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Shock-tube experiments are performed on the convergent Richtmyer–Meshkov (RM)
instability of a multimode interface. The temporal growth of each Fourier mode
perturbation is measured. The hydrodynamic instabilities, including the RM instability
and the additional Rayleigh–Taylor (RT) effect, imposed by the convergent shock wave
on the dual-mode interface, are investigated. The mode-coupling effect on the convergent
RM instability coupled with the RT effect is quantified. It is evident that the amplitude
growths of all first-order modes and second-order harmonics and their couplings depend
on the variance of the interface radius, and are influenced by the mode-coupling from
the very beginning. It is confirmed that the mode-coupling mechanism is closely related
to the initial spectrum, including azimuthal wavenumbers, relative phases and initial
amplitudes of the constituent modes. Different from the conclusion in previous studies on
the convergent single-mode RM instability that the additional RT effect always suppresses
the perturbation growth, the mode-coupling might result in the additional RT effect
promoting the instability of the constituent Fourier mode. By considering the geometry
convergence, the mode-coupling effect and other physical mechanisms, second-order
nonlinear solutions are established to predict the RM instability and the additional RT
effect in the cylindrical geometry, reasonably quantifying the amplitude growths of each
mode, harmonic and coupling. The nonlinear solutions are further validated by simulations
considering various initial spectra. Last, the temporal evolutions of the mixed mass and
normalized mixed mass of a shocked multimode interface are calculated numerically to
quantify the mixing of two fluids in the cylindrical geometry.
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1. Introduction

The Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) occurs when
an interface separating two fluids with different densities is accelerated by a shock
wave, then bubbles (lighter fluids penetrating heavier ones) and spikes (heavier fluids
penetrating lighter ones) arise, and the turbulence might be finally induced (Zhou
et al. 2019; Livescu 2020). The RM instability was first theoretically investigated by
Richtmyer (1960) and then experimentally confirmed by Meshkov (1969) in the planar
geometry. The RM instability is generally regarded as the special Rayleigh–Taylor (RT)
instability (Rayleigh 1883; Taylor 1950) at an impulsive limitation. As reviewed by Zhou
et al. (2021), RM instability plays an essential role in various industrial and scientific
fields, including inertial confinement fusion (ICF), supernova explosions, ejecta, material
strength, chemical reactions, solar prominence and ionospheric flows. The RM instability
on a single-mode interface has been extensively studied due to its fundamental significance
(Brouillette 2002; Zhou 2017a,b; Zhai et al. 2018b; Liang 2022a). Nevertheless, the
initial perturbations on the surfaces in applications are essentially multimode with
wavenumbers spanning many orders of magnitude (Miles 2004). The relationship between
the multimode RM instability and the initial spectrum remains unclear. Furthermore, the
ICF and other applications care more about the hydrodynamic instabilities in cylindrical
and spherical geometries (Tubbs et al. 1999; Glendinning et al. 2000; Fincke et al.
2004; Smalyuk et al. 2014; Peterson et al. 2015). Due to its significance, research on the
multimode RM instability induced by a convergent shock is urgently needed.

Past studies on the planar multimode RM instability have shown that when the local
perturbation on a multimode interface originating from the superposition of multiple
modes becomes comparable to its wavelength, the mode-coupling between the multiple
modes has an important influence on the instability development (Haan 1989). The
following theoretical, experimental and numerical works on the planar multimode RM
instability are introduced below.

(i) Theoretically, Haan (1991) first proposed a modal model with second-order accuracy
to quantify the influence of the mode-coupling between the multiple modes on the RT
instability. The modal model and its extended types have achieved a wide range of
validation in the issues of RT instability (Remington et al. 1995; Ofer et al. 1996; Elbaz
& Shvarts 2018) and RM instability (Liang et al. 2021). Assuming that the mode-coupling
is absent before each bubble of a multimode RM unstable interface reaches its asymptotic
growth, Alon et al. (1994) proposed a statistical potential flow model to predict the eventual
average bubble distribution and bubble amplitude growth rate. However, the potential flow
model is invalid when the two fluids’ densities are similar. Subsequently, Rikanati, Alon
& Shvarts (1998) proposed the vortex model to make up the bubble asymptotic growth
rate when the density ratio of the two fluids approaches unity. Both the potential flow
model (Alon et al. 1994, 1995; Oron et al. 2001) and the vortex model (Rikanati et al.
1998) acquire a self-similar growth of the bubble amplitude independent of the initial
spectrum. Later, the perturbation expansion model (Zhang & Sohn 1997) was extended by
Vandenboomgaerde, Gauthier & Mügler (2002) to predict the early nonlinear amplitude
growths of the constituted modes of a multimode RM unstable interface by retaining
the terms with the highest power in time. Recently, the group theory approach (Abarzhi
2008, 2010; Pandian, Stellingwerf & Abarzhi 2017) has been proven to identify the
connection between the symmetry properties of the interface morphology and the relative
phases of the modes constituting the interface spectrum.

(ii) Experimentally, Sadot et al. (1998) performed the first shock tube experiments to
investigate the two-bubble competition and found that the bubbles with a larger size expand
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and rise faster, whereas the bubbles with a smaller size shrink and are swept downstream
into the spikes of surviving bubbles. Dimonte & Schneider (2000) conducted a series of
three-dimensional linear electric motor experiments to investigate the multimode RT and
RM instabilities. They found that the density ratio has a limited effect on the self-similar
growth factor θ for the bubble. When the density ratio is large, the θ for the spike is larger
than the bubble counterpart. Niederhaus & Jacobs (2003) investigated the multimode RM
instability of two liquids and found that the development of the multimode perturbation
strongly depends on the amplitudes of the initially constituent modes. Balasubramanian,
Orlicz & Prestridge (2013) argued that the growth of the multimode perturbation created
by a gas curtain shows a weak dependence on the initial spectra. Di Stefano et al.
(2015a,b) performed the RM instability experiments of a dual-mode interface under
high-Mach-number conditions. The results indicated that new harmonics are generated
from the mode-coupling between the two initially constituent modes, and the perturbations
of these modes grow and saturate over time. The dual-mode RM instability under weak
shock conditions was considered by Luo et al. (2020), from which the mode-coupling
effect on the RM instability cannot be ignored when the wavenumber of one constituted
mode is twice the wavenumber of the other constituted mode. Mohaghar et al. (2017)
experimentally investigated the mixing of a multimode RM unstable interface using
density and velocity statistics and found that the flow shows distinct memory of initial
conditions. The long-wavelength perturbation has a strong influence on the interface
development. Liang et al. (2019) examined the RM instability on four quasi-single-mode
interfaces created by the soap film technique in the early nonlinear stage. The effect of
initially constituent high-order modes on the multimode RM instability was highlighted
to distinguish the multimode RM instability from the single-mode counterpart. Guo et al.
(2022) further confirmed that the RM instability of a quasi-single-mode interface still
has memory on the initial spectrum even though the interface is shocked twice. Mansoor
et al. (2020) generated a near-sinusoidal interface dominated by one mode with a novel
membraneless technique where cross-flowing air is separated from SF6 by an oscillating
splitter plate. Earlier mixing transitions for higher amplitude-to-wavelength ratio cases
were noted from the experiments. Liang et al. (2021) investigated the RM instability on
a multimode air–SF6 interface initially dominated by three modes. It was revealed that
the mode-coupling is closely related to the initial spectrum and plays an essential role in
RM flows from the very beginning if the initial amplitudes of the constituent modes are
large. Liang, Liu & Luo (2022) examined the differences between the effects of bubble
competition and spike competition on the multimode RM instability and concluded that
the bubble competition suppresses instability of the small-wavelength perturbation more
than the spike competition.

(iii) Numerically, it is commonly realized that the phases of the constituted modes
influence the multimode perturbation growth (Vandenboomgaerde et al. 2002; Miles et al.
2004; Pandian et al. 2017). Besides, the self-similar growth factor θ of the late-time RM
instability depends on the scale of the initial spectrum. Although the values of θ in many
high-fidelity simulations, including the extensive collaborations of the θ -group (Thornber
et al. 2017), have not been unified, it is widely accepted that the broadband perturbation
leads to a larger bubble growth factor than the narrowband counterpart (Thornber et al.
2010; Liu & Xiao 2016; Thornber 2016; Groom & Thornber 2020).

The convergent RM instability, involving initial conditions relevant to the ICF, has
become increasingly attractive in recent years (Zhou 2017a; Zhou et al. 2021). Compared
with the planar RM instability, the convergent RM instability involves more physical
mechanisms. First, the unique geometric convergence inevitably influences the convergent
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RM instability. For example, in a high-gain ICF target, the ratio of the initial outer
target radius to the final hot-spot radius is up to ∼30–40. Second, the additional RT
effect induced by the acceleration or deceleration of the interface complicates the
interface evolution and results in the interface being more unstable or stable. Third, the
compressibility of the postshock flow further influences the instability. Other theoretical,
experimental and numerical works on the convergent RM instability are introduced below.

(i) Theoretically, based on the small perturbation assumption, Bell (1951) and Plesset
(1954) separately derived the linear solutions for the convergent RM instability in the
cylindrical and spherical geometries. It was found that the interface amplitude growth
rate varies with the radius of the shocked interface, which is later called the Bell–Plesset
effect. Amendt et al. (2003) further considered the case where the densities of the
two fluids change uniformly with time. Later, Epstein (2004) deduced a compressible
linear solution for the convergent RM instability accounting for the fluid compression.
Mikaelian (1990, 2005) examined the convergent RM instability of multiple interfaces
in cylindrical and spherical geometries and proposed a numerical method to solve the
eigenvalue problems of the convergent RM instability on the arbitrary number of stratified
fluids. In the same order of the geometry convergence, Mikaelian (2005) separately listed
the linear solutions for the planar, cylindrically convergent and spherically convergent RM
instability using the impulsive acceleration assumption (Richtmyer 1960) as

an = a0
n(1 + kA�vt), (1.1)

an = a0
n

[
1 + (nA − 1)

(
1 − R0

i
Ri

)]
, (1.2)

an = a0
n

⎧⎨
⎩1 +

[
n(n + 1)A
2n + 1 − A

− 1
]⎡⎣1 −

(
R0

i
Ri

)2
⎤
⎦
⎫⎬
⎭ , (1.3)

where an and a0
n are the time-varying amplitude and the initial amplitude of the

single-mode perturbation with the azimuthal wavenumber n (≡ kRi), respectively; k is
the wavenumber of the single-mode perturbation; Ri and R0

i are the time-varying radius
and the initial radius of the interface, respectively; �v is the velocity jump of the interface
induced by the shock; and A (defined as (ρex − ρin)/(ρex + ρin), with ρex and ρin being
the density of the external fluid located at a radius r of r > Ri and the density of the
inner fluid located at Ri > r > 0, respectively, as sketched in figure 1d) is the Atwood
number. Assuming that the interface moves uniformly, i.e. Ri = R0

i + �vt, (1.2) and (1.3)
separately for the cylindrically and spherically convergent RM instability reduce to (1.1)
for the planar RM instability at a large Ri. Recently, based on the perturbation expansion
method, Liu, He & Yu (2012) derived a fourth-order weakly nonlinear solution for the
RM instability of a single-mode interface at a fixed radial position in the cylindrical
geometry, highlighting the cylindrical geometry effect on bubbles and spikes under
different A conditions. Subsequently, Liu et al. (2014) extended the validity range of the
weakly nonlinear solution (Liu et al. 2012) to the late nonlinear stage based on Padé
approximation, and which agrees well with the numerical results of Matsuoka & Nishihara
(2006). Wang et al. (2015) proposed a weakly nonlinear solution for the cylindrically
convergent RM instability of a uniformly imploding or exploding single-mode interface.
The perturbation growths of the first three-order harmonics and the high-order feedback
to the fundamental mode were quantified.
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R0

Interface

Convergent shock

SF6
Air

O Solid wall

Filaments

Rectangular base

Outer acrylic sheet

Inner acrylic sheet

5 mm

Optical windows

(a) (b) (c)

(d)

θ

ρex

ρin

SF6

Figure 1. (a) Sketch of the test section of the semiannular shock tube, (b) the front view and (c) the side
view of the interface formation device and (d) the experimental configuration for a cylindrically convergent
shock impacting a dual-mode air–SF6 interface: R0

i denotes the radius of the balanced position of the initial
dual-mode interface; O denotes the geometric centre; and ρex and ρin denote the densities of the fluids located
at a radius r of r > Ri and Ri > r > 0, respectively.

(ii) Experimentally, Hosseini & Takayama (2005) used double-exposure holographic
interference technology to capture the interaction of a cylindrically convergent shock and
a gas cylinder with various species in an annular vertical diaphragmless shock tube. The
mixed width growth rate of the reshocked interface in the cylindrical geometry was found
to be larger than that in the planar geometry. Recently, Si et al. (2015) and Lei et al.
(2017) improved the interface formation and flow visualization methods in the same kind
shock tube. The interactions of a cylindrically convergent shock and various polygonal
and sinusoidal air–SF6 interfaces were experimentally investigated. Based on the gas
lens method (Dimotakis & Samtaney 2006) to convert a planar shock to a convergent
shock, the cylindrically convergent RM instability on the single-mode SF6–air interface
(Biamino et al. 2015; Vandenboomgaerde et al. 2018a) and air–SF6 interface (Biamino
et al. 2017; Vandenboomgaerde et al. 2018b) were separately investigated. The influence
of the supports utilized to form the initial nitrocellulose interface on the RM flow was
investigated (Vandenboomgaerde et al. 2018a). Recently, Brasseur et al. (2021) extended
the gas lens method to generate a spherically convergent shock and showed the potential
to perform spherically convergent RM instability experiments. Zhai et al. (2010, 2012)
designed a curved solid wall with a specific shape to directly convert a planar shock to a
cylindrically convergent shock according to the shock dynamics in a horizontal shock tube.
Subsequently, the interactions of a cylindrically convergent shock and various interfaces,
including gas bubbles, gas cylinders, inclined interfaces and sinusoidal interfaces, were
experimentally investigated in this shock tube (Si, Zhai & Luo 2014a; Si et al. 2014b; Zhai
et al. 2017; Liang, Zhai & Luo 2018; Luo et al. 2014, 2018, 2019). In these works, Luo et al.
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(2018) studied the convergent RM instability on a three-dimensional air–SF6 single-mode
interface with a minimum-surface feature. They observed the interface deceleration due to
the high pressure near the geometric centre. It was proved that the interface deceleration
leads to the additional RT effect superposed on the evolving interface, resulting in a rapid
decrease in the interface amplitude, and even causing the phase reversal of the interface
before the reshock. To eliminate the interface deceleration and the additional RT effect,
Luo et al. (2019) transferred the cylindrically convergent shock to a planar one when
the transmitted shock is near the geometric centre, avoiding the high pressure near the
geometric centre. Recently, the shock dynamics method has been extended to generate a
spherically convergent shock (Kjellander, Tillmark & Apazidis 2012; Liverts & Apazidis
2016; Sembian & Liverts 2020) and a cylindrically divergent shock (Li et al. 2020b).
Moreover, Luo et al. (2015) designed a semiannular horizontal shock tube to generate
a cylindrically convergent shock and showed its great potential in studying the convergent
RM instability due to the convenience of forming shape-controllable gaseous interfaces.
Subsequently, Ding et al. (2017a) examined the time-varying interface displacement of
a shocked unperturbed air–SF6 interface and the amplitude growths of a single-mode
air–SF6 interface with various amplitude-to-wavelength ratios in this shock tube. Recently,
a series of experimental studies on the hydrodynamic instabilities of a gas layer driven by
a cylindrically convergent shock has been conducted in this shock tube (Ding et al. 2019;
Sun et al. 2020; Ding, Deng & Luo 2021; Li et al. 2020a, 2022). It was revealed that the
mode-coupling between the two interfaces of the gas layer and the reverberating waves
inside the gas layer have non-negligible influences on the gas layer evolution.

(iii) Numerically, Zhang & Graham (1997) discovered the scaling laws for the RM
unstable interface driven by a strong cylindrically convergent shock. Later, Zhang &
Graham (1998) performed a series of simulations on the RM instability of a single-mode
interface driven by a cylindrically convergent or divergent shock and observed the complex
instability development after the reshock. Matsuoka & Nishihara (2006) numerically
investigated the interface evolution using the vortex dynamics method in the cylindrical
geometry. They analysed the curvatures of bubbles and spikes as well as the vorticity
strength and circulation on the evolving interface. Lombardini & Pullin (2009b) studied the
linear evolution of the convergent RM instability and deduced a unified expression for the
asymptotic growth rate of the planar, cylindrical and spherical RM instability, highlighting
the influence of the geometric convergence on the perturbation growth rate. Lombardini,
Pullin & Meiron (2014) performed a large-eddy simulation on the spherically convergent
RM instability. It was found that the reshock mixing on an air–SF6 interface is enhanced
by the reverberating shocks between the interface and the geometric centre, which is
different from the planar RM instability that is enhanced by the reverberating rarefaction
waves between the interface and the reflection wall. Wu, Liu & Xiao (2021) compared
their simulations with the experiments of Lei et al. (2017) using the direct numerical
simulation method. They concluded that both qualitative and quantitative consistencies
between simulations and experiments could be achieved before the reshock provided that
the premixed width of the interface is taken into account. Li et al. (2021) investigated
the convergent RM instability in cylindrical and spherical geometries using the implicit
large-eddy simulation method, highlighting the differences in the statistical characteristics
of turbulent mixing between the cylindrically and spherically convergent RM instability.
Yan et al. (2022) investigated the cylindrically convergent RM instability with and without
chemical reactions using the direct numerical simulation method to explore the influence
of chemical reactions on the statistical characteristics of transition and turbulent mixing.
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From the reviews of the multimode RM instability and the convergent RM instability,
it is evident that the RM instability is related to the initial spectrum and the geometric
domain. However, the quantitative relation between initial conditions and the multimode
RM instability driven by a convergent shock is still unclear. On the one hand, elaborate
convergent shock tube experiments on the multimode RM instability with controllable
initial conditions are very limited. On the other hand, analytical models for predicting
the multimode RM instability in cylindrical and spherical geometries are rare. In this
work, experiments are performed for the first time on the convergent RM instability
of a multimode interface in a shock-tube facility, and the temporal growth of each
Fourier mode perturbation is measured. The mode-coupling effect on the convergent
RM instability coupled with the RT effect is quantified for the first time. The different
contributions of the mode-coupling to the hydrodynamic instabilities of the multimode
interface and single-mode interface are highlighted. Second-order nonlinear solutions are
developed to predict the multimode RM instability and the additional RT effect in the
cylindrical geometry. Numerical simulations are also performed to provide quantitative
data considering more initial conditions. The temporal evolutions of the mixed mass and
normalized mixed mass of a shocked multimode interface are calculated for the first time
to quantify the mixing of two fluids in the cylindrical geometry.

2. Experimental and numerical methods

2.1. Experimental set-up
The experiment is carried out in a semiannular convergent shock tube originally designed
by Luo et al. (2015), which has exhibited good feasibility and reliability in producing a
cylindrically convergent shock (Liang et al. 2017; Ding et al. 2017a, 2019, 2021; Sun et al.
2020; Li et al. 2020a, 2022). The main difficulty for performing an experimental study
on the multimode RM instability, especially in a convergent shock tube circumstance,
lies in creating an idealized initial interface because the RM instability is extremely
sensitive to the initial conditions. Benefiting from the open test section, as sketched
in figure 1(a), a removable interface formation device can be efficiently designed
in which a shape-controllable gaseous interface can be generated using the extended
soap film technique. The soap film technique can essentially eliminate the additional
short-wavelength perturbations, diffusion layer and three-dimensionality (Liu et al. 2018;
Liang et al. 2021). As shown in figures 1(b) and 1(c), a device consisting of two
semicircular transparent acrylic sheets with a spacing of 5.0 mm is fixed on a rectangular
base. Two microchannels (with a width of 0.50 mm and a depth of 0.20 mm) with a
designed dual-mode shape are precisely engraved on the opposite surfaces of the two
acrylic sheets. Two acrylic filaments (with a width of 0.45 mm and a height of 0.40 mm)
with the same dual-mode shape are embedded separately in the microchannels to introduce
two small bulges on the plate surfaces to restrict the soap film. Subsequently, a soap bubble
full of SF6 is blown within two plates through an injection tube (as marked in yellow in
figure 1b). The soap bubble expands continuously along the filaments. When the volume of
the soap bubble is approximately 2/3 of the constraint space (as marked in red in figure 1b),
we stop injecting the SF6 and immediately insert the interface formation device into the
test section and equipped tightly with optical windows, as shown in figure 1(a). Because
the density of SF6 is much greater than that of air, it is easier for air to permeate into the
soap film. Therefore, the soap bubble will keep swelling after removing the injection tube.
When the soap bubble just thoroughly contacts the filaments and a sinusoidal boundary
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at the interface is formed, the shock wave is generated immediately and the experiment is
performed.

The experimental configuration is sketched in figure 1(d), where a cylindrically
convergent shock moves inward and later impacts the dual-mode interface. In a polar
coordinate system, the initial interface can be parameterized as

r = R0
i + a0

n1
cos(n1θ) + a0

n2
cos(n2θ), (2.1)

where R0
i equals 26.0 mm; n1 and n2 denote the azimuthal mode numbers of the two

initially constituent modes and equal 6 and 12, respectively, in the experiment; and the
initial amplitudes of mode n1 (a0

n1
) and mode n2 (a0

n2
) equal 1.0 mm.

The ambient pressure and temperature are 101.33 kPa and 293.15 K, respectively. In
the experiment, the shock velocity at the time of the impact with the interface cannot be
obtained precisely due to the limitation of temporal resolution. However, the Mach number
of the incident shock at a radius of 34.0 mm, i.e. before the shock reaches the interface,
can be measured to be 1.29 ± 0.01. The increment of the shock Mach number between
that instant and when the shock reaches the interface is approximately 0.03, according to
the Chester–Chiness–Whitham relations (Chester 1954; Chisnell 1957; Whitham 1958).
As a result, the Mach number of the incident converging shock at the interface’s impact
time is evaluated to be 1.32 ± 0.01.

The ambient gas is air, and the test gas is a mixture of air and SF6. The mass fraction of
SF6 is deduced as 91.1 % according to the one-dimensional gas dynamics theory (Drake
2018) and the velocities of the incident shock and the shock reflected from the interface
after the incident shock impacts the interface. The Atwood number A is −0.57 in this
study. When the shock impacts the initial interface, the velocity of the incident shock (vs)
in the air is −457 m s−1, the velocity of the transmitted shock (vt) in the mixture of air
and SF6 is −236 m s−1, the velocity of the reflected shock in the air (vf ) is 407 m s−1 and
the velocity jump of the interface (�v) is −123 m s−1.

The flow field is illuminated by a direct-current-regulated light source (CEL-HXF300,
the maximum power output is 249 W) and captured by schlieren photography combined
with a high-speed camera (FASTCAM SA5, Photron Limited, with full resolution of
1024 × 1024). The camera’s frame rate is 87 500, corresponding to a time interval of
11.43 µs. The exposure time is 1 µs. The pixel resolution is 0.26 mm pixel−1.

2.2. Numerical scheme
Numerical simulations are performed to obtain the detailed flow field required for
an in-depth analysis of flow regimes. The process of a cylindrically convergent
shock interacting with a gaseous interface examined in this study is described by
compressible Euler equations, which coincide with the numerical studies focusing on
the early-to-intermediate regimes of RM instability with or without the reshock (Grove
et al. 1993; Holmes & Grove 1995; Holmes et al. 1999; Herrmann, Moin & Abarzhi 2008;
Niederhaus et al. 2008; Leinov et al. 2009; Ding et al. 2017b, 2018; Zhai et al. 2017, 2018a;
Zhai, Ou & Ding 2019a; Zhai et al. 2019b; Zou et al. 2019; Igra & Igra 2020; Zhou
et al. 2020b; Tang et al. 2021). An upwind space–time conservation elements/solution
elements scheme is utilized with second-order accuracy in both space and time (Shen
et al. 2015a; Shen, Wen & Zhang 2015b; Shen & Wen 2016). A volume-fraction-based
five-equation model (Abgrall 1996; Shyue 1998) is used to illustrate the different species
residing on both sides of the inhomogeneous interface. The contact discontinuity restoring
Harten–Lax–van Leer contact Riemann solver (Toro, Spruce & Speares 1994) is used
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to determine the numerical fluxes between the conservation elements. The use of this
scheme in capturing shocks and details of complex flow structures for the RM instability
issues and shock–droplet interactions have been well validated (Shen et al. 2017; Shen
& Parsani 2017; Guan et al. 2018; Fan et al. 2019; Zhai et al. 2017, 2019b; Zhou et al.
2020b; Liang et al. 2020; Liang 2022b; Liang & Luo 2023). A comprehensive review of
the numerical scheme and its extensive applications was recently reported by Jiang, Wen
& Zhang (2020).

The initial settings of the two-dimensional simulation are presented in figure 2(a).
Open boundary conditions, which apply a zeroth-order extrapolation of physical quantities
to ghost points, are enforced on the left-hand, right-hand and bottom boundaries (x =
−100.0, x = 100.0 and y = 50.0 mm), respectively, to eliminate the waves reflected from
the left-hand, right-hand and bottom boundaries (Zhai et al. 2019b; Zhou et al. 2020b).
Reflection conditions are imposed at the top boundary (y = 0). The density and specific
heat ratio of the ambient gas outside the perturbed gas cylinder are 1.20 kg m−3 and 1.40,
respectively; and the density and specific heat ratio of the test gas inside the perturbed
gas cylinder are 4.46 kg m−3 and 1.127, respectively. The initially incident shock wave is
set to travel inward with a Mach number of 1.29 and a radius of 34.0 mm, as sketched in
figure 2(a). The initial postshock flow is supposed to be uniform and calculated according
to the Rankine–Hugoniot relation, which coincides with the recent numerical studies on
the convergent RM instability (Zhai et al. 2019b; Zhou et al. 2020b; Li et al. 2021; Tang
et al. 2021; Wu et al. 2021; Yan et al. 2022).

2.3. Code validation
We measure the mixed width from experimental schlieren images and compare it with
numerical simulations. We measure the distances between the geometry centre and four
crests of a dual-mode interface, as shown in figure 2(a), and calculate the average value as
the radius of the crest, i.e. rS. Similarly, we measure distances between the geometry centre
and six troughs of a dual-mode interface and calculate the average value as the radius of
the trough, i.e. rB. The mixed with, w, is defined as rS − rB.

For the data obtained from numerical simulations, since the mass fraction of SF6 in the
test gas is decided by the experiment as 91.1 %, we choose the nodes with a mass fraction
of SF6 between 1.0 % and 90.0 % as the interfacial contour. Then, the mean radius of these
nodes on each azimuthal angle is taken as the average position of the local interface. The
mixed width w in simulations is defined as the maximum radial distance between the crest
and trough of a dual-mode interface, as sketched in figure 2(a).

The time-varying dimensionless mixed width of the dual-mode interface is measured
from experiments, as shown with solid symbols in figure 2(b). The moment when the
incident shock reaches the radius of R0

i is defined as t = 0. Time is scaled as τ = t�v/R0
i ,

and mixed width is scaled as ω = w/w0, where w0 denotes the initial mixed width of
the dual-mode interface and equals 3.12 mm in the experiment. It can be found that the
current numerical results, as shown with lines in figure 2(b), quantitatively agree well with
the experimental results. Four mesh sizes of 0.20 mm, 0.10 mm, 0.05 mm and 0.025 mm
are tested for the grid-convergence validation. The time-varying dimensionless mixed
widths of the dual-mode interface converge when the mesh size is reduced to 0.05 mm
and 0.025 mm in the numerical simulations. Therefore, an initial mesh size of 0.05 mm is
adopted for all simulations to ensure accuracy and minimize the computational cost.
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Figure 2. (a) Measurements of the radii of the crest (rS) and the trough (rB) of a dual-mode interface from
experimental schlieren images. (b) Schematics of the numerical set-up, with w denoting the mixed width of the
dual-mode interface. (c) Comparisons of the dimensionless mixed width of the dual-mode interface between
the experimental results and numerical results at different mesh sizes. The red semicircle in (b) at r = 34 mm
indicates the initial imploding shock of Mach number 1.29.

3. Qualitative analysis

The initial dual-mode interface (II) in the experiment has a short-wavelength spike
(SS) in the middle with two long-wavelength spikes (LS) located on its two sides, as
shown in figure 3. Before the shock impacts the interface (−7 µs), the initial interface
in the schlieren image seems thick because the interface is covered by two dual-mode
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(d )

Figure 3. Typical schlieren images obtained from the experiment (top half of each image) and simulation
(bottom half), where IS denotes the incident convergent shock, II denotes the initial interface, LS denotes the
long-wavelength spike, SS denotes the short-wavelength spike, LB denotes the long-wavelength bubble, SB
denotes the short-wavelength bubble, TS denotes the transmitted shock, IRS denotes the shock reflected from
the initial interface, SI denotes the shocked interface, TW denotes the transverse waves, CRS denotes the shock
reflected from the geometric centre and TRS denotes the transmitted reflection shock. Curved white arrows
represent the orientations that spikes skew towards, and numbers in the images indicate time in microseconds.
The moment when the incident shock reaches the radius of R0

i is defined as t = 0.

microchannels (0.5 mm in width) engraved on the transparent acrylic sheets. First,
when the incident shock (IS) passes across the interface, the shock bifurcates into an
inward-moving transmitted shock (TS) and an outward-moving reflected shock (IRS).
Subsequently, the shocked interface (SI) leaves its original location, and a density-gradient
interface with a perfect dual-mode shape can be observed (16 µs). As time proceeds, the
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interface undergoes sustained deformation due to the deposition of baroclinic vorticity
induced by the incident shock and the geometry convergence (Lombardini & Pullin 2009b;
Ding et al. 2017a; Vandenboomgaerde et al. 2018a). Our previous study (Liang et al. 2017)
found that the perturbation on the TS reduces gradually as the shock converges, which is
similar to the planar case where the disturbances on a planar shock front are known to die
out (Bates 2004). However, as the TS converges, the undisturbed shock radius (the distance
from the undisturbed cylindrical shock front to the geometry centre) also reduces, and the
ratio of perturbation of the TS to the radius of the TS actually increases. As a result, the
front of the convergent TS becomes polygonal (Apazidis & Lesser 1996; Apazidis et al.
2002; Lei et al. 2017), and the transverse waves (TW) behind the transmitted shock are
prominent (85 µs).

After the transmitted shock focuses at the geometric centre around 108 µs, a central
reflected shock (CRS) forms and moves outwards (131 µs). Later, the CRS impacts the
evolving dual-mode interface (153 µs), leading to the phase reversal of the dual-mode
interface (Brouillette 2002). The perturbation on the dual-mode interface first decreases to
a minimal value (176 µs) and then increases with an opposite phase to the initial interface
perturbation (199 µs). The reshocked interface consists of a short-wavelength bubble (SB)
in the middle with two long-wavelength bubbles (LB) on its two sides. Last, shocks and
rarefaction waves are reflected with decreasing strengths between the interface and the
geometric centre. The competition and coalescence of large coherent structures drive the
bubble-merging (Sadot et al. 1998; Oron et al. 2001; Srebro et al. 2003) on the reshocked
dual-mode interface, resulting in the spikes skewing towards the long-wavelength bubbles
(see the white arrows in the 245 µs image).

The magnitude of the density-gradient field in the simulation is calculated as (Quirk &
Karni 1996; Sembian, Liverts & Apazidis 2018)

|∇ρ| =
[(

∂ρ

∂x

)2

+
(

∂ρ

∂y

)2
]1/2

. (3.1)

The numerical results are shown in the bottom half of the images in figure 3. It can be
observed that both waves and interfacial morphologies in simulations qualitatively agree
well with the experimental results.

4. Quantitative analysis

4.1. Experimental and numerical results
Due to the nonlinearity of the RM instability (Velikovich & Dimonte 1996; Nishihara et al.
2010; Guo et al. 2014; Wang et al. 2015), the two initially constituent modes, i.e. modes n1
and n2, generate two harmonics with wavenumbers 2n1 and 2n2, respectively. Moreover,
the mode-coupling between the two initially constituent modes generates two couplings
with wavenumbers n2 + n1 and n2 − n1 (Haan 1989, 1991; Ofer et al. 1992).

The captured interface morphology is distinct such that the interfacial contour in the
experiment can be extracted by an image processing program (Luo et al. 2020; Liang
et al. 2021), as indicated by the inset in figure 4. Spectral analysis is then performed on
the coordinate of the interfacial contour before the interface is reshocked. Notably, since
n2 = 2n1 and n1 = n2 − n1 in the experiment, the harmonic 2n1 and coupling n2 − n1
are superposed on the mode n2 and mode n1, respectively. The time-varying amplitudes
of modes n1 and n2 and the new harmonic 2n2 and coupling n2 + n1 are then acquired,
as shown with square symbols for the experiment and circle symbols for the simulation
in figure 4. The amplitude of the mode, harmonic and coupling with the azimuthal
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Figure 4. The time-varying dimensionless amplitudes of the two constituent modes (modes n1 and n2) and
the generated harmonic 2n1 and coupling n2 + n1 obtained from the dual-mode RM instability experiment
(square symbols) and simulation (circle symbols). The single-mode RM instabilities of the two constituent
modes are numerically calculated and shown with diamond symbols. The dashed lines represent the theoretical
predictions in stage I. The dotted lines represent the theoretical predictions in stage II. The inset shows the
interfacial contours in the experiment for spectral analysis.

wavenumber n, i.e. an, is normalized as αn = an/a0
n1

. It can be found that the numerical
results quantitatively agree well with the experimental results, further validating the code
utilized in the present study.

The amplitude of the mode n2 is larger than that of the mode n1 for two reasons.
First, according to the linear solution for the cylindrically convergent RM instability on
a single-mode interface with a fixed initial amplitude (see (1.2)), the linear amplitude
growth rate is larger as n increases. Second, the mode-coupling between modes n1 and
n2 has a non-negligible influence on the RM instability of the two constituent modes. The
amplitude growths of the single-mode RM instability of modes n1 and n2 with the same w0
(= 3.12 mm) are numerically calculated, as shown with diamond symbols in figure 4 for
comparisons. It is found that the mode-coupling promotes the RM instability of the higher
frequency mode (i.e. mode n2) but suppresses the RM instability of the lower frequency
mode (i.e. mode n1) in the experiment.

The linear solution for the single-mode RM instability (see (1.2)) indicates that
the RM instability of each mode is related to the variance of the interface radius.
Here, the time-varying interface radius Ri and interface velocity vi are extracted from
the one-dimensional simulation of an unperturbed interface driven by a cylindrically
convergent shock using the same initial conditions as the experiment, as shown in
figures 5(a) and 5(b), respectively. It is found that the interface movement can be divided
into three stages. Stage I: the interface moves inward uniformly with a speed of �v

during τ < 0.36. Stage II: the interface moves inward with a decreasing velocity during
0.68 > τ > 0.36. If we assume that the interface decelerates at a constant acceleration,
then the average acceleration (ḡ) is approximately −1.16 × 106 m s−2. Stage III: the
interface is reshocked and moves outward when τ > 0.68. In this study, we focus on the
hydrodynamic instabilities of the dual-mode interface in stages I and II.
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Figure 5. Numerical results on the time-varying dimensionless (a) radius and (b) velocity of an unperturbed
interface driven by a cylindrically convergent shock.

The initial perturbations, potential functions and boundary conditions in the convergent
geometry differ from the planar counterpart. As a result, the theoretical models for the
convergent multimode RM instability will be quite different from the planar counterpart
(Liang et al. 2021). Moreover, the evolution of a shocked multimode interface in the
planar geometry is only dominated by the RM instability. However, the hydrodynamic
instabilities of a shocked multimode interface involve both the RM instability and the
additional RT effect. As a result, the theoretical models for the hydrodynamic instabilities
in the convergent geometry will be more complicated than the planar geometry and more
corresponding to the ICF applications. A series of linear and nonlinear solutions for
quantifying the convergent RM instability and additional RT effect will be established
in the next step.

4.2. Linear and weakly nonlinear solutions
In stage I, the interface motion can be regarded as uniform, and, therefore, the interface
radius can be written as Ri = R0

i + �vt.
Each constituent mode develops linearly at the first-order solution of the RM instability.

The first-order linear solutions for the amplitude growth rates of the mode n1 (ȧRM
n1

) and
mode n2 (ȧRM

n2
) can be separately written as

ȧRM
n1

= ȧI
n1

Cr, ȧRM
n2

= ȧI
n2

Cr, (4.1a,b)

where Cr (≡ R0
i /Ri) represents the convergence ratio and its maximum value in the

experiment is 2.5; and ȧI
n1

and ȧI
n2

represent the initial amplitude growth rates of the mode
n1 and mode n2 induced by the RM instability, respectively, and which can be calculated
as (Mikaelian 2005)

ȧI
n1

= a+
n1

�v(1 − n1A)

R0
i

, ȧI
n2

= a+
n2

�v(1 − n2A)

R0
i

, (4.2a,b)

in which a+
n1

(= (1 − �v/vs)a0
n1

) and a+
n2

(= (1 − �v/vs)a0
n2

) represent the postshock
amplitudes of the mode n1 and mode n2, respectively. When the initial mixed width
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of the interface w0 superposed by multiple modes is comparable to the wavelength of
the interface and/or the shock intensity is large, the high-amplitude effect and/or the
high-Mach-number effect will inhibit the initial amplitude growth rates (Haan 1989;
Wouchuk & Nishihara 1997; Rikanati et al. 2003; Dell, Stellingwerf & Abarzhi 2015;
Campos & Wouchuk 2016; Dell et al. 2017). Here, the high-amplitude effect and the
high-Mach-number effect on the RM instability are considered independently. Moreover,
the startup process before the interface amplitude growth rate reaches the asymptotic value
is taken into account. According to Lombardini & Pullin (2009a), the characteristic times
for the startup processes of the mode n1 (t∗n1

) and mode n2 (t∗n2
) can be evaluated as

t∗n1
= R0

i
2n1

[
1 + A

�v + vf
+ 1 − A

�v − vt

]
, t∗n2

= R0
i

2n2

[
1 + A

�v + vf
+ 1 − A

�v − vt

]
. (4.3a,b)

Here, we assume that the amplitude growth rates increase linearly from zero to asymptotic
values during the startup process.

With the consideration of the high-amplitude effect, the high-Mach-number effect, and
the startup process, the expressions of the modified initial amplitude growth rates of the
mode n1 and mode n2 can be separately rewritten as

ȧI
n1

= HFn1a+
n1

�v(1 − n1A)fn1(t)

R0
i

, ȧI
n2

= HFn2a+
n2

�v(1 − n2A)fn2(t)

R0
i

, (4.4a,b)

in which H (= 1/[1 + (ngcdw0/6R0
i )

(4/3)], with ngcd being the greatest common divisor
of n1 and n2) is the reduction factor proposed by Dimonte & Ramaprabhu (2010) to
quantify the high-amplitude effect; Fn1 (= 1/[1 + ȧI

n1
/(�v − vt)]) and Fn2 (= 1/[1 +

ȧI
n2

/(�v − vt)]) are the reduction factors proposed by Holmes et al. (1999) to quantify
the high-Mach-number effect on the mode n1 and mode n2, respectively; and fn1(t) and
fn2(t) quantify the startup processes of the mode n1 and mode n2, respectively, where
fn1(t) = t/t∗n1

if t < t∗n1
and fn1(t) = 1 if t � t∗n1

, and fn2(t) = t/t∗n2
if t < t∗n2

and fn2(t) = 1
if t � t∗n2

.
Based on the perturbation expansion method, Guo et al. (2014) and Wang et al. (2015)

separately derived second-order and third-order solutions to quantify the nonlinearity of
the RM instability by considering the uniform convergence of a single-mode interface.
Here, we rewrite the second-order solutions in the amplitude growth rate form for the
harmonic 2n1 (ȧRM

2n1
) and harmonic 2n2 (ȧRM

2n2
) induced by the RM instability as

ȧRM
2n1

= a+
n1

ȧI
n1

2Ri
(2An1 − 1)(Cr − 1) + (ȧI

n1
)2t

6Ri

[
(2An1 − 3)C2

r − 8An1Cr

]
, (4.5)

ȧRM
2n2

= a+
n2

ȧI
n2

2Ri
(2An2 − 1)(Cr − 1) + (ȧI

n2
)2t

6Ri

[
(2An2 − 3)C2

r − 8An2Cr

]
. (4.6)

Furthermore, Guo, Cheng & Li (2020) extended their previous work (Guo et al. 2014)
and quantified the mode-coupling effect on the convergent RM instability of the mode n
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at the second-order solution as

d2(anRi)

dt2
= (An − 3)

Ṙ2
i

R4
i

∑
n′

(an′Ri)(an′′Ri)

− (An + 1)
1

R2
i

∑
n′

d(an′Ri)

dt
d(an′′Ri)

dt
− 1

R2
i

∑
n′

(an′′Ri)
d2(an′Ri)

dt2

+ Ṙi

R3
i

∑
n′

[
(an′Ri)

d(an′′Ri)

dt
+ 3(an′′Ri)

d(an′Ri)

dt

]
(4.7)

where n′′ = n − n′. Then, based on (4.7), we can deduce the second-order solutions for
the sum and difference couplings, i.e. the amplitude growth rates of the coupling n2 + n1
(ȧRM

n2+n1
) and coupling n2 − n1 (ȧRM

n2−n1
) induced by the RM instability as

ȧRM
n2+n1

= 1
2Ri

(a+
n2

ȧI
n1

+ a+
n1

ȧI
n2

) [A(n2 + n1) − 1] (Cr − 1)

+ ȧI
n1

ȧI
n2

t

3Ri

[
A(n2 + n1)(C2

r − 4Cr) − 3C2
r

]
, (4.8)

ȧRM
n2−n1

= 1
2Ri

[
A(n2 − n1)(a+

n2
ȧI

n1
− a+

n1
ȧI

n2
) − (a+

n1
ȧI

n2
+ a+

n2
ȧI

n1
)
]
(Cr − 1)

+ ȧI
n1

ȧI
n2

t

3Ri

[
A(n2 − n1)(C2

r + 2Cr) − 3C2
r

]
. (4.9)

The first sum terms on the right-hand side of (4.5), (4.6), (4.8) and (4.9) represent
the time-independent linear amplitude growth rates of harmonics 2n1, harmonics 2n2,
couplings n2 + n1 and couplings n2 − n1, respectively. The second sum terms on the
right-hand side of (4.5), (4.6), (4.8) and (4.9) represent the time-dependent weakly
nonlinear modifications on the growth rates of harmonics 2n1, harmonics 2n2, couplings
n2 + n1 and couplings n2 − n1, respectively. The first sum terms indicate that the
nonlinearity of the convergent RM instability and the mode-coupling between the two
initially constituent modes separately generate new harmonics and couplings from the very
beginning, especially when the amplitudes of constituent modes are large, which coincides
with our previous study on the multimode RM instability in the planar geometry (Liang
et al. 2021).

Notably, the feedback of harmonics and couplings to the modes having the same
wavenumber influences the RM instability of the initially constituent modes. For example,
since n2 = 2n1 in the experiment, the RM instability of the mode n1 consists of the
amplitude of the mode n1 at the first-order solution and the amplitude of the coupling
n2 − n1 at the second-order solution; and the RM instability of the mode n2 consists of the
amplitude of the mode n2 at the first-order solution and the amplitude of the harmonics 2n1
at the second-order solution. The theoretical predictions for the time-varying amplitudes
of modes n1 and n2, the harmonic 2n2 and the coupling n2 + n1 are calculated using
(4.1a,b), (4.4a,b)–(4.6) and (4.8)–(4.9), as shown with dashed lines in figure 4. It is
found that the theoretical predictions agree well with the experimental and numerical
results before the interface decelerates (τ < 0.36). When the interface begins to decelerate,
the additional RT effect is superimposed on the interface, and, therefore, the theoretical
predictions deviate from the experimental and numerical results. For example, the
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theoretical predictions obviously overestimate the amplitudes of modes and harmonics
with large wavenumbers (e.g. mode n2 and harmonics 2n2).

In stage II, the interface decelerates with an average acceleration ḡ and can be
approximately written as Ri = R0

i + �vt − 1
2 ḡ(t − td)2, with td being the time when the

interface begins to decelerate. We only consider the mode-coupling between the two
initially modes since the amplitudes of modes n1 and n2 are much larger than the generated
harmonics and couplings. Similarly, due to the nonlinearity of the RT instability (Jacobs
& Catton 1988; Wang et al. 2013; Liu et al. 2020), modes n1 and n2 also generate two
harmonics with wavenumbers 2n1 and 2n2, respectively. Moreover, the mode-coupling
between modes n1 and n2 also generates two couplings with wavenumbers n2 + n1 and
n2 − n1 (Haan 1989, 1991; Ofer et al. 1992).

Wang et al. (2013) studied the linear solution for quantifying the time-varying amplitude
growth of mode n at a constant acceleration. Here, the first-order linear solutions for the
mode n1 (ȧRT

n1
), mode n2 (ȧRT

n2
), harmonic 2n2 (ȧRT

2n2
) and coupling n2 − n1 (ȧRT

n2−n1
) induced

by the additional RT effect at a constant acceleration can be rewritten in the amplitude
growth rate form as

ȧRT
n1

= −γn1aRM
n1

(td) sinh(γn1 tξ ),

ȧRT
n2

= −γn2aRM
n2

(td) sinh(γn2 tξ ),

ȧRT
2n2

= −γ2n2aRM
2n2

(td) sinh(γ2n2 tξ ),

ȧRT
n2−n1

= −γn2−n1aRM
n2−n1

(td) sinh(γn2−n1 tξ ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.10)

in which tξ = t − td; γn1 = √
Aḡn1/Ri, γn2 = √

Aḡn2/Ri, γ2n2 = √
2Aḡn2/Ri and

γn2−n1 = √
Aḡ(n2 − n1)/Ri are the linear growth rates of the mode n1, mode n2, harmonic

2n2 and coupling n2 − n1 caused by the additional RT effect, respectively; and aRM
n1

(td),
aRM

n2
(td), aRM

2n2
(td) and aRM

n2−n1
(td) are the amplitudes of the mode n1, mode n2, harmonic

2n2 and coupling n2 − n1 at the moment td, respectively, and which can be calculated by
the nonlinear solutions in stage I.

Based on the perturbation expansion method, Guo et al. (2018) derived an analytical,
second-order solution for the RT instability under a constant acceleration. We rewrite the
second-order solutions in the amplitude growth rate form for the harmonic 2n1 (ȧRT

2n1
) and

harmonic 2n2 (ȧRT
2n2

) caused by the additional RT effect as

ȧRT
2n1

= [aRM
n1

(td)]2

2Ri
[4(An1 + 1)γ1 sinh(γ1tξ ) cosh(γ1tξ )

− (2An1 + 1)γ2n1 sinh(γ2n1 tξ )], (4.11)

ȧRT
2n2

= [aRM
n2

(td)]2

2Ri
[4(An2 + 1)γ2 sinh(γ2tξ ) cosh(γ2tξ )

− (2An2 + 1)γ2n2 sinh(γ2n2 tξ )]. (4.12)

Furthermore, the mode-coupling effect on the RT instability was considered by Guo
(2018). We rewrite the second-order solutions in the amplitude growth rate form for the
coupling n2 + n1 (ȧRT

n2+n1
) and coupling n2 − n1 (ȧRT

n2−n1
) caused by the additional RT
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effect as

ȧRT
n2+n1

= [aRM
n1

(td)][aRM
n2

(td)]

2Ri

{
n2 + n1

2
√

n1n2
[γn1 cosh(γn1 tξ ) sinh(γn2 tξ )

+ γn2 sinh(γn1 tξ ) cosh(γn2 tξ )] + [1 + A(n2 + n1)][γn1 sinh(γn1 tξ ) cosh(γn2 tξ )

+ γn2 cosh(γn1 tξ ) sinh(γn2 tξ ) − γn2+n1 sinh(γn2+n1 tξ )]
}

, (4.13)

ȧRT
n2−n1

= [aRM
n1

(td)][aRM
n2

(td)]

4Ri

{√
n2

n1
[γn1 cosh(γn1 tξ ) sinh(γn2 tξ )

+ γn2 sinh(γn1 tξ ) cosh(γn2 tξ )] + [1 − 2A(n2 − n1)][γn1 sinh(γn1 tξ ) cosh(γn2 tξ )

+ γn2 cosh(γn1 tξ ) sinh(γn2 tξ ) − γn2−n1 sinh(γn2−n1 tξ )]
}

. (4.14)

The theoretical predictions of the amplitude growths of modes, harmonics and couplings
with the same wavenumbers in stage II are calculated by the nonlinear solutions of the
RM instability ((4.1a,b), (4.4a,b)–(4.6) and (4.8)–(4.9)) plus the nonlinear solutions of the
additional RT effect (4.10)–(4.14), as shown with dotted lines in figure 4. The theoretical
predictions show a better agreement with the experimental and numerical results of
the hydrodynamic instabilities of modes n1 and n2 and the coupling n2 + n1 than the
instabilities of the harmonic 2n2. There are two possible reasons for the poor prediction
of the harmonic 2n2. On the one hand, as the azimuthal wavenumber n increases, the
nonlinearity caused by high-order (third-order and greater) harmonics more influences the
instability, and, therefore, the predictions with second-accuracy on the additional RT effect
gradually lose their accuracy. On the other hand, we simplify the interface movement in
stage II with a constant acceleration, which is different from the actual interface motion
with a time-varying acceleration. Since the geometry convergence plays a more important
role in the additional RT effect as n increases, the predictions assuming a constant
acceleration gradually lose their accuracy. Nevertheless, the theoretical predictions capture
the most significant features, i.e. the first-order instabilities of the two constituted modes
and the second-order feedback from harmonics and couplings to the modes.

Moreover, compared with the prediction that only considers the convergent RM
instability, it is found that the additional RT effect suppresses the instabilities of the mode
n2, harmonic 2n2 and coupling n2 + n1 but promotes the instabilities of the mode n1.
This conclusion is different from the convergent RM instability on a single-mode air–SF6
interface that the additional RT effect always suppresses instability (Ding et al. 2017a; Lei
et al. 2017; Vandenboomgaerde et al. 2018b; Luo et al. 2018, 2019), indicating that the
mode-coupling complicates the hydrodynamic instabilities of a multimode interface, even
resulting in different outcomes of the additional RT effect on the multimode interface and
single-mode interface.

4.3. Parametric analysis
In the second-order solutions for the convergent RM instability and additional RT effect, it
is evident that when the wavenumber of one constituent mode of a dual-mode interface
is twice the wavenumber of the other constituent mode, the generated second-order
harmonics and couplings influence the amplitude growth rates of the two constituent
modes since the coupling n2 − n1 applies the feedback to the mode n1, and the harmonic
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Case n1 n2 a0
1 (mm) a0

2 (mm) w0 (mm) δ

IPδ0.25 6 12 1.0 0.125 2.00 0.25
IPδ0.50 6 12 1.0 0.25 2.00 0.50
IPδ1.0 6 12 1.0 0.50 2.25 1.0
IPδ2.0 6 12 1.0 1.0 3.12 2.0
IPδ4.0 6 12 1.0 2.0 5.06 4.0
APδ-0.25 6 12 1.0 −0.125 2.00 −0.25
APδ-0.50 6 12 1.0 −0.25 2.00 −0.50
APδ-1.0 6 12 1.0 −0.50 2.25 −1.0
APδ-2.0 6 12 1.0 −1.0 3.12 −2.0
APδ-4.0 6 12 1.0 −2.0 5.06 −4.0

Table 1. The initial spectrum parameters of the two constituent modes of a dual-mode interface in numerical
simulations: n1 and n2 denote the azimuthal wavenumbers of the two constituent modes; a0

1 and a0
2 denote

the initial amplitudes of the mode n1 and mode n2, respectively; w0 denotes the initial mixed width of the
dual-mode interface; δ (= n2a0

2/n1a0
1) denotes the ratio of the amplitude-to-wavelength ratios of the two

constituent modes.

|αn|

0 0.1 0.2 0.3

τ
0.4 0.5 0.6

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Mode n1

Mode n2

Coupling n2 + n1

Harmonic 2n2

Stage IIStage I

Figure 6. Comparisons of the dimensionless amplitudes of the two constituent modes (modes n1 and n2)
and the generated harmonic 2n2 and coupling n2 + n1 obtained from the simulations in cases IPδ2.0 (square
symbols) and APδ-2.0 (circle symbols), where the single-mode RM instabilities of the two constituent modes
are shown with diamond symbols. The solid and dashed lines represent the theoretical predictions for cases
IPδ2.0 and APδ-2.0, respectively.

2n1 imposes the feedback on the mode n2. In the experiment, we only consider a specific
case where the perturbations on the two constituent modes are inphase, and the ratio
of the amplitude-to-wavelength ratios of the two constituent modes δ (= n2a0

2/n1a0
1)

equals 2.0. However, the initial perturbations on the surfaces in applications are random.
Therefore, the perturbations on the two constituent modes might be antiphase, and δ

should be various. Numerical simulations on a dual-mode air–SF6 interface having the
same gas physics parameters as the experiment, but different spectra with the experiment,
are performed to investigate the influences of relative phases and δ on the hydrodynamic
instabilities of a dual-mode interface in the cylindrical geometry. The initial spectrum
parameters in different cases are listed in table 1.
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Figure 7. Comparisons of the dimensionless amplitudes of modes, harmonics and couplings predicted by
theories in cases (a) IPδ2.0 and (b) APδ-2.0. Solid and dashed lines represent the theoretical predictions for the
RM instability and the additional RT effect, respectively.

First, the influences of the phase difference between the two constituent modes on
the hydrodynamic instabilities are explored by comparing cases IPδ2.0 and APδ-2.0,
as shown in figure 6. Compared with the amplitude growths of single-mode interfaces,
the mode-coupling slightly promotes the lower frequency mode (i.e. mode n1) but
slightly suppresses the higher frequency mode (i.e. mode n2) in the APδ-2.0 case, which
is different from the IPδ2.0 case, indicating that the phase difference influences the
mode-coupling. Moreover, it is found that the amplitude growth of the coupling n2 + n1 in
the antiphase case is larger than the inphase case. In addition, the theoretical predictions
of the two constituent modes and two generated harmonics in cases IPδ2.0 and APδ-2.0
are shown with solid and dashed lines, and which agree well with the numerical results,
further validating the nonlinear solutions.
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Hydrodynamic instabilities induced by a convergent shock

The theoretical predictions for the RM instability and the additional RT effect of all
modes, harmonics and couplings in cases IPδ2.0 and APδ-2.0 are shown in figures 7(a)
and 7(b), respectively. In stage I, the influence of the phase difference on the RM instability
is considered. It is evident that the RM unstable perturbation of the coupling n2 − n1
grows in the opposite (or same) direction to the RM unstable perturbation of the mode
n1 in the IPδ2.0 (or APδ-2.0) case. Meanwhile, the RM unstable perturbation of the
harmonic 2n1 grows in the same (or opposite) direction with the RM unstable perturbation
of the mode n2 in the IPδ2.0 (or APδ-2.0) case. Therefore, the generated coupling n2 − n1
suppresses the instability of the mode n1; whereas, the generated harmonic 2n1 promotes
the instability of the mode n2 when the two constituent modes are inphase. Oppositely, the
generated coupling n2 − n1 promotes the instability of the mode n1; whereas, the generated
harmonic 2n1 suppresses the instability of the mode n2 when the two constituent modes
are antiphase.

In stage II, the influence of the phase difference on the additional RT effect is
considered. It is evident that the RT unstable perturbation of the coupling n2 − n1 grows
in the same (or opposite) direction to the RT unstable perturbation of the mode n1 in
the IPδ2.0 (or APδ-2.0) case. Meanwhile, the RT unstable perturbation of the harmonic
2n1 grows in the same (or opposite) direction with the RT unstable perturbation of the
mode n2 in the IPδ2.0 (or APδ-2.0) case. Therefore, the generated coupling n2 − n1 and
harmonic 2n1 separately promote the instabilities of the mode n1 and mode n2 when the
two constituent modes are inphase. And the generated coupling n2 − n1 and harmonic 2n1
separately suppress the instabilities of the mode n1 and mode n2 when the two constituent
modes are antiphase. However, in the IPδ2.0 case, the RT unstable perturbation of the
coupling n2 − n1 is larger than that of the mode n1, therefore, the instabilities of the mode
n1 are promoted by the additional RT effect on comparing with the pure RM instability;
whereas, the RT unstable perturbation of the harmonic 2n1 is smaller than that of the mode
n2, therefore, the instabilities of the mode n2 are suppressed by the additional RT effect on
comparing with the pure RM instability.

Moreover, the sign of the perturbation of the coupling n2 + n1 induced by the additional
RT effect is the same as that induced by the RM instability in the IPδ2.0 case. Differently,
the sign of the perturbation of the coupling n2 + n1 induced by the additional RT effect
is opposite to that induced by the RM instability in the APδ-2.0 case. Therefore, the
amplitude growths of the coupling n2 + n1 in the antiphase case are larger than the inphase
case.

Overall, the phase difference influences the mode-coupling mechanism, resulting in
different feedbacks of the generated second-order harmonics and couplings to the initially
constituent modes, leading to different outcomes of the RM instability and additional RT
effect.

Second, the influences of δ on the instability developments of the two constituent modes
are numerically investigated. The initial amplitude of the mode n1 is fixed as 1.0 mm. The
initial amplitudes of the mode n2 vary from 0.125 mm to 2.0 mm in the five inphase cases
and −0.125 mm to −2.0 mm in the five antiphase cases. The initial interface contours
in various cases are shown in figure 8. The dual-mode interface’s crests and troughs
in inphase cases are the troughs and crests in corresponding antiphase cases. As |δ|
increases, the differences of the initial interface contours in corresponding inphase and
antiphase cases are more pronounced. The time-varying dimensionless amplitudes of the
two constituent modes in the five inphase cases and five antiphase cases are obtained from
numerical simulations, as shown in figures 9(a) and 9(b), respectively.
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Figure 8. Initial interface contours corresponding to cases (a) IPδ0.25 and APδ-0.25, (b) IPδ0.50 and
APδ-0.50, (c) IPδ1.0 and APδ-1.0, (d) IPδ2.0 and APδ-2.0 and (e) IPδ4.0 and APδ-4.0.

In the five inphase cases, as δ increases, due to the increasing negative feedback of
the coupling n2 − n1 and the increasing suppression introduced by the high-amplitude
effect, the amplitude growth of the mode n1 is more suppressed. As δ increases, due
to the decreasing positive feedback of the harmonic 2n1 and the increasing suppression
introduced by the high-amplitude effect, the amplitude growth of the mode n1 is more
suppressed.

In the five antiphase cases, as |δ| increases from 0.25 to 1.0 (or 1.0 to 4.0), the positive
feedback of the coupling n2 − n1 is larger (or less) than the suppression introduced by the
high-amplitude effect, therefore, the amplitude growth of the mode n1 is more promoted
(or suppressed). Differently, as |δ| increases from 0.25 to 1.0 (or 1.0 to 4.0), the decreasing
negative feedback of the harmonic 2n1 is more (or less) significant than the increasing
high-amplitude effect, therefore, the amplitude growth of the mode n2 is more promoted
(or suppressed).

Overall, the competition between the mode-coupling effect and the high-amplitude
effect varies as δ changes, resulting in different outcomes of the RM instability and
additional RT effect. It is also noted that the lower frequency mode is largely suppressed
when the two constituent modes are inphase and δ is large, and the higher frequency mode
is largely suppressed when the two constituent modes are antiphase and |δ| is small.
In addition, the theoretical predictions of the hydrodynamic instabilities of the mode
n1 and mode n2 are shown with solid and dashed lines with colours corresponding to
symbols, which agree well with the numerical results, further validating the generality of
the nonlinear solutions.

Last, the mixed mass and normalized mixed mass of a convergent dual-mode RM
unstable interface are calculated using numerical simulations. The actual amount of mixed
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Figure 9. Comparisons of the dimensionless amplitudes of the mode n1 (square symbols) and mode n2 (circle
symbols) obtained from numerical simulations in the (a) inphase cases and (b) antiphase cases. The solid and
dashed lines with colours corresponding to the symbols represent the theoretical predictions for the mode n1
and mode n2, respectively.

mass could be viewed as a more direct indicator of the evolution of the mixing layers.
Zhou, Cabot & Thornber (2016) studied the mixed mass of a slow/fast RM unstable
interface in the planar geometry and pointed out that an especially attractive feature of
the mixed mass is that it is a conserved quantity. To frame the characterization based on
how much the heavy fluid is mixed into the light fluid, the mixed mass M measurement
can be defined as

M =
∫

4ρY1Y2 dV, (4.15)

where Y1 and Y2 are the mass fractions of the heavy fluid and light fluid, respectively;
ρ is the mixture density; and V is the volume that encloses the mixing region. Since the
surrounding gas is air and the test gas is a mixture of air and SF6, and the mass fraction
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Figure 10. Temporal evolutions of the (a) mixed mass M (lines) and (b) normalized mixed mass Ψ obtained
from numerical simulations. The experimental results for the mixed width (symbols) in (a) are multiplied by
arbitrary constants.

of SF6 in the test gas is 91.1 % in the present study, the maximum and minimum values
of Y1 are 91.1 % and 0, respectively; and the maximum and minimum values of Y2 are
100 % and 8.9 %, respectively. Figure 10(a) shows the temporal evolution of the mixed
mass obtained from numerical simulations in various cases (solid lines). We also present
the corresponding experimental results for the mixed width (symbols) in the case IPδ2.0
multiplied by arbitrary constants. Clearly, before the negative growth of the mixed width
in stage II (approximately 110 s, dimensionless time 0.5), the mixed mass measurements
closely track the scaling of the mixed width, which is the same as the planar RT and
RM instabilities (Zhou et al. 2016) and the cylindrical RT instability (Zhao et al. 2021).
However, the amount of mixed mass of a convergent RM unstable interface shows a rapid
increase due to the flow’s increasing density as the transmitted shock converges at the
geometric centre. As a result, the mixed mass curves of the convergent RM instability
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coupled with the additional RT effect differ from the planar RT instability (Zhou et al.
2016), RM instability (Mohaghar et al. 2019; Zhou, Groom & Thornber 2020a; Bender
et al. 2021) and the cylindrical RT instability (Zhao et al. 2021). We also compare the
mixed mass of a dual-mode interface in various cases considering different initial spectra,
as shown in figure 10(a). It is found that the mixed mass of the dual-mode interface in the
inphase cases is slightly larger than the corresponding antiphase cases before the additional
RT effect causes a quicker increase of the mixed mass. After the additional RT effect and
reshock dominate the flow instability, the mixed mass shows different growth trends in
various cases, indicating that the transition mixing of a convergent dual-mode interface
depends on the initial spectrum.

The normalized mixed mass is given by

Ψ =

∫
ρY1Y2 dV∫

〈ρ〉〈Y1〉〈Y2〉 dV
, (4.16)

where 〈〉 denotes the spatial average in the x–y plane. The normalized mixed mass
expresses a ratio of subzonal mixing to larger-scale entrainment, describing the time
evolution of how effectively the mass of the materials have been mixed within the mixing
layer (Zhou et al. 2016; Bender et al. 2021). The normalized mixed mass of the convergent
RM unstable interface in various cases is shown in figure 10(b). First, after the incident
shock impacts the interface, as smaller-scale structures develop and physical and numerical
dissipation ensues, Ψ gradually rises, especially when δ is small. Then, the additional RT
effect suppresses the development of the Ψ in stage II, finally with a rapid increase of the
Ψ due to reshock in stage III. The differences of Ψ in various cases are enlarged by the
reshock. In summary, the initial spectrum of a dual-mode interface has a non-negligible
influence on the mixing evolution.

5. Conclusions

Experiments are performed for the first time on the convergent RM instability of a
dual-mode interface in a shock-tube facility, and the perturbation growth of each Fourier
mode is measured. The dual-mode air–SF6 interface is created by an extended soap-film
technique in the semiannular shock tube facility. Precise interfacial morphologies and
wave patterns are captured by high-speed schlieren photography. For the first time, the
influences of the mode-coupling on the convergent RM instability coupled with the
RT effect of all modes, harmonics and couplings from linear to nonlinear stages are
theoretically quantified with second-order nonlinear solutions. Numerical simulations
solving compressible Euler equations are also performed considering various initial
spectra. The temporal evolutions of the mixed mass and normalized mixed mass of a
shocked multimode interface are calculated for the first time to quantify the mixing of
two fluids in cylindrical geometry.

The amplitude growths of the initially constituent modes and the second-order
harmonics and their couplings are obtained by a serial Fourier analysis of the interfacial
contours extracted from the schlieren images. A noticeable difference between the
growths of the constituent modes and the corresponding single-mode RM instability is
observed, suggesting the evident mode-coupling effect on the convergent dual-mode RM
instability. A series of analytical, nonlinear solutions with second-order accuracy are
adopted by considering the geometry convergence, the mode-coupling mechanism, the
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high-amplitude effect, the high-Mach-number effect and the startup process to quantify
the RM instability and the additional RT effect on the dual-mode interface. The nonlinear
solutions well predict the amplitude growths of the first-order modes and the second-order
harmonics and couplings before the reshock in the experiment and simulations. The
mode-coupling complicates the hydrodynamic instabilities of a multimode interface, even
resulting in different outcomes of the additional RT effect on the multimode interface and
single-mode interface.

Referring to the nonlinear solutions, it is evident that when the azimuthal wavenumber
of one constituent mode is twice the azimuthal wavenumber of the other constituent
mode of a dual-mode interface, the mode-coupling has a non-negligible influence
on the hydrodynamic instabilities of the two constituent modes. Based on the
theory and simulations, it is proved that the phase difference and the ratio of the
amplitude-to-wavelength ratios of the two constituent modes δ greatly influence the
mode-coupling mechanism. For a dual-mode interface consisting of inphase (or antiphase)
modes n and 2n, the mode-coupling suppresses (or promotes) the instability of the mode
n but promotes (or suppresses) the instability of the mode 2n. Moreover, as δ varies, the
competition between the mode-coupling effect and the high-amplitude effect complicates
the hydrodynamic instabilities of the constituent modes. For a dual-mode interface, the
lower frequency mode is largely suppressed when the two constituent modes are inphase
and δ is large, and the higher frequency mode is largely suppressed when the two
constituent modes are antiphase and |δ| is small.

Last, the time-varying mixed mass and normalized mixed mass of the convergent
RM unstable interface under various initial conditions are calculated using numerical
simulations. It is found that the mixed mass shows a rapid increase due to the flow’s density
increment when the transmitted shock converges. The mixed mass curves of the convergent
RM instability coupled with the additional RT effect differ from the planar RT and RM
instabilities and the cylindrical RT instability. The additional RT effect suppresses, but
the reshock promotes the growth of the normalized mixed mass of the convergent RM
unstable interface. The initial spectrum has a non-negligible influence on the mixed mass
and normalized mixed mass variations.

Overall, the hydrodynamic instabilities of a multimode interface driven by a convergent
shock closely depend on the initial spectra from the very beginning. The mode-coupling
mechanism revealed in the convergent dual-mode RM instability and additional RT effect
would be of great use for understanding and modelling the hydrodynamic instabilities of a
multimode interface consisting of random waves. We believe it is an essential step towards
the elaborate study of the turbulence driven by a convergent shock.

In further studies, we will use a new quantitative experimental technique, e.g. planar
laser-induced fluorescence/particle image velocimetry (Mohaghar et al. 2017, 2019;
Mohaghar 2019; Noble et al. 2020; Noble 2022) and direct numerical simulations to
enhance our understanding of the physics of the flow for the convergent multimode RM
instability, and in general to enhance our understanding of the RM instability and the
additional RT effect. The unanswered question is how the convergent multimode RM and
RT instabilities can develop into turbulence with different initial conditions at later stages,
which is directly related to the ICF performance.
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