Congruences on a Distributive Lattice

By H. A. THURSTON

(Received 6th December, 1950. Read 12th January 1951.)

Among the many papers on the subject of lattices I have not seen any simple discussion of the congruences on a distributive lattice. It is the purpose of this note to give such a discussion for lattices with a certain finiteness. Any distributive lattice is isomorphic with a ring of sets (G. Birkhoff, *Lattice Theory*, revised edition, 1948, p. 140, corollary to Theorem 6); I take the case where the sets are finite. All finite distributive lattices are covered by this case.

Let \mathcal{L} be a lattice of subsets of S and K be a subset of S (not necessarily an element of \mathcal{L}). Let the definition of the relation \mathfrak{q}_K between elements of the lattice be that $X\mathfrak{q}_K Y$ if and only if $X \cap K = Y \cap K$. \mathfrak{q}_K is clearly an equivalence (this would be true for any lattice). In fact, \mathfrak{q}_K is a congruence. For if $X\mathfrak{q}_K Y$ and $Z \in L$, then $(X \cap Z) \cap K = (X \cap K) \cap Z = (Y \cap K) \cap Z = (Y \cap Z) \cap K$ and $(X \cup Z) \cap K = (X \cap K) \cup (Z \cap K) = (Y \cap K) \cup (Z \cap K) = (Y \cup Z) \cap K$. Therefore $(X \cap Z) \mathfrak{q}_K (Y \cap Z)$ and $(X \cup Z) \mathfrak{q}_K (Y \cup Z)$.

The chief theorem is the converse of this: If \mathcal{L} is a lattice of finite subsets of S, and q is a congruence on \mathcal{L} , then there is a subset K of S such that $q = q_K$.

The set $X \mathfrak{q}$ of all elements in the relation \mathfrak{q} to X is a sub-lattice. For if $Y \mathfrak{q} X \mathfrak{q} Z$, then $(Y_{\Omega} Z) \mathfrak{q} (X_{\Omega} X) = X$ and $(Y_{U} Z) \mathfrak{q} (X_{U} X) = X$. Let X_{q} and X_{l} be the greatest and least elements of $X \mathfrak{q}$.

Let K be $\bigcup X - \bigcup (X_g - X_l)$. (Unions are over all X of \mathcal{L} .) First we see that $q \in q_K$. For $X_g - X_l \in \bigcup X - K$. Therefore $(X_g - X_l)_{\cap} K \subseteq K - K = 0$, and so $X_{g \cap} K = X_{l \cap} K$. But $X_{g \cap} K \supseteq X_{\cap} K \supseteq X_{l \cap} K$, giving $X_{\cap} K = X_{l \cap} K$. If Xq = Yq then $X_l = Y_l$. Therefore $Y_{\cap} K = Y_{l \cap} K = X_{l \cap} K = X_{\cap} K$, and so $Xq_K Y$.

We have now to see that if $Xq_K Y$, then XqY. We take first the case $X \supseteq Y$; the proof is by induction on the number of elements in X - Y. It is clearly true when X - Y has no elements. Let X - Y have *n* elements (n > 0) and $a \in X - Y$ and $X \cap K = Y \cap K$. Then *a* is not in *K* and so $a \in \bigcup X - K = \bigcup (X_g - X_l)$. Therefore there are elements *P* and *Q* of \mathcal{L} such that PqQ and $a \in P - Q$. Then UqV where $U = Y \cup P \cup X$ and $V = Y \cup Q \cup X$.

CONGRUENCES ON A DISTRIBUTIVE LATTICE

Then

$$Y \subseteq U_0 \ V \subseteq U \subseteq X. \tag{1}$$

Now a is not in $U_{\cap} V$ and $a \in U$. The number of elements in X - U and the number of elements in $(U_{\cap} V) - Y$ are therefore less than n. But, from (1), $K_{\cap} Y \subseteq K_{\cap} U_{\cap} V \subseteq K_{\cap} U \subseteq K_{\cap} X$. And $X_{\cap} K = Y_{\cap} K$. Therefore all these are equal. Therefore we have $K_{\cap} X = K_{\cap} U$, $U \subseteq X$, and the number of elements in X - U is less than n. Therefore $U \notin X$. In the same way, $Y \notin U_{\cap} V$. But $U \notin U_{\cap} V$. Therefore $X \notin Y$.

Now let (X, Y) be any element of \mathfrak{q}_K . Then $X_{\cap}K = X_{\cap}Y_{\cap}K$, and $X \supset X_{\cap}Y$, and so $X \mathfrak{q} X_{\cap}Y$. In the same way, $Y \mathfrak{q} Y_{\cap}X$, and so $X \mathfrak{q} Y$.

Note. A similar theorem for complemented modular lattices is given by Birkhoff, *loc. cit.*, p. 119, Theorem 5.

Definition: If \mathfrak{p} and \mathfrak{r} are any two relations, then $\mathfrak{p}\mathfrak{r}$ is the relation for which $X\mathfrak{p}\mathfrak{r}Y$ if and only if there is a Z for which $X\mathfrak{p}Z$ and $Z\mathfrak{r}Y$.

We can now prove that

If p and r are any two congruences on a lattice of finite subsets, then pr = rp.

Let \mathfrak{p} be \mathfrak{q}_P and \mathfrak{r} be \mathfrak{q}_R . If $A \mathfrak{pr} B$, then, for some element C of the lattice, $A \mathfrak{q}_P C \mathfrak{q}_R B$, and so $A_0 P = C_0 P$ and $B_0 R = C_0 R$.

Then $A_{\cap}P_{\cap}R = C_{\cap}P_{\cap}R = C_{\cap}R_{\cap}P = B_{\cap}R_{\cap}P$. Let D be $(A_{\cap}R)_{\cup}(B_{\cap}P)$. Then $D_{\cap}R = (A_{\cap}R)_{\cup}(B_{\cap}P_{\cap}R) = (A_{\cap}R)_{\cup}(A_{\cap}P_{\cap}R)$ = $A_{\cap}R$. Therefore A r D. In the same way, $D \mathfrak{p} B$. Therefore $A \mathfrak{rp} B$, and so $\mathfrak{pr} \subseteq \mathfrak{rp}$. Similarly, $\mathfrak{rp} \subseteq \mathfrak{pr}$.

Note. This theorem was proved for relatively complemented lattices by R. P. Dilworth, Annals of Mathematics, 50(1950), 348.

THE UNIVERSITY, BRISTOL.