AN L^{p} SATURATION THEOREM FOR SPLINES

G. J. BUTLER AND F. B. RICHARDS

1. Let $\Delta_{n}: 0=x_{0}{ }^{(n)}<x_{1}{ }^{(n)}<\ldots<x_{n}{ }^{(n)}=1$ be a subdivision of [0, 1], and let $\mathscr{S}_{k}\left(\Delta_{n}\right)$ denote the class of functions whose restriction to each sub-interval $\left[x_{i-1}{ }^{(n)}, x_{i}{ }^{(n)}\right.$) is a polynomial of degree at most k. Gaier [1] has shown that for uniform subdivisions Δ_{n} (that is, subdivisions for which $x_{i}{ }^{(n)}=i / n$)

$$
\left\|f-\mathscr{S}_{k}\left(\Delta_{n}\right)\right\|_{p}=o\left(n^{-k-1}\right)
$$

if and only if f is a polynomial of degree at most k. Here, and subsequently, $\|\cdot\|_{p}$ denotes the usual norm in $L^{p}[0,1], 1 \leqq p \leqq \infty$, and we should emphasize that functions differing only on a set of Lebesgue measure zero are identified.

One of the authors [4] has recently characterized those functions f for which

$$
\left\|f-\mathscr{S}_{k}\left(\Delta_{n}\right)\right\|_{\infty}=O\left(n^{-k-1}\right)
$$

In this paper we solve the corresponding problem for the L^{p} norms, $1 \leqq p<\infty$. Let

$$
\operatorname{Lip}\left(1, L^{p}\right)=\left\{f:\left(\int_{0}^{1}|f(x+\delta)-f(x)|^{p} d x\right)^{1 / p}=O(\delta)\right\}
$$

(f assumed to be identically zero outside $[0,1]$) and define $\mathscr{L}_{p}{ }^{k}=\left\{f: f \in C^{k-1}[0,1], f^{(k-1)}\right.$ is absolutely continuous, $\left.f^{(k)} \in \operatorname{Lip}\left(1, L^{p}\right)\right\}$.
Our main result is the following
Theorem. Let f be a real-valued function on $[0,1]$ and let $\left\{\Delta_{n}\right\}_{n=1}^{\infty}$ be uniform subdivisions. Then

$$
\begin{equation*}
\left\|f-\mathscr{S}_{k}\left(\Delta_{n}\right)\right\|_{p}=O\left(n^{-k-1}\right) \tag{1}
\end{equation*}
$$

if and only if $f \in \mathscr{L}_{p}{ }^{k}$.
Acknowledgement. The authors wish to thank Professor Z. Ditzian for some helpful comments.
2. In this section we shall demonstrate the sufficiency part of (1) ; in fact we shall establish the following more general result, namely,

Lemma 3. Let $f \in \mathscr{L}_{p}{ }^{k}$. Then, given any sequence of arbitrary subdivisions $\left\{\Delta_{n}\right\}_{n=1}^{\infty}$, there exists a sequence of spline functions $\left\{S_{n}\right\}_{n=1}^{\infty}$ of degree k with knots at the points of Δ_{n} (i.e., $\left.S_{n} \in \mathscr{S}_{k}\left(\Delta_{n}\right) \cap C^{k-1}[0,1]\right)$ satisfying

$$
\begin{equation*}
\left\|f-S_{n}\right\|_{p}=O\left(\left\|\Delta_{n}\right\|^{k+1}\right) \tag{2}
\end{equation*}
$$

where $\left\|\Delta_{n}\right\|=\max _{1 \leqq i \leqq n}\left(x_{i}{ }^{(n)}-x_{i-1}{ }^{(n)}\right)$.
Received September 28, 1971 and in revised form, February 29, 1972.

We must first prove two other lemmas.
Lemma 1. If $f \in \operatorname{Lip}\left(1, L^{p}\right)$, then

$$
\begin{equation*}
\left\|f-\mathscr{S}_{0}\left(\Delta_{n}\right)\right\|_{p}=O\left(\left\|\Delta_{n}\right\|\right) \tag{3}
\end{equation*}
$$

Proof. We first remark that $f \in \operatorname{Lip}\left(1, L^{p}\right)$ implies via the Hölder inequality that $f \in \operatorname{Lip}\left(1, L^{1}\right)$, so that f is of bounded variation [2] and hence $f \in L^{p}[0,1]$. Let us define

$$
D_{n}=\int_{0}^{\|\left|\Delta_{n}\right| \mid} \sum_{i=0}^{n-1} \int_{0}^{x_{i+1}-x_{i}}\left|f\left(t+x_{i}\right)-f\left(x+x_{i}\right)\right|^{p} d x d t
$$

With the change of variables

$$
u=x+x_{i}, \quad v=t-x
$$

and since $f \in \operatorname{Lip}\left(1, L^{p}\right)$, we have

$$
\begin{aligned}
D_{n} & \leqq \sum_{i=0}^{n-1} \int_{-\left\|\Delta_{n}\right\|}^{\left\|\Delta_{n}\right\|} \int_{x_{i}}^{x_{i+1}}|f(u+v)-f(u)|^{p} d u d v \\
& \leqq K\left\|\Delta_{n}\right\|^{p+1}
\end{aligned}
$$

where K is independent of n. Thus there exists $\tau_{n}, 0 \leqq \tau_{n} \leqq\left\|\Delta_{n}\right\|$, such that

$$
\sum_{i=0}^{n-1} \int_{0}^{x_{i+1}-x_{i}}\left|f\left(\tau_{n}+x_{i}\right)-f\left(x+x_{i}\right)\right|^{p} d x \leqq K| | \Delta_{n} \|^{p}
$$

Choosing σ_{n} to be the step function taking the value $f\left(\tau_{n}+x_{i}\right)$ on $\left[x_{i}, x_{i+1}\right)$, it follows that

$$
\left\|f-\sigma_{n}\right\|_{p}=O\left(\left\|\Delta_{n}\right\|\right)
$$

Lemma 2. Let $f \in L^{p}[0,1]$ and ν be a natural number. If $s_{n} \in \mathscr{S}_{\nu-1}\left(\Delta_{n}\right) \cap C^{\nu-2}$, $n=1,2, \ldots$, and ϕ is a positive function on the natural numbers such that

$$
\begin{equation*}
\left\|f-s_{n}\right\|_{p}=O(\phi(n)) \tag{4}
\end{equation*}
$$

then there exists a sequence $\left\{S_{n}\right\}_{n=1}^{\infty}, S_{n} \in \mathscr{S}_{\nu}\left(\Delta_{n}\right) \cap C^{\nu-1}$, satisfying

$$
\begin{equation*}
\left\|F-S_{n}\right\|_{p}=O\left(\left\|\Delta_{n}\right\| \phi(n)\right) \tag{5}
\end{equation*}
$$

where

$$
F(x)=\int_{0}^{x} f(t) d t
$$

(C^{-1} is interpreted to be the space of all real-valued functions.)
Proof. Consider the B-spline $M_{i}(x)$ of degree $\nu-1$ for the subdivision $\Delta_{n}, i=0,1, \ldots, n-\nu$, defined in [6]. It is known [6] that $M_{i}(x)$ is a nonnegative function having support in $\left[x_{i}, x_{i+\nu}\right], M_{i} \in \mathscr{S}_{\nu-1} \cap C^{\nu-2}$ and

$$
\begin{equation*}
\int_{0}^{1} M_{i}(x) d x=1 \tag{6}
\end{equation*}
$$

Following [3], define

$$
\begin{array}{ll}
A_{i}=\int_{x_{i}}^{x_{i+1}}\left(f(t)-s_{n}(t)\right) d t, & i=0,1, \ldots, n-1, \\
\widetilde{A}_{i}=\int_{x_{i}}^{x_{i+1}}\left|f(t)-s_{n}(t)\right| d t, \quad i=0,1, \ldots, n-1,
\end{array}
$$

and

$$
S_{n}(x)=\int_{0}^{x} s_{n}(t) d t+\sum_{i=0}^{n-\nu} A_{i} \int_{0}^{x} M_{i}(t) d t
$$

Suppose that $x_{i} \leqq x \leqq x_{i+1}$. Then

$$
\begin{aligned}
F(x)-S_{n}(x) & =\int_{0}^{x}\left(f(t)-s_{n}(t)\right) d t-\sum_{j=0}^{n-\nu} A_{j} \int_{0}^{x} M_{j}(t) d t \\
& =\int_{x_{i}}^{x}\left(f(t)-s_{n}(t)\right) d t+\sum_{j=0}^{i-1} A_{j}-\sum_{j=0}^{n-\nu} A_{j} \int_{0}^{x} M_{j}(t) d t .
\end{aligned}
$$

By (6),

$$
\int_{0}^{x} M_{j}(t) d t=1 \text { for } j \leqq i-\nu \text { and } \int_{0}^{x} M_{j}(t) d t=0 \text { for } j \geqq i+1
$$

Thus

$$
\begin{aligned}
\left|F(x)-S_{n}(x)\right| \leqq\left|\int_{x_{i}}^{x}\left(f(t)-s_{n}(t)\right) d t\right|+\mid \sum_{j=i=v+1}^{i-1} A_{j}(1- & \left.\int_{0}^{x} M_{j}(t) d t\right) \mid \\
& +\left|A_{i} \int_{0}^{x} M_{i}(t) d t\right| \\
& \leqq \widetilde{A}_{i}+\sum_{j=i=v+1}^{i}\left|A_{j}\right| \leqq K\left[\sum_{j=i=v+1}^{i} \widetilde{A}_{j}^{p}\right]^{1 / p}
\end{aligned}
$$

for some constant $K=K(\nu)$. Hence

$$
\begin{equation*}
\int_{x_{i}}^{x_{i+1}}\left|F(x)-S_{n}(x)\right|^{p} d x \leqq K^{p} \sum_{j=i-\nu+1}^{i} \widetilde{A}_{j}^{p}\left(x_{i+1}-x_{i}\right) \tag{7}
\end{equation*}
$$

But by Hölder's inequality,

$$
\begin{aligned}
\widetilde{A}_{j}^{p} & \leqq\left(x_{j+1}-x_{j}\right)^{p-1} \int_{x_{j}}^{x_{j+1}}\left|f(t)-s_{n}(t)\right|^{p} d t \\
& \leqq\left\|\Delta_{n}\right\|^{p-1} \int_{x_{j}}^{x_{j+1}}\left|f(t)-s_{n}(t)\right|^{p} d t
\end{aligned}
$$

thus

$$
\begin{aligned}
& \int_{0}^{1}\left|F(x)-S_{n}(x)\right|^{p} d x \\
& \leqq K^{p}| | \Delta_{n}| |^{p-1} \sum_{i=0}^{n-1} \sum_{j=i-\nu+1}^{i}\left(x_{i+1}-x_{i}\right) \int_{x_{j}}^{x_{j+1}}\left|f(t)-s_{n}(t)\right|^{p} d t
\end{aligned}
$$

and by reversing the order of summation, we obtain

$$
\text { (8) } \begin{aligned}
\int_{0}^{1}\left|F(x)-S_{n}(x)\right|^{p} d x & \leqq\left. K^{p}| | \Delta_{n}\right|^{p-1} \sum_{j=0}^{n-1}\left(x_{j+\nu}-x_{j}\right) \int_{x_{j}}^{x_{j+1}}\left|f(t)-s_{n}(t)\right|^{p} d t \\
& \leqq\left. K_{1}^{p}| | \Delta_{n}\right|^{p} \int_{0}^{1}\left|f(t)-s_{n}(t)\right|^{p} d t
\end{aligned}
$$

for some constant $K_{1}=K_{1}(\nu)$. The lemma follows on applying (4) in (8).
Lemma 3 is an easy consequence of Lemmas 1 and 2.
3. We now seek to establish the necessity part of (1). In this section, all subdivisions Δ_{n} are assumed to be uniform.

It will be convenient to state at this point the L^{p} version of Markoff's inequality and of two inequalities due to Gaier.

Lemma 4 (Markoff [1]). Let P be a polynomial of degree k on $[a, b]$ and $0 \leqq j \leqq k$. Then there exists a constant $K=K(p, k, j)$ such that

$$
\begin{equation*}
\left[\int_{a}^{b}\left|P^{(j)}(x)\right|^{p} d x\right]^{1 / p} \leqq K(b-a)^{-j}\left[\int_{a}^{b}|P(x)|^{p} d x\right]^{1 / p} \tag{9}
\end{equation*}
$$

Lemma 5 (Gaier [1]). Suppose P is a function on $[-a, b]$ which reduces to a polynomial of degree k on each of $[-a, 0]$ and $(0, b]$, and define $h=P(0+)-P(0-)$. Then there exists a constant $K=K(p, k)$ such that

$$
\begin{equation*}
|h| \leqq K(\min (a, b))^{-1 / p}\left[\int_{-a}^{b}|P(x)|^{p} d x\right]^{1 / p} . \tag{10}
\end{equation*}
$$

Lemma 6 (Gaier [1]). Let $T_{j} \in \mathscr{S}_{k}\left(\Delta_{j}\right), j=n, n+1$, and let $h_{i}{ }^{(\nu)}$ denote the jumps of $T_{n}{ }^{(\nu)}$ at $x_{i}=i / n, i=1, \ldots, n-1$, i.e., $h_{i}{ }^{(\nu)}=T_{n}{ }^{(\nu)}\left(x_{i}+\right)-T_{n}{ }^{(\nu)}\left(x_{i}-\right)$. Let $0<\epsilon<1 / 2$. Then there exists a constant $C=C(\epsilon)$ such that

$$
\begin{equation*}
\left|h_{i}^{(\nu)}\right| \leqq C n^{\nu+1 / p}\left[\int_{i /(n+1)}^{(i+1) /(n+1)}\left|T_{n+1}-T_{n}\right|^{p} d x\right]^{1 / p} \tag{11}
\end{equation*}
$$

if $\epsilon \leqq i / n \leqq(1-\epsilon)$.
Next we prove
Lemma 7. Let

$$
\begin{equation*}
\left\|f-S_{n}\right\|_{p}=O\left(n^{-k-1}\right) \tag{12}
\end{equation*}
$$

for some sequence $S_{n} \in \mathscr{S}_{k}\left(\Delta_{n}\right), n=1,2, \ldots$
Then

$$
\begin{equation*}
f \in C^{k-1}[0,1], f^{(k-1)} \text { is absolutely continuous } \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f^{(k)}-S_{2 n}^{(k)}\right\|_{p}=O\left(2^{-n}\right) \tag{14}
\end{equation*}
$$

Proof. Since $S_{2^{n}}-S_{2^{n+1}} \in \mathscr{S}_{k}\left(\Delta_{2^{n+1}}\right)$, we may apply (9) to obtain

$$
\begin{align*}
\left\|S_{2^{n}}^{(\nu)}-S_{2^{n+1}}^{(\nu)}\right\|_{p} & \leqq K\left(2^{n+1}\right)^{\nu}\left\|S_{2^{n}}-S_{2^{n+1}}\right\|_{p} \tag{15}\\
& \leqq K_{1} 2^{-n(k+1-\nu)}, \quad \nu=1,2, \ldots, k
\end{align*}
$$

where $K=K(p, k, \nu), K_{1}=K_{1}(p, k, \nu)$ are constants.
Hence there are functions $f_{\nu} \in L^{p}[0,1]$ satisfying

$$
\begin{equation*}
\left\|S_{2^{n}}^{(\nu)}-f_{\nu}\right\|_{p} \leqq K_{2} 2^{-n(k+1-\nu)} \tag{16}
\end{equation*}
$$

for some constant $K_{2}=K_{2}(p, k, \nu)$.
Therefore $S_{2 n}{ }^{(\nu)} \rightarrow f_{\nu}$ a.e. on $[0,1]$ and so for almost all ϵ in $[0,1]$, we have

$$
\begin{equation*}
S_{2^{n}}^{(\nu-1)}(\epsilon) \rightarrow f_{\nu-1}(\epsilon) . \tag{17}
\end{equation*}
$$

Let $h_{i}{ }^{(\nu)}$ denote the jump of $S_{2^{n}}{ }^{(\nu)}$ at $x_{i}=i 2^{-n}$, and let

$$
x_{+}{ }^{0}=\left\{\begin{array}{l}
1, x \geqq 0 \\
0, x<0
\end{array}\right.
$$

For $x \in[\epsilon, 1-\epsilon]$, we define

$$
\begin{align*}
P_{2^{n}}(x) & =\int_{\epsilon}^{x} S_{2^{n}}^{(\nu)}(t) d t \tag{18}\\
& =S_{2^{n}}^{(\nu-1)}(x)-S_{2^{n}}^{(\nu-1)}(\epsilon)-\sum_{i}^{\prime} h_{i}^{(\nu-1)}\left[x-i / 2^{n}\right]_{+}^{0}
\end{align*}
$$

where $\sum_{i}{ }^{\prime}$ means that we sum over those i for which $\epsilon \leqq i 2^{-n} \leqq 1-\epsilon$.
By (11),

$$
\begin{align*}
{\left[\sum_{i}^{\prime}\left|h_{i}^{(\nu-1)}\right|^{p}\right]^{1 / p} } & \leqq C(\epsilon) 2^{n(\nu-1+1 / p)}\left\|S_{2^{n}}-S_{2^{n+1}}\right\|_{p} \tag{19}\\
& \leqq C_{1}(\epsilon) 2^{-n(k+2-\nu-1 / p)}
\end{align*}
$$

Let
(20)

$$
\bar{f}(x)=\int_{\epsilon}^{x} f_{\nu}(t) d t+f_{\nu-1}(\epsilon) .
$$

Then,

$$
\begin{align*}
& {\left[\int_{\epsilon}^{1-\epsilon}\left|f_{\nu-1}(x)-\bar{f}(x)\right|^{p} d x\right]^{1 / p}} \tag{21}\\
& \leqq\left\|f_{\nu-1}-S_{2^{n}}^{(\nu-1)}\right\|_{p}+\left[\int_{\epsilon}^{1-\epsilon}\left|S_{2^{n}}^{(\nu-1)}(x)-P_{2^{n}}(x)-f_{\nu-1}(\epsilon)\right|^{p} d x\right]^{1 / p} \\
& +\left[\int_{0}^{1}\left|P_{2^{n}}(x)+f_{\nu-1}(\epsilon)-\bar{f}(x)\right|^{p} d x\right]^{1 / p} \\
& =\alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n} \text {, say. }
\end{align*}
$$

From (17)-(19),

$$
\begin{align*}
\alpha_{2}^{n} \leqq\left[\int_{\epsilon}^{1-\epsilon}\left|S_{2 n}^{(\nu-1)}(\epsilon)-f_{\nu-1}(\epsilon)\right|^{p} d x\right]^{1 / p} & \tag{22}\\
& +\left[\sum_{i}^{\prime}\left|h_{i}^{(\nu-1)}\right|^{p}\right]^{1 / p} \rightarrow 0 \text { as } n \rightarrow \infty
\end{align*}
$$

Using (16), (18) and (20), we have

$$
\begin{align*}
\alpha_{3}^{n} & \leqq\left[\int_{0}^{1} \int_{\epsilon}^{x}\left|S_{2^{n}}^{(\nu)}(t)-f_{\nu}(t)\right|^{p} d t d x\right]^{1 / p} \tag{23}\\
& \leqq\left\|S_{2^{n}}^{(\nu)}-f_{\nu}\right\|_{p} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{align*}
$$

Hence, letting $n \rightarrow \infty$ in (21) and using (16), (22) and (23), we obtain

$$
f_{\nu-1}(x)=\bar{f}(x)=\int_{\epsilon}^{x} f_{\nu}(t) d t+f_{\nu-1}(\epsilon)
$$

a.e. on $[\epsilon, 1-\epsilon], \nu=1,2, \ldots, k$, for almost all ϵ in $[0,1]$. Since $f_{0}=\int$, it follows that $f_{\nu}(x)=f^{(\nu)}(x)$ a.e. on $[0,1]$, and this together with (16) establishes (14). If $k=0$, (13) is redundant. If $k=1$, we have

$$
f(x)=\int_{\epsilon}^{x} f_{1}(t) d t+f(\epsilon) \text { a.e. on }[\epsilon, 1-\epsilon]
$$

for almost all ϵ in $\left[0, \frac{1}{2}\right]$, and from (16), $f_{1} \in L^{p}[0,1]$, and hence $f_{1} \in L^{1}[0,1]$.
Thus we may find $x_{0} \in(0,1)$ and a sequence $\epsilon_{1}>\epsilon_{2}>\ldots \rightarrow 0$ such that

$$
\left(x_{0}\right)=\int_{\epsilon_{i}}^{x_{0}} f_{1}(t) d t+f\left(\epsilon_{i}\right) .
$$

It follows that $f\left(\epsilon_{i}\right) \rightarrow \phi_{0}$, say, as $i \rightarrow \infty$ and defining

$$
\phi(x)=\int_{0}^{x} f_{1}(t) d t+\phi_{0}
$$

we have $f(x)=\phi(x)$ a.e. on $[0,1]$, and so f is equivalent to an absolutely continuous function on $[0,1]$, which is (13).

Essentially similar arguments enable us to establish (13) for general values of k. This completes the proof of the lemma.

Lemma 8. Let $\xi_{i}, i=1,2, \ldots, m$, be rational numbers with a common denominator q such that $\min \left(\xi_{i}, 1-\xi_{i}\right) \leqq 1 / 4, i=1,2, \ldots, m$. Let $h_{i}, i=1,2, \ldots, m$, be real numbers such that

$$
\begin{equation*}
\sum_{i=1}^{m}\left|h_{i}\right|^{p} q^{p-1} \geqq N>0, \tag{24}
\end{equation*}
$$

and let n be any integral multiple of q. Then there exists an integer l with $n+1 \leqq l \leqq 2 n$, such that

$$
\begin{equation*}
\sum_{i=1}^{m}\left|h_{i}\right|^{p}\left[\rho\left(\xi_{i}, \Delta_{l}\right)\right]^{k p+1} \geqq c N l^{-p(k+1)} \tag{25}
\end{equation*}
$$

for some absolute constant c, where $\rho\left(\xi_{i}, \Delta_{l}\right)=\inf _{0 \leqq j \leqq l}\left|\xi_{i}-j / l\right|$.
Proof. Assume first that $1 / 4 \geqq \xi_{1}>\xi_{2}>\ldots>\xi_{m} \geqq 1 / q$. Define t_{i} to be $n \xi_{i}, i=1,2, \ldots, m$. Then t_{i} is a natural number no greater than $n / 4$. Fix i and let r be a natural number with $1 \leqq r \leqq n$. Then either we have (i) $h / \xi_{i} \leqq r<$ $\left(h+\frac{1}{2}\right) / \xi_{i}$ for some natural number h, or we have (ii) $\left(h-\frac{1}{2}\right) / \xi_{i} \leqq r<h / \xi_{i}$ for some natural number h.

If case (i) applies, then, since $\xi_{i}=t_{i} / n$, we have $h n / t_{i} \leqq r<\left(h+\frac{1}{2}\right) n / t_{i}$, and so

$$
0 \leqq \frac{t_{i}}{n}-\frac{t_{i}+h}{n+r}=\frac{t_{i} r-h n}{n(n+r)} \leqq \frac{1}{2(n+r)} .
$$

Thus
(26) $\rho\left(\xi_{i}, \Delta_{n+r}\right)=\left(t_{i} r-h n\right) /(n(n+r))=\xi_{i} s /(n+r)$, where $s=r-h n / t_{i}$ If case (ii) applies, we have

$$
\begin{gathered}
\left(h-\frac{1}{2}\right) \frac{n}{t_{i}} \leqq r<\frac{h n}{t_{i}}, \text { and so } \\
0<\frac{t_{i}+h}{n+r}-\frac{t_{i}}{n}=\frac{h n-t_{i} r}{n(n+r)} \leqq \frac{1}{2(n+r)} .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\rho\left(\xi_{i}, \Delta_{n+r}\right)=\frac{h n-t_{i} r}{n(n+r)}=\frac{\xi_{i} s}{n+r}, \tag{27}
\end{equation*}
$$

where $s=h n / t_{i}-r$. Therefore we have

$$
\begin{aligned}
\sum_{r=n+1}^{2 n}\left[\rho\left(\xi_{i}, \Delta_{\tau}\right)\right]^{k p+1} & =\sum_{r=1}^{n}\left[\rho\left(\xi_{i}, \Delta_{n+r}\right)\right]^{k p+1} \\
= & \sum_{h=0}^{t_{i}-1} \sum_{n n / t i \leq r<\left(h+\frac{1}{2}\right) n / t i}\left[\rho\left(\xi_{i}, \Delta_{n+r}\right)\right]^{k p+1} \\
& +\sum_{n=1}^{t_{i}} \sum_{\left(h-\frac{1}{2}\right) n / t i \leqq r<n n / t_{i}}\left[\rho\left(\xi_{i}, \Delta_{n+r}\right)\right]^{k p+1} \\
& \geqq 2 \sum_{h=0}^{t i-1} \sum_{s=1}^{\left[\frac{1}{2} n / t_{i}\right]}\left(\frac{\xi_{i} s}{2 n}\right)^{k p+1}
\end{aligned}
$$

where we have used (26) and (27) to estimate the sums over r.
Using the integral test to estimate the inner sum above, we obtain

$$
\sum_{r=1}^{n}\left[\rho\left(\xi_{i}, \Delta_{n+r}\right)\right]^{k p+1} \geqq \frac{2 t_{i}}{k p+2}\left(\frac{\xi_{i}}{2 n}\right)^{k p+1}\left(\frac{n}{2 t_{i}}-1\right)^{k p+2}
$$

Since $n / 2 t_{i}=1 / 2 \xi_{i} \geqq 2$, we have $n / 2 t_{i}-1 \geqq n / 4 t_{i}$. Hence

$$
\begin{align*}
\sum_{r=1}^{n}\left[\rho\left(\xi_{i}, \Delta_{n+r}\right)\right]^{k p+1} & \geqq(k p+2)^{-1} 2^{-3 k p-4} t_{i}\left(\frac{\xi_{i}}{n}\right)^{k p+1}\left(\frac{n}{t_{i}}\right)^{k p+2} \tag{28}\\
& =C_{1} n^{-k p} .
\end{align*}
$$

Thus from (24) and (28),

$$
\begin{aligned}
\sum_{r=n+1}^{2 n} \sum_{i=1}^{m}\left|h_{i}\right|^{p}\left[\rho\left(\xi_{i}, \Delta_{r}\right)\right]^{k p+1} & =\sum_{i=1}^{m} \sum_{\tau=n+1}^{2 n}\left|h_{i}\right|^{p}\left[\rho\left(\xi_{i}, \Delta_{r}\right)\right]^{k p+1} \\
& \geqq C_{1} N n^{-k p} q^{1-p} .
\end{aligned}
$$

Hence there exists l with $n+1 \leqq l \leqq 2 n$ such that

$$
\begin{aligned}
\sum_{i=1}^{m}\left|h_{i}\right|^{p}\left[\rho\left(\xi_{i}, \Delta_{l}\right)\right]^{k p+1} & \geqq c_{1} N n^{-1-k p} q^{1-p} \\
& \geqq c N l^{-p(k+1)}
\end{aligned}
$$

for some constant c, since $q<l \leqq 2 n$. It is obvious that the proof may easily be modified for the slightly more general statement of the lemma.

Lemma 9. Suppose

$$
\begin{equation*}
\left[\int_{0}^{1}\left|f-S_{n}(t)\right|^{p} d t\right]^{1 / p} \leqq K n^{-k-1} \tag{29}
\end{equation*}
$$

for some sequence $S_{n} \in \mathscr{S}_{k}\left(\Delta_{n}\right), n=1,2, \ldots$. Then there is a constant C such that for $n=1,2, \ldots$,

$$
\sum_{i=1}^{n}\left|h_{i}^{(k)}\right|^{p} n^{p-1} \leqq C
$$

where $h_{i}{ }^{(k)}, i=1,2, \ldots, n$ are the jumps of $S_{n}{ }^{(k)}$.
Proof. Applying Lemma 6 with $T_{j}=S_{j}, j=n, n+1$, and with $\nu=k, \epsilon=1 / 4$, we deduce that

$$
\sum_{i}^{\prime}\left|h_{i}^{(k)}\right|^{p} n^{-1-p k} \leqq K \int_{0}^{1}\left|S_{n+1}-S_{n}\right|^{p} \leqq K_{1} n^{-p(k+1)}
$$

for some constants K, K_{1}. If Lemma 9 is to be false, we may suppose, without loss of generality, that given $N>0$, there exists a natural number q such that

$$
\sum_{i=1}^{m}\left|h_{i}^{(k)}\right| q^{p-1} \geqq N
$$

where $1 / 4 \geqq \xi_{m}>\xi_{m-1}>\ldots>\xi_{1}=1 / q$ are the points of $[0,1 / 4] \cap \Delta_{q}$ and $h_{i}{ }^{(k)}, i=1,2, \ldots, m$, are the corresponding jumps of $S_{q}{ }^{(k)}$. By Lemma 8 therefore, we can find l with $2 q+1 \leqq l \leqq 4 q$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{m}\left|h_{i}^{(k)}\right|^{p}\left[\rho\left(\xi_{i}, \Delta_{l}\right)\right]^{k p+1} \geqq c N l^{-p(k+1)} \tag{30}
\end{equation*}
$$

Let $\xi_{i} \in\left[r_{i} / l,\left(r_{i}+1\right) / l\right]=I_{r i}$, where r_{i} is an integer. Applying Lemmas 4 and 5 to the function $S_{q}(x)-S_{l}(x)$ on $I_{r i}$, we have

$$
\begin{aligned}
\left|h_{i}^{(k)}\right| & \leqq K_{2}\left[\rho\left(\xi_{i}, \Delta_{l}\right)\right]^{-1 / p}\left[\int_{I r_{i}}\left|S_{q}^{(k)}-S_{l}^{(k)}\right|^{p} d t\right]^{1 / p} \\
& \leqq K_{3}\left[\rho\left(\xi_{i}, \Delta_{l}\right)\right]^{-k-1 / p}\left[\int_{I r_{i}}\left|S_{q}-S_{l}\right|^{p} d t\right]^{1 / p}
\end{aligned}
$$

so that, since the intervals $I_{r_{i}}$ are pairwise disjoint,

$$
\begin{aligned}
\int_{0}^{1}\left|S_{q}-S_{l}\right|^{p} d t & \geqq K_{4} \sum_{i=1}^{m}\left|h_{i}^{(k)}\right|^{p}\left[\rho\left(\xi_{i}, \Delta_{l}\right)\right]^{k p+1} \\
& \geqq K_{5} N l^{-p(k+1)}
\end{aligned}
$$

by (30). Thus

$$
\begin{aligned}
\left\|f-S_{l}\right\|_{p} & \geqq\left\|S_{q}-S_{l}\right\|_{p}-\left\|f-S_{q}\right\|_{p} \\
& \geqq K_{5}^{5} N l^{-k-1}-K q^{-k-1} \\
& \geqq\left(K_{5} N-4^{k+1} K\right) l^{-k-1}
\end{aligned}
$$

which contradicts (29) if N is sufficiently large. This proves the lemma.
We are now in a position to prove the necessity part of the theorem which we state as

Lemma 10. If $\left\|f-\mathscr{S}_{k}\right\|_{p}=O\left(n^{-k-1}\right)$, then $f \in \mathscr{L}_{k}{ }^{p}$.
Proof. Suppose $K>0$ and $S_{n} \in \mathscr{S}_{k}\left(\Delta_{n}\right)$ satisfy

$$
\begin{equation*}
\left[\int_{0}^{1}\left|f-S_{n}\right|^{p} d t\right]^{1 / p} \leqq K n^{-k-1}, \quad n=1,2, \ldots \tag{31}
\end{equation*}
$$

By Lemma $7, f \in C^{k-1}[0,1], f^{(k-1)}$ is absolutely continuous on $[0,1]$, and

$$
\begin{equation*}
\left[\int_{0}^{1}\left|f^{(k)}-\sigma_{2 n}\right|^{p} d t\right]^{1 / p} \leqq K^{\prime} 2^{-n}, \quad n=1,2, \ldots \tag{32}
\end{equation*}
$$

where $\sigma_{n}=S_{n}{ }^{(k)}$. Let $0<\delta<1$ and choose n such that $2^{-n-1} \leqq \delta<2^{-n}$. Let $h_{i}{ }^{(\nu)}, i=1,2, \ldots, 2^{n}-1$ be the jumps of $S_{2^{n}}{ }^{(\nu)}, \nu=0,1, \ldots, k$. If $0 \leqq i \leqq 2^{n}-2$, we have

$$
\begin{equation*}
\int_{i 2^{-n}}^{(i+1) 2^{-n}}\left|\sigma_{2^{n}}(t+\delta)-\sigma_{2^{n}}(t)\right|^{p} d t \leqq 2^{-n}\left|h_{i+1}^{(k)}\right|^{p} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1-2-n}^{1-\delta}\left|\sigma_{2^{n}}(t+\delta)-\sigma_{2^{n}}(t)\right|^{p} d t=0 \tag{34}
\end{equation*}
$$

Hence

$$
\begin{align*}
& {\left[\int_{0}^{1-\delta}\left|f^{(k)}(t+\delta)-f^{(k)}(t)\right|^{p} d t\right]^{1 / p} \leqq 2\left\|f^{(k)}(t)-\sigma_{2^{n}}(t)\right\|_{p}} \tag{35}\\
& \quad+\left[\int_{0}^{1-\delta}\left|\sigma_{2^{n}}(t+\delta)-\sigma_{2^{n}}(t)\right|^{p} d t\right]^{1 / p} \leqq K^{\prime} 2^{1-n}+2^{-n / p}\left[\sum_{i=1}^{2 n-1}\left|h_{i}^{(k)}\right|^{p}\right]^{1 / p}
\end{align*}
$$

by (32)-(34). We now apply lemma 9 to (35) and find a constant C such that

$$
\begin{aligned}
{\left[\int_{0}^{1-\delta}\left|f^{(k)}(t+\delta)-f^{(k)}(t)\right|^{p} d t\right]^{1 / p} } & \leqq\left(2 K^{\prime}+C^{1 / p}\right) 2^{-n} \\
& \leqq\left(4 K^{\prime}+2 C^{1 / p}\right) \delta
\end{aligned}
$$

Hence

$$
\left[\int_{0}^{1}\left|f^{(k)}(t+\delta)-f^{(k)}(t)\right| d t\right]^{1 / p}=O(\delta)
$$

and so $f^{(k)} \in \mathscr{L}_{k}{ }^{p}$. This completes the proof of the theorem.
Remark. Other characterizations are possible, using the result [2] that $f \in \mathscr{L}_{p}{ }^{k}$ if and only if $f^{(k)}$ is of p-bounded variation on [0, 1], i.e., the supremum over all subdivisions $\delta_{n}: 0=x_{0}<x_{1}<\ldots<x_{n}=1$ of the sum

$$
\left[\sum_{i=0}^{n-1}\left|f^{(k)}\left(x_{i+1}\right)-f^{(k)}\left(x_{i}\right)\right|^{p}\left(x_{i+1}-x_{i}\right)^{1-p}\right]^{1 / p}
$$

if finite, and, for $p>1$, the result [5] that f is of p-bounded variation on $[0,1]$ if and only if f is absolutely continuous and $f^{\prime} \in L^{p}[0,1]$.

References

1. D. Gaier, Saturation bei Spline-Approximation und Quadratur, Numer. Math. 16 (1970), 129-140.
2. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Math. Z. 27 (1928), 565-606.
3. V. Popov and Bl. Sendov, Classes characterized by best possible approximations by spline functions, Math. Notes No. 2, 18 (1970), 550-557.
4. F. Richards, On the saturation class for spline functions (to appear in Proc. Amer. Math. Soc., May 1972).
5. F. Riesz, Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449-497.
6. I. J. Schoenberg, On interpolation by spline functions and its minimal properties, On Approximation Theory (Intern. Ser. Numerical Math. (ISNM) 5 (1964), 109-129, Birkhauser, Basel/Stuttgart).

University of Alberta, Edmonton, Alberta

