∼ 1, which lies outside the gyrokinetic approximation).

To explicitly demonstrate the utility of using Rdiss as a diagnostic, we consider the series
of simulations with σε = 0.8 from the set labelled ‘beta scan’ in table 1, in which βe/β

crit
e

is varied between 0.53 and 4.00. In figure 7(a), we plot Rdiss as a function of time for
each simulation. It is clear the simulations are split between those that are approximately
steady in time (constant flux), and those that increase with time (helicity barrier). This is
illustrated in more detail in figure 7(b), in which we plot the two-dimensional spectrum
of the dissipation D2D(k⊥, kz) for the same set of simulations. Those whose dissipation
ratio is approximately constant in time dissipate almost all of their energy at small
perpendicular scales (right-hand side of the plot), whereas those whose dissipation ratio is
growing have more dissipation at small parallel scales and k⊥ρi < 1 (top left of the plot),
a clear signature of the helicity barrier.2 The behaviour of the simulation with β/βcrit

e = 1,
somewhat unsurprisingly, lies intermediate between these two states: the dissipation ratio
initially grows in time during a short pseudostationary phase (figure 7a), before achieving
saturation with similar levels of parallel and perpendicular dissipation (figure 7b).

It is clear that the rate of change of the dissipation ratio gives a clear measure of
helicity barrier formation within this set of simulations. However, we require a criterion
for helicity-barrier formation that will apply across the full range of imbalances considered
in table 1. For this, we choose to consider the non-dimensionalised rate of change of the
dissipation ratio given by (dRdiss/dt)(εH/H)−1. The normalising factor εH/H, the ratio of
the helicity injection rate to the helicity itself, is effectively a measure of the timescale
over which the imbalanced portion of the energy (compare (3.1) and (3.2)) builds up on

2We note that although the dissipation on these scales looks prominent in figure 7(b), these simulations have not yet
reached saturation, as is evident from figure 7(a).
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FIGURE 7. Measures of the dissipation associated with the set of eight simulations with
σε = 0.8 from the set labelled ‘beta scan’ in table 1. (a) The dissipation ratio (3.24) plotted
as a function of time. The colours indicate the value of β/βcrit

e for each simulation. (b) The
two-dimensional spectrum of the dissipation in the (k⊥, kz) plane, averaged over the last 20 % of
the simulation time, and normalised to the energy injection rate εW , with amplitude as indicated
by the colourbar.

scales k⊥ρi � 1 (recall, from § 3.3.1, that only the balanced portion ≈ 2ε− is allowed
to cascade to small scales). Given that εH = σεεW , this normalisation accounts for both
variations in the overall energy injection rate εW , as well as the fact that systems with
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lower imbalances will typically have smaller dRdiss/dt even when a helicity barrier has
formed (the lower imbalance means that it takes longer for sufficient energy to build up on
the largest perpendicular scales and begin dissipating on small parallel scales). Using the
above set of simulations, we find that a time-averaged value of[

dRdiss

dt

(εH

H

)−1
]crit

= 0.25 (3.25)

is reasonable to distinguish between the constant-flux and helicity-barrier regimes. The
time average is performed over the last 80 % of the simulation time in order to exclude the
initial transient phase that occurs in the constant-flux simulations.3 We note that although
simulations with β/βcrit

e ≈ 1 could be classified differently depending on the exact value
chosen in (3.25), the classification of simulations with β/βcrit

e very different from unity
is robust to such choices. As such, we will henceforth use the numerical value (3.25)
as our criterion for determining helicity-barrier formation, as applied to the simulations
considered in table 1. Let us now test the two predictions made in § 3.2: that the formation
of the helicity barrier depends on: (i) having a plasma beta above the critical value (3.23);
and (ii) resolving the critical perpendicular wavenumber (3.22) the dissipation range.

For the former, we consider the set of simulations labelled ‘beta scan’ in table 1, in
which the injection imbalance σε is varied between 0.1 and 0.99, whereas βe(me/mi)

−1

is varied between 0.83 and 625 (corresponding to a variation in βe/β
crit
e between 0.03

and 25). Note that as σε is varied, the forcing is also modified in such a way as to keep the
amplitude of the stronger field Θ+ approximately constant according to the first expression
in (3.12), i.e. the forcing is scaled to keep (ε+)2/ε− ∝ (1 − σε)/(1 + σε)

2 = const. This
was done in order to minimise the possible effect of the outer-scale forcing on helicity
barrier formation. The results of this scan are plotted in figure 8, which displays excellent
agreement with (3.23) over multiple orders of magnitude in βe(me/mi)

−1. The inset panel
demonstrates that the criterion that we have applied to determine helicity barrier formation
is very well satisfied: there is a rapid increase in (dRdiss/dt)(εH/H)−1 around βe/β

crit
e = 1

across all sets of simulations, consistent with this being the location in parameter space
where the helicity barrier forms. We thus confirm the prediction (3.23) of the critical
line in (σε, βe) parameter space above which a helicity barrier will always form; the
implications of this result are discussed in § 4.

For prediction (ii), that a helicity barrier forms only when the critical perpendicular
wavenumber (3.22) is well-resolved, we consider the set of simulations labelled ‘resolution
scan’ in table 1. These all lie in the FLR-MHD limit (finite ρi, de → 0). In these
simulations, as well as all others considered in this paper, the adaptive dissipation
(see § 2.4) is implemented in such a way as to ensure that the dissipation scale kdiss

⊥ is
approximately half that of the maximum wavenumber in the simulation kmax

⊥ , irrespective
of forcing amplitude and injection imbalance. This means that (3.22) can be rewritten as a
condition on kmax

⊥ , viz.,

kmax
⊥ ρi � 2kcrit

⊥ ρi = 2
σε

(
2

1 + Z/τ

)1/2

, (3.26)

3This transient phase results from the finite time required for the free energy injected on the largest scales to cascade
to the smallest ones; our simulations are initialised with low-amplitude noise at all scales, and so it takes a number of
nonlinear turnover times for energy to reach the dissipation scale. This is manifest in, e.g. figure 5(a), wherein the spectra
are ‘depleted’ on the largest perpendicular wavenumbers at early times (purple lines). Note that this initial transient also
occurs in the simulations that form a helicity barrier (see, e.g., figure 5b), though the presence of the pseudostationary
phase makes the length of this initial transient less obvious in figure 7(a).
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FIGURE 8. Data from a two-dimensional parameter scan of injection imbalance σε versus the
(normalised) electron plasma beta βe(me/mi)

−1. Each circle corresponds to a simulation from
the set ‘beta scan’ in table 1, with filled/open circles indicating the presence/absence of the
helicity barrier. The solid black line corresponds to the value of σε below which, for a given
βe, the helicity barrier should not form (cf. (3.23)). The shaded region below the line thus
corresponds to saturation via constant flux, whereas above it a helicity barrier forms. The inset
plot shows the time-averaged average value of the rate-of-change of the dissipation ratio (3.24)
normalised to εH/H for each set of simulations, as indicated by the colour, with the horizontal
axis rescaled by the critical beta (3.23). The horizontal dotted line therein corresponds to the
value (3.25) above which the helicity barrier is determined to have formed.

where kcrit
⊥ is as defined in (3.22). We expect no helicity barrier to be present if the

inequality in (3.26) is satisfied. To confirm this, we varied the injection imbalance σε

across a different set of resolutions from 643 to 2563, as in table 1. The results of this
scan are shown in figure 9, which show good agreement with (3.26): deviations from this
prediction are due to the difficulty of ensuring adequate separation between regions of
parallel and perpendicular dissipation at lower resolutions. That being said, given that
real physical systems are not limited by resolution, we do not consider exact agreement
with (3.26) necessary. Rather, these results provide clear evidence supporting the general
principles of helicity barrier formation outlined previously.

3.5. A comment on dynamic phase alignment
Before discussing the implications of these findings, let us briefly comment on the
relationship between the helicity barrier and the concept of dynamic phase alignment
(Loureiro & Boldyrev 2018; Milanese et al. 2020). As discussed in § 3.2, dynamic phase
alignment refers to the phenomenon whereby, in the ultra-low-beta regime βe � me/mi,
the fluctuations of the electrostatic potential φ and parallel magnetic vector potential A‖
become increasingly misaligned at small scales in order to maintain a constant flux of
both free energy and helicity. The principal finding of Milanese et al. (2020) was that this
alignment is directly manifest in the phase angle (3.19), in that it becomes a decreasing
function of perpendicular wavenumber, as per the theoretical prediction (3.20). As we
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FIGURE 9. Data from a two-dimensional parameter scan of injection imbalance σε versus the
maximum wavenumber kmax

⊥ ρi set by the numerical resolution. Each circle corresponds to a
simulation from the set ‘resolution scan’ in table 1, with filled/open circles indicating the
presence/absence of the helicity barrier. The solid black line corresponds to the value of σε below
which, for a given kmax

⊥ ρi, the helicity barrier should not form (see (3.26)). As in figure 8, the
shaded region below the line thus corresponds to saturation via constant flux, whereas above it a
helicity barrier forms. The inset plot shows the time-averaged average value of the rate-of-change
of the dissipation ratio (3.24) normalised to εH/H for each set of simulations, as indicated
by the colour, with the horizontal axis rescaled by 2kcrit

⊥ ρi. The horizontal dotted line therein
corresponds to the value (3.25) above which the helicity barrier is determined to have formed.

discussed in § 3.2, the helicity barrier arises as a consequence of such an alignment
becoming impossible, breaking the constant-flux solution.

To illustrate this, we plot, in figure 10, the phase angle (3.19) for the set of three
simulations labelled ‘comparison’ in table 1: the first two are those examined in detail in
§ 3.3, whereas the third is in the ultra-low-beta regime considered by Loureiro & Boldyrev
(2018) and Milanese et al. (2020). It is clear that in the latter case, cos αk⊥ decreases
with perpendicular wavenumber, as demonstrated by Milanese et al. (2020), whereas the
former cases both have cos αk⊥ ≈ 1: simulation CF is sufficiently close to the critical
boundary predicted by (3.21) (or, alternatively, (3.20)) that it must be as highly aligned
in order to maintain a constant flux, whereas simulation HB has already passed beyond
this threshold and formed a helicity barrier, with the fluctuations remaining maximally
aligned on the largest scales. We have also plotted (dashed lines) the theoretical scalings
(3.20) for the phase angle in figure 10; the fact that this curve exceeds unity for simulation
HB implies the formation of a helicity barrier, i.e. it violates the criterion (3.20), which
is what we indeed find dynamically. In some sense, the helicity barrier can be viewed
as the ‘opposite’ of dynamic phase alignment, in that it is the state that occurs when
the system cannot sufficiently align the φ and A‖ fluctuations. Indeed, heuristically, these
cases can easily be distinguished by recalling the definitions of the free energy (3.1) and
helicity (3.2). Although it always remains possible to decrease the difference between
the Θ± energies at small scales to compensate for the decrease in the phase velocity
at β/βcrit

e � 1, the opposite is not always true at β/βcrit
e � 1: at a certain perpendicular

wavenumber, the difference in energies would need to be greater than the sum, and
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FIGURE 10. The phase angle (3.19) between fluctuations of the electrostatic potential φ and
parallel magnetic vector potential A‖, as a function of perpendicular wavenumber, for the three
simulations labelled ‘comparison’ in table 1 (solid lines). Simulations CF and HB both have
ρi = 0.1L and finite de, whereas simulation ULB has de = 0.1L but ρi → 0. The dashed lines
show the theoretical scaling (3.20), whereas the dotted black line shows the expected scaling in
the ultra-low-beta regime. We do not expect exact agreement between (3.20) and (3.19) because
the former is a result derived using a ratio of fluxes (see § 3.2) whereas for the latter we are
plotting a ratio of amplitudes (or, equivalently, energies).

so the constant-flux solution must break down. There is, however, a crucial difference
between these two cases: whereas dynamic phase alignment modifies the dynamics at
small perpendicular scales in order to extend the constant-flux solution to lower values
of βe, the helicity barrier explicitly violates the constant-flux solution, placing it into an
entirely different class of turbulent dynamics to that which can be obtained via dynamic
phase alignment. Importantly, the effects of the helicity barrier are thus manifest even on
the largest perpendicular scales accessible to the system, having dramatic implications for
the turbulent heating properties thereof.

4. Summary and discussion

The findings presented in this paper serve as a detailed illustration of the sensitivity of
imbalanced turbulence to small changes in its characteristic physical parameters. Starting
from equations derived in the low-beta asymptotic limit of gyrokinetics (isothermal
KREHM; see § 2), we showed that the requirement for the simultaneous conservation of
both free energy and helicity implies the presence of a critical electron beta (see § 3.2)
given by

βcrit
e = 2Z

1 + τ/Z
me

mi

1
σ 2

ε

, (4.1)

where Z is the ion charge, τ is the equilibrium-temperature-ratio between ions and
electrons, with me/mi their mass ratio, and σε is the ratio of the injection rates of
cross-helicity and energy at large scales (injection imbalance). This theoretical prediction
is well-supported by simulations of imbalanced turbulence in isothermal KREHM across
a wide range of βe and σε (see figure 8). Systems situated close to either side of (4.1)
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in parameter space exhibit dramatically different turbulent dynamics, as evident from
even the most cursory glance at the real-space turbulence snapshots shown in figure 6
(showing two simulations with values of βe that differ by a factor of four, but are
otherwise identical). Specifically, in systems with βe below (4.1), the free energy injected
at the largest perpendicular scales is able to undergo a constant-flux, Alfvénic cascade to
smaller scales k⊥ρe � 1 where it dissipates, and in so doing depositing the majority of
the turbulent free energy into electron heating. Systems with βe exceeding (4.1), on the
other hand, are unable to support a constant-flux solution, inevitably forming a helicity
barrier. This prevents all but the balanced portion of the injected free energy (≈ 2ε−)
from cascading past the ion Larmor scale k⊥ρi ∼ 1, resulting in a build-up of turbulent
free energy at larger scales k⊥ρi � 1. Fluctuations on these scales eventually form fine
parallel structures which, in our system, dissipate via parallel hyperviscosity: in a more
comprehensive system, they would excite high-frequency ion-cyclotron waves (ICWs),
leading to perpendicular ion heating (Squire et al. 2022, 2023). Thus, the constant-flux
and helicity-barrier states, demarcated by the critical beta (4.1), offer entirely different
propositions for turbulent heating: the majority of the injected turbulent free energy is
converted into electron heating, in the former case, or ion heating, in the latter.

Assuming that the existence of the helicity barrier, or otherwise, plays a central role
in determining turbulent heating, these results have clear implications for observations of
imbalanced Alfvénic turbulence. For highly imbalanced plasmas with a modest plasma
beta, we would expect to observe dominant ion heating, and for the spectral slopes of the
electromagnetic fields to exhibit a steep ‘transition range’ scaling ∼ k−4

⊥ bracketing k⊥ρi ∼
1, a distinctive feature of helicity-barrier-mediated turbulence (Meyrand et al. 2021; Squire
et al. 2022, 2023). Conversely, for plasmas with either a small imbalance (at large solar
radii) or a very low plasma beta (βe approaching me/mi), we would expect to observe more
electron heating, and for the steep transition range scaling to be replaced by the much
shallower ∼ k−7/3

⊥ scaling predicted from KAW turbulence (see § 3.1). Given that much
of the solar wind typically has me/mi � βe � 1 (Bruno & Carbone 2005), (4.1) would
suggest that it should usually display signatures of helicity-barrier-mediated turbulence.
This is consistent with observations: ions are typically hotter than electrons (Cranmer
et al. 2009), with significant power in ICWs around k‖ρi ∼ 1 (Huang et al. 2020; Bowen
et al. 2020b), whereas spectra observed by PSP usually show the aforementioned steep
transition range scalings (Bowen et al. 2020a; Duan et al. 2021; Bowen et al. 2024).

Nevertheless, there may be regions of the solar wind in which the helicity barrier does
not operate. Equation (4.1) predicts that a constant-flux cascade is always possible if
βe � me/mi, irrespective of imbalance, as well as the fact that the helicity barrier will
not form at sufficiently low imbalance. This means that the helicity barrier is unlikely
to operate in regions of the solar wind that are strongly magnetised or have low
imbalance, or indeed some combination of the two. That being said, the values of σε

below which the helicity barrier will not operate are quite low. Indeed, our simulations
showed helicity-barrier formation at values of the injection imbalance as low as σε = 0.2
(see figure 8), with lower values limited by numerical resolution, rather than by some
fundamental constraint on the dynamics (see § 3.2 or the last paragraph in § 3.4). It is
worth noting in this context, however, that the injection imbalance σε is not the same
as the often-measured normalised cross-helicity σc, so careful work is required in order
to extract an exact correspondence between values of σε used in simulations and the
dynamics observed in astrophysical systems.
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4.1. Limitations of the isothermal approximation
An important limitation of this current study concerns the possible role of electron
kinetics, which we have here neglected in order to isolate the effects of including finite
electron inertia. The inclusion thereof has two important physical consequences that could
potentially alter the results above: (i) it introduces electron Landau damping as another
channel for turbulent electron heating, allowing energy to be transferred to small scales in
velocity space (in addition to in wavenumber space); (ii) it modifies the conservation of
helicity viz., instead of (2.16) being everywhere conserved, it is able to be injected and/or
removed by higher-order velocity moments of the kinetic distribution function. Both of
these effects are most significant around k⊥de ∼ 1, and so we expect little change for values
of βe significantly above (4.1). For those close to (4.1), however, the dynamics could be
significantly modified, e.g. the helicity barrier may not form because the helicity ceases
to be globally conserved or, should the helicity barrier persist, electron Landau damping
could provide another source of dissipation for fluctuations at k⊥ρi � 1. This latter effect
would be significant, as the amplitude reached by fluctuations on these scales plays a
central role in determining the amount of perpendicular ion heating by ICWs (Squire et al.
2022, 2023), and thus the effective fraction of the injected energy earmarked for electron
heating. In either case, the reintroduction of electron kinetics should have the effect of
shifting the critical beta (4.1) towards larger values (i.e. moving the solid black curve
in figure 8 to the right), giving rise to more electron, and less ion, heating. Confirming
these predictions is the subject of ongoing work. In perhaps a preview of what is to come,
recent simulations of balanced turbulence by Zhou et al. (2023a) suggest that the advection
of energy in velocity space is the dominant mechanism of nonlinear energy transfer at
k⊥de ∼ 1, which becomes the primary route to dissipation.

There are, of course, other mechanisms for turbulent heating that may be playing a
role. A compressive energy cascade, although unable to exchange energy with Alfvénic
motions (Schekochihin et al. 2019), is able to cause parallel ion heating (Schekochihin
et al. 2009), and will break helicity conservation around k⊥ρi ∼ 1, potentially arresting the
breakdown of the constant flux solution associated with helicity-barrier formation. In order
for either of these effects to be significant, however, the powers in the compressive and
Alfvénic cascades would likely need to be comparable, which is generally not observed
in the solar wind (Bruno & Carbone 2013; Chen 2016; Chen et al. 2020). Other heating
mechanisms that rely on the presence of large-amplitude fluctuations, such as stochastic
heating (Chandran et al. 2010) or sub-ion-Larmor-radius KAW turbulence (Arzamasskiy
et al. 2019; Isenberg & Vasquez 2019), may also play a role.

Even with these considerations taken into account, the results of this paper represent a
robust prediction of two fundamentally different types of turbulence: one of a constant-flux
cascade of energy to small scales, the other involving the build-up and dissipation of
energy at the largest scales due to the helicity-barrier mechanism. The critical beta (4.1)
thus marks a boundary between two dramatically different regimes of turbulent heating,
each with clear observational signatures that can further constrain the possible physical
processes at play in imbalanced Alfvénic turbulence. This physics could play an important
role in many magnetised astrophysical environments where the same symmetry exists
(i.e. having imbalance), such as accretion discs, the intracluster medium, and the solar
wind context discussed in detail in this work. Therefore, advancing our understanding
of the dynamics related to the helicity barrier and the resultant mechanisms of turbulent
heating will carry important implications for plasma turbulence across a diverse array of
astrophysical contexts.
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