Congruences on a Distributive Lattice

By H. A. Thurston

(Received 6th December, 1950. Read 12th January 1951.)
Among the many papers on the subject of lattices I have not seen any simple discussion of the congruences on a distributive lattice. It i_{s} the purpose of this note to give such a discussion for lattices with a certain finiteness. Any distributive lattice is isomorphic with a ring of sets (G. Birkhoff, Lattice Theory, revised edition, 1948, p. 140, corollary to Theorem 6); I take the case where the sets are finite. All finite distributive lattices are covered by this case.

Let \mathcal{L} be a lattice of subsets of S and K be a subset of S (not necessarily an element of \mathcal{L}). Let the definition of the relation \mathfrak{q}_{K} between elements of the lattice be that $X_{\mathfrak{q}_{K}} Y$ if and only if $X_{n} K=Y_{n} K . \quad \mathfrak{q}_{K}$ is clearly an equivalence (this would be true for any lattice). In fact, \mathfrak{q}_{K} is a congruence. For if $X \mathfrak{q}_{K} Y$ and $Z \in L$, then $\left(X_{n} Z\right)_{n} K=\left(X_{n} K\right)_{n} Z=\left(Y_{n} K\right)_{n} Z=\left(Y_{n} Z\right)_{n} K$ and $\left(X_{\cup} Z\right)_{n} K=\left(X_{n} K\right) \cup\left(Z_{n} K\right)=\left(Y_{n} K\right) \cup\left(Z_{n} K\right)=\left(Y_{\cup} Z\right)_{n} K$. Therefore $\left(X{ }_{n} Z\right) \mathfrak{q}_{K}\left(Y_{n} Z\right)$ and $(X \cup Z) \mathfrak{q}_{K}\left(Y_{\cup} Z\right)$.

The chief theorem is the converse of this: If \mathcal{L} is a lattice of finite subsets of S, and \mathfrak{q} is a congruence on \mathcal{Q}, then there is a subset K of S such that $\mathfrak{q}=\mathfrak{q}_{\boldsymbol{K}}$.

The set $X_{\mathfrak{q}}$ of all elements in the relation \mathfrak{q} to X is a sub-lattice. For if $Y_{\mathfrak{q}} X_{\mathfrak{q}} Z$, then $\left(Y_{\mathrm{n}} Z\right) \mathfrak{q}\left(X_{\mathrm{n}} X\right)=X$ and $\left(Y_{\cup} Z\right) \mathfrak{q}\left(X_{\cup} X\right)=X$. Let X_{g} and X_{l} be the greatest and least elements of X_{q}.

Let K be $\cup X-U\left(X_{g}-X_{l}\right)$. (Unions are over all X of \mathcal{L}.) First we see that $q \subseteq q_{R}$. For $X_{g}-X_{l} \subseteq \cup X-K$. Therefore $\left(X_{g}-X_{l}\right)_{n} K \subseteq K-K=0$, and so $X_{g} K=X_{l_{\cap}} K$. But $X_{g} K \supseteq X_{n} K \supseteq X_{l} K$, giving $X_{\cap} K=X_{l n} K$. If $X_{\mathfrak{q}}=Y_{\mathfrak{q}}$ then $X_{l}=Y_{l}$. Therefore $Y_{\mathrm{n}} K=Y_{l_{\mathrm{n}}} K=X_{l_{\cap}} K=X_{\mathrm{n}} K$, and so $X_{\mathfrak{q}_{K}} Y$.

We have now to see that if $X_{q_{K}} Y$, then $X_{\mathfrak{q}} Y$. We take first the case $X_{2} Y$; the proof is by induction on the number of elements in $X-Y$. It is clearly true when $X-Y$ has no elements. Let $X-Y$ have n elements ($n>0$) and $a \in X-Y$ and $X_{n} K=Y_{n} K$. Then a is not in K and so $a \in U X-K=U\left(X_{0}-X_{l}\right)$. Therefore there are elements P and Q of \mathscr{L} such that $P \mathfrak{q} Q$ and $a \in P-Q$. Then $U \mathfrak{q} V$ where $U=Y_{\cup} P_{\cdot \mathrm{u}} X$ and $V=Y_{U} Q \cdot{ }_{\mathrm{n}} X$.

Then

$$
\begin{equation*}
Y \subseteq U_{n} V \subseteq U \subseteq X \tag{1}
\end{equation*}
$$

Now a is not in $U_{n} V$ and $a \in C$. The number of elements in $X-U$ and the number of elements in $\left(U_{n} V\right)-Y$ are therefore less than n. But, from (1), $K_{n} Y_{\subseteq} K_{n} U_{\mathrm{n}} V \subseteq K_{\mathrm{n}} U \subseteq K_{\mathrm{n}} X$. And $X_{\mathrm{n}} K=Y_{\mathrm{n}} K$. -Therefore all these are equal. Therefore we have $K_{n} X=K_{n} U, U c X$, and the number of elements in $X-U$ is less than n. Therefore $U_{\mathfrak{q}} X$. In the same way, $Y q U_{n} V$. But $U q U_{n} V$. Therefore $X q Y$.

Now let (X, Y) be any element of \mathfrak{q}_{K}. Then $X_{n} K=X_{n} Y_{n} K$, and $X \supset X_{n} Y$, and so $X_{q} X_{n} Y$. In the same way, $Y_{q} Y_{n} X$, and so $X_{\mathfrak{q}} Y$.

Note. A similar theorem for complemented modular lattices is given by Birkhoff, loc. cit., p. 119, Theorem 5.

Definition: If \mathfrak{p} and \mathfrak{r} are any two relations, then $\mathfrak{p r}$ is the relation for which $X \mathfrak{p r} Y$ if and only if there is a Z for which $X \mathfrak{p} Z$ and $Z \mathrm{r} Y$.

We can now prove that
If \mathfrak{p} and \mathfrak{r} are any two congruences on a lattice of finite subsets, then $\mathfrak{p r}=\mathfrak{r p}$.

Let \mathfrak{p} be \mathfrak{q}_{P} and \mathfrak{r} be \mathfrak{q}_{R}. If $A \mathfrak{p r} B$, then, for some element C of the lattice, $A \mathfrak{q}_{P} C q_{R} B$, and so $A_{n} P=C_{n} P$ and $B_{n} R=C_{n} R$.

Then $A_{\mathrm{n}} P_{\mathrm{n}} R=C_{\mathrm{n}} P_{\mathrm{n}} R=C_{\mathrm{n}} R_{\mathrm{n}} P=B_{\mathrm{n}} R_{\mathrm{n}} P$. Let D be $\left(A_{n} R\right)_{\cup}\left(B_{n} P\right)$. Then $D_{\mathrm{n}} R=\left(A_{\mathrm{n}} R\right) \cup\left(B_{\mathrm{n}} P_{\mathrm{n}} R\right)=\left(A_{\mathrm{n}} R\right)_{\cup}\left(A_{\mathrm{n}} P_{\mathrm{n}} R\right)$ $=A_{\mathrm{n}} R$. Therefore $A \mathfrak{r} D$. In the same way, $D \mathrm{p} B$. Therefore $A \mathfrak{r p} B$, and so $\mathfrak{p r} \subseteq \mathfrak{r p}$. Similarly, $\mathfrak{r p \subseteq p r . ~}$

Note. This theorem was proved for relatively complemented lattices by R. P. Dilworth, Annals of Mathematics, 50(1950), 348.

The University,
Bristol.

