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TRACES ON JORDAN ALGEBRAS 

GERT KJiERGÂRD PEDERSEN AND ERLING ST0RMER 

In the theory of Jordan algebras one encounters several definitions of 
the trace, and it is sometimes unclear whether the different notions are 
equivalent or not. If we restrict attention to the so-called XB-algebras 
studied in [2] and their weakly closed analogues JB W-algebras [8], we 
shall in the present note show that the different concepts are all equi­
valent for JlW-algebras, and that the conditions not involving projec­
tions are equivalent for 7^-algebras. Among the seven equivalent condi­
tions we shall consider, the second (ii) was used by Alfsen and Shultz [1] 
to show that if the JBW-a\gebra, is the self-adjoint part of a von Neumann 
algebra, then the condition characterizes traces on the enveloping von 
Neumann algebra. Condition (iii) appears in Robertson's paper [7] to­
gether with the implication (ii) => (iii). The inequality (iv) is a Jordan 
analogue of Gardner's inequality \<p(x)\ ^ ^>(|#|), [3], characterizing 
traces on C*-algebras. We include a short proof of Gardner's inequality, 
from which (iv) follows naturally. Conditions (v) and (vi) were used by 
Topping [9] and Janssen [4] respectively in the different Jordan algebras 
they studied. 

We refer the reader to [2] and [8] for the theory of JB- and JBW-
algebras we shall need. Just recall that a ZB-algebra is a real Jordan 
algebra A which is a Banach space with respect to a norm having the 
properties ||#2|| = ||#||2 and ||#2|| rg ||x2 + y2\\ for all x, y in A. If A is 
furthermore a Banach dual space, then A is called a JBW-a\gebra. Since 
the second dual of a XB-algebra is a JBW-algebra, [8] it will be easy to 
obtain our results for JB-algebras from those on JB W-algebras. 

PROPOSITION. (Gardner). Let ç be a state on a C*-algebra A. Then cp is 
a trace (i.e., (p(xy) = <p(yx) for all x, y in A) if and only if \<p(x)\ ̂  <p(\x\) 
for all xinA. 

Proof. It suffices to show the condition is sufficient. Assuming, as we 
may, that A has a unit, the condition implies that |̂ >(w#)| :g <p(x) for 
every unitary u in A and x positive in A. Since the unit ball of A is the 
closed convex hull of the set of unitaries [6, 1.1.12] it follows that |^(yx)| 
= lb lk( x ) f° r every y in A. But then the functional y —> <p(yx) attains 
its norm at 1 and is therefore positive [6, 3.1.4]. In particular, if y = y* 
then (p(yx) = <p(yx) = <p(xy), and the result follows since A is spanned 
by its positive elements. 
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In order to formulate our main result we shall need the following nota­
tion from the theory of Jordan algebras [5]. The Jordan triple product is 
defined by 

{xyz} = {x o y) o z — (z o x) o y + (y o z) o x, 

which reduces for special Jordan algebras with x o y — \(xy + yx) to 
{xyz} = \{xyz + zyx). The linear mapping y —> {xyx} is denoted by Ux. 

THEOREM. Let v be a state on a JBW-algebra A. Then the following seven 
conditions are equivalent. 

(i) (p(Uxy
2) = (p(Uyx

2) for all x, y in A. 
(ii) <p(x) = (p(Upx) + ip(Ui-px) for all x in A and projections p in A. 

(iii) <p(x o y) ^ 0 for all positive x, y in A. 
(iv) (p(xoy) ^ \\x\\(p(\y\) for all x, y in A. 
(v) <p(Usx) = ip(x) for all x in A and s in A with s2 — 1. 

(vi) (p(x o {y o z)) = <p(x o y) o z) for all x, y, z in A. 
(vii) <p(Uyx) = <p(y2 o x) /or all x, y in A. 

Proof, (i) => (ii). If x ^ 0 then by (i) 

<p(Upx) + <p(Ui-jfic) = <p(Uxi/2p) + *>(£7*1/2(1 - £ ) ) = ^ ( # ) . 

Since the positive part ^4+ of 4̂ spans 4̂ we are done. 
(ii) => (iii). By [2, eq. 2.36] if p is a projection in A and x ( i + w e have 

pox = \{x + £/pX — Ui-px). 

Since Z7P£/P = f/p and UVU\-P = 0 by [2, eq. 2.35] we have Up(p ox) = 
UpX and U\-P{p ox) = 0. Thus by (ii) and [2, Proposition 2.7] we have 

cp(p ox) = <p(Up(p ox)) + cp(Ui-p(p ox)) = <p(Upx) ^ 0. 

Since the cone generated by projections is norm dense in A+ we get 
(p(x o y) ^ 0 for every y in ^4+, as desired. 

(iii) => (iv). A functional is positive if and only if it takes its norm at 1. 
Then from (iii) we have <p(x o y) ^ ||ff||̂ >60 whenever y £ A+. But then 
in the general case, if y+ and y- are the positive and negative parts of y, 

<p(xoy) =<p(xoy+) -v{xoyJ) S \\x\\<p{y++ yJ) = \\x\\<p(\y\). 

(iv) =» (v). If x e A+ and / Ç [ - 1 , 1] let 

a = (1 + / )* + (1 - 0 t/,* + 2(1 - t2)1/2s o x 

6 = (1 + 01/21 + (1 - 0 1 / 2 ^ 

Since 5 is a symmetry, a straightforward application of the identity 
UyZ = 2;y o (y o z) — y2 o z shows that a = Ubx, so a ^ 0 by [2, Proposi­
tion 2.7]. In a special Jordan algebra we have the identity y o Uvz = 
{y2zy}, hence this identity holds in any Jordan algebra by Macdonald's 
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theorem [5, p. 41]. Thus if s is a symmetry, 

5 o Usz = {lzs} = s o z. 

It follows that 

soa = (1 + t)s o x + (1 - t)s o x + 2(1 - t2)1/2s o (s o x) 

= 2s ox + (1 - /2)1/2(x + £7,x). 

By assumption <p(s o a) S <£>(a)> which implies that 

0 g p(a - s o a) = (1 - (1 - £2)1/2)<£>(x + £/sx - 2s o x) 

+ t<p(x — Usx) 

for all t in a neighborhood of 0. Since 1 — (1 — t2)1'2 ^ ^/2 it follows that 
<p(x — Usx) = 0. 

(v) => (vi). If x, 3/, s Ç A the following identity is easily verified if A is 
a special Jordan algebra, hence it holds for general A by Macdonald's 
theorem [5, p. 41]. 

(1) Uy{yxz) = 2y2 o {xz;y} — {x2;y3J. 

From the definition of the Jordan triple product we have 

2(x o y) o z = {:ryz} + {30:2} 

2 x 0 ( ^ 0 z) = {xs;y} + {x;yjs}. 

Therefore to show (vi) it suffices to show 

(2) <p({yxz}) = <p({xzy}), 

and since linear combinations of symmetries are dense in A it suffices to 
show (2) when y is a symmetry. But then by (v) and (1) we have 

<p({yxz}) = <p(Uy{yxz\) = <p(2y2 o {xs;y} - {xs;y3}) = (p({xzy}). 

(vi) =» (vii). Take x, y in ^4. Then 

UyX = 2y o (y o x) — y2 o x, 

so by (vi) we have 

ip{y2 ox ) = <p(y o (y ox ) ) = \y(Uyx + ^2 o x ) , 

and (vii) follows. 
(vii) => (i). By (vii) ç(Uyx

2) = < (̂̂ 2 o x2) = <p(Uxy
2) for all x, y in ^4. 

COROLLARY. Let cp be a state on a JB-algebra. Then conditions (i), (iii), 
(iv), (vi), and (vii) in the theorem are all equivalent. 

Proof. Since Kaplansky's density theorem holds in XB IF-algebras, and 
the second dual of a JB-algebra, is a JBW-algebra. [8], the corollary is 
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immediate from the theorem and the fact that multiplication is strongly 
continuous on bounded sets [2, Proposition 3.7]. 

Remark. It is easy to see that condition (ii) in the XS-algebra case can 
be replaced by 

(ii') <p(Uax + Ubx) = (p(U(a2+b2)i/2x) 

for all a, b} x in A. No such substitute seems to be available for condition 
(v), and contrary to the C*-algebra case where we use unitaries, the condi­
tion is much too weak to characterize the trace in a general /B-algebra. 
Just remember that any symmetry has the form 2p — 1 for some projec­
tion p in A, and A may have no nontrivial projections. 
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