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Buoyancy-driven bubbly flows: role of meso-scale
structures on the relative motion between phases
in bubble columns operated in the heterogeneous
regime

Y. Mezui1, M. Obligado1 and A. Cartellier1,†
1Université Grenoble Alpes, CNRS, Grenoble-INP, LEGI, F-38000 Grenoble, France

(Received 5 October 2022; revised 11 February 2023; accepted 13 March 2023)

The hydrodynamics of bubble columns in the heterogeneous regime is investigated from
experiments with bubbles at large particle Reynolds numbers and without coalescence.
The void fraction field ε at small scales, analysed with Voronoï tessellations, corresponds
to a random Poisson process (RPP) in homogeneous conditions but it significantly
differs from an RPP in the heterogeneous regime. The distance to an RPP allows
identifying meso-scale structures, namely clusters, void regions and intermediate regions.
A series of arguments demonstrate that the bubble motion is driven by the dynamics of
these structures. Notably, bubbles in clusters (respectively in intermediate regions) are
moving up faster, up to 3.5 (respectively 2) times the terminal velocity, than bubbles
in void regions whose absolute velocity equals the mean liquid velocity. In addition,
the mean unconditional relative velocity of bubbles is recovered from mean relative
velocities conditional to meso-scale structures, weighted by the proportion of bubbles
in each structure. Assuming buoyancy–inertia equilibrium for each structure, the relative
velocity is related to the characteristic size and concentration of meso-scale structures. By
considering the latter quantity’s values at large gas superficial velocities, a cartoon of the
internal flow structure is proposed. Arguments are proposed to help understanding why
the relative velocity scales as (gDε)1/2 (with D the column’s diameter and g gravity’s
acceleration). The proposed cartoon seems consistent with a fast-track mechanism that,
for the moderate Rouse numbers studied, leads to liquid velocity fluctuations proportional
to the relative velocity. The potential impact of coalescence on the above analysis is also
commented.
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1. Introduction

In bubble columns, gas is injected at the bottom of a vertical cylinder filled with
liquid. Such systems are commonly employed as reactors (for chemical or biochemical
transformations), mixers (metallurgy) and separators (flotation), among several other
applications. For a low enough gas flow rate, bubbles are uniformly distributed over
the column cross-section and gently rise up to the free surface. A characteristic of this
so-called homogeneous regime is the linear increase of the void fraction ε with the
gas superficial velocity Vsg (the latter is defined as the injected gas flow rate divided
by the column cross-section). The apparent rise velocity, evaluated as Vsg/ε, is nearly
constant in this regime, and its magnitude is of the order of the bubbles’ terminal velocity
UT . When increasing the inlet gas flow rate above some threshold, the flow becomes
non-uniform, and a mean recirculation settles at the reactor scale. Furthermore, unsteady
flow structures appear everywhere in the column, as noted by Noël de Nevers in 1968 (De
Nevers 1968). In this so-called heterogeneous regime, the increase of the void fraction with
Vsg is significantly slowed down while the apparent rise velocity Vsg/ε steadily increases
with Vsg and becomes much larger than UT (Krishna, Wilkinson & Van Dierendonck
1991; Ruzicka 2013). This heterogeneous regime is exploited in many applications, but
its hydrodynamics remains poorly understood. In particular, it is of practical importance
to know how to scale-up bubble columns from laboratory prototypes to actual industrial
plants. However, and as shown by the successive reviews, notably from Joshi et al. (1998),
Kantarci, Borak & Ulgen (2005), Rollbusch et al. (2015), Kikukawa (2017) and Besagni,
Inzoli & Ziegenhein (2018), there is still no consensus on appropriate scaling rules.

Recently, we have shown that, in the heterogeneous regime, buoyancy equilibrates
inertia (Mezui, Obligado & Cartellier 2022) and that feature leads to velocities scaling
as (gDε)1/2, where D is the bubble column diameter, ε the void fraction and g the
gravitational acceleration. This scaling was shown to hold for mean velocities and for
standard deviations. In addition, it applies to the liquid phase as well as to the gas phase.
This result was found valid over a wide range of flow conditions (namely 0.1 m ≤ D ≤
3 m and 4–5 cm s−1 ≤ Vsg ≤ 60 cm s−1) when considering air–water systems involving
bubbles with an equivalent diameter between approximately 3 and 10 mm (Mezui et al.
2022). To complement that proposal, and inspired by a Zuber & Findlay approach (Zuber
& Findlay 1965), the void fraction on the column axis εaxis was correlated with the Froude
number (defined as Fr = Vsg/(gD)1/2). A direct consequence of these findings is that the
relative velocity UR, defined as the difference between the mean gas and the mean liquid
vertical velocities, is also evolving as (gDε)1/2: the relative velocity is thus expected to
increase both with the bubble column diameter and with the void fraction.

The change of the relative velocity with the void fraction is in qualitative agreement
with experimentally observed trends since the apparent relative velocity either estimated
as Vsg/ε (Krishna et al. 1991; Ruzicka 2013) or derived from a one-dimensional
(1-D) kinematic approach (Raimundo et al. 2019) monotonously increases with the gas
superficial velocity and, hence, with the void fraction. Furthermore, in Euler–Euler
numerical simulations, the enhanced relative motion at large gas content is commonly
enforced by introducing an ad hoc swarm coefficient (e.g. McClure et al. 2017; Gemello
et al. 2018) that quantifies the decrease of the drag force acting on a bubble with the local
void fraction (Ishii & Zuber 1979; Simonnet et al. 2007).

Concerning the impact of the bubble column diameter, there is no indisputable
experimental evidence of the dependency of UR on D. Moreover, to the best of our
knowledge, the swarm coefficients introduced in simulations never depend on D. Overall,
it is not physically clear why UR should increase with the column diameter.
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Buoyancy-driven bubbly flows: role of meso-scale structures

Hereafter, we investigate the origin of the relative velocity in the heterogeneous regime.
Some preliminary results presented by Raimundo et al. (2019) indicate that concentration
gradients should play a role in the flow dynamics. In particular, and as in turbulent
convection, strong velocity differences were anticipated between zones in the flow with
high void fraction and regions with low void fraction. To pursue the analysis, we need to
get access to refined variables such as local concentration statistics and also to statistics
on bubble velocity conditioned by the local concentration. To this end, we took the benefit
of the newly developed Doppler optical probe (a technology patented by the A2 Photonic
Sensors company) that simultaneously provides the gas phase indicator function and the
translation velocity of bubbles (Lefebvre et al. 2022).

This manuscript is structured as follows. In § 2, the experimental conditions are
presented and key variables such as void fraction and mean velocities characterising
the bubble column behaviour are provided. In § 3, local void fraction measurements are
introduced that pave the way to gather statistics on gas velocity measurements conditioned
by the local gas concentration. Meso-scale structures are also presented together with
their main characteristics. The term meso-scale alludes to important scales present in
the flow that are between the bubble size (or the Kolmogorov scale) and the outer
dimensions of the system. As it will be better detailed below, in the present work, they
refer to clusters, voids and their corresponding intermediate regions. Section 4 provides
conditional bubble velocity measurements for clusters, intermediate regions and void
regions and the contributions of these meso-scale structures to the absolute bubble velocity
and to the relative bubble velocity are discussed. In § 5, a model relating bubble conditional
velocities to the size and the concentration of the corresponding meso-scale structures is
proposed and successfully tested. The relevance of a (gDε)1/2 scaling for the relative
velocity is also debated. Finally, in § 6, we show that, according to the internal flow
topology, a fast-track mechanism is potentially at play that would explain why velocity
fluctuations also scale as (gDε)1/2 in heterogeneous bubble columns.

2. Experimental conditions and unconditional velocity measurements

The experiment is the one exploited by Mezui et al. (2022). It consists in a 3 m high and
D = 0.4 m internal diameter air–water bubble column. The water quality was such that
coalescence was absent or at least very weak. The injector is a 10 mm thick Plexiglass plate
perforated by 352 orifices (with 1 mm internal diameter) uniformly distributed over the
cross-section. The static liquid height H0 was set to 2.02 m, a value large enough to avoid
any sensitivity of measurements to H0. Experiments were performed for Vsg ranging from
0.6 cm s−1 to 26 cm s−1. Information relative to bubbles were acquired with a Doppler
probe (Lefebvre et al. 2022). Such a probe ensures the detection of phases with a high
resolution (its latency length is ≈6 μm) and it provides the velocity of bubbles. Liquid
phase statistics were obtained from a Pavlov tube (see Mezui et al. 2022; Mezui, Cartellier
& Obligado 2023 for additional details). Over the range of flow conditions considered,
the mean equivalent bubble diameter remained within the interval [6.62 mm; 7.35 mm],
so that the particle Reynolds number evolved in the range 1450–1550. Measurements were
achieved in the quasi fully developed region at H/D = 3.625, where transverse profiles of
velocity and void fraction are self-similar when normalised by the relevant value taken on
the column axis.

To qualify the bubble column behaviour, we report in figure 1 the void fraction,
and the mean bubble and liquid vertical velocities on the axis of the column versus
the superficial gas velocity vsg. The mean velocities correspond to statistics combining
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1.2

VG (m s–1) mean bubble velocity

VR (m s–1) relative velocity from interpolations

VR (m s–1) relative velocity from direct measurements

VL (m s–1) mean liquid velocity
VG fit at low Vsg 

Vsg = 5 cm s–1

VL fit at low Vsg 
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Figure 1. Evolution of the void fraction, and of mean vertical velocities of bubbles VG and of the liquid VL
with the gas superficial velocity Vsg. The relative velocity has been derived from raw measurements performed
at the same Vsg (pink dots), and from interpolations of phasic velocities versus Vsg (black squares). The straight
lines in the homogeneous regime are linear fits of the data. Measurements performed in a D = 0.4 m column,
at H/D = 3.625 and on the column axis. The vertical black dashed line indicates the transition from the
homogeneous to the heterogeneous regime at vsg ∼ 5 cm s−1.

upward and downward motions (see the discussion in Mezui et al. 2022). The
homogeneous–heterogeneous transition is indicated by the vertical dash line at Vsg =
5 cm s−1. Direct relative velocity measurements gathered whenever VG and VL data were
available for the same gas superficial velocity are also plotted in figure 1 (see pink dots).
We also use interpolations of UG and VL to estimate the relative velocity for others
Vsg values. In particular, the linear fits of the mean bubble and liquid velocities in the
homogeneous regime are parallel indicating that the relative velocity is constant in that
regime. The latter amounts to ≈27 cm s−1, which is close to the terminal velocity UT .
From the transition, the relative velocity clearly increases with Vsg, up to Vsg ≈ 13 cm s−1.
At larger Vsg, that is, deeper in the heterogeneous regime, the relative velocity happens
to nearly stabilise at approximately 2.3–2.5UT . Note, however, that in that range, and
according to the few available data, the relative velocity is still smoothly increasing
with Vsg.

Overall, figure 1 indisputably demonstrates that the relative velocity increases well
beyond UT in a bubble column operated in the heterogeneous regime. In that regime,
and in terms of the scaling rule proposed by Mezui et al. (2022), the data gathered in the
D = 0.4 m column correspond to VG ≈ 1.09(gDε)1/2 and VL ≈ 0.67(gDε)1/2, where ε is
the local void fraction on the column axis at H/D = 3.625. The prefactors given here are
derived from the data collected for vsg ≥ 13 cm s−1, but, as shown in Mezui et al. (2022),
they hold over a significant range of column diameters and of flow conditions. Hence,
the relative velocity in the heterogeneous regime and far enough from the transition is
expected to behave as

UR ≈ 0.41(gDε)1/2. (2.1)

Equation (2.1) predicts that the relative velocity depends on the column diameter, a feature
that is not trivial. To understand the origin of the relative velocity in these buoyancy-driven
bubbly flows, we focus our analysis on the connection between local concentration and
bubble velocity. In the next section, a local void fraction is defined and related statistics
are discussed.
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XG(t)

Bubble k–2 Bubble k–1 Bubble k+1 Bubble k+2Bubble k

Time

tg k–1 tg k+1
tg k+2

Tk+2
Tk+1

tg k–2 tg k

Tk–2 Tk–1

�Tk–1
�Tk +1

�Tk

Tk

Figure 2. Construction of a 1-D Voronoï tessellation from the gas phase indicator function.

3. Local void fraction and meso-scale structures

3.1. Local void fraction and identification of meso-scale structures
Paralleling what we did for turbulent particle-laden flows (Monchaux, Bourgoin &
Cartellier 2010; Sumbekova et al. 2017; Mora et al. 2018), we exploit 1-D Voronoï
tessellations built from the gas phase indicator function XG(t) (Raimundo 2015; Mezui,
Cartellier & Obligado 2018; Raimundo et al. 2019). Here, XG(t) is deduced from the signal
delivered by an optical probe. For the gas phase indicator function measurements presented
here, the probe orientation was held fixed (the probe was directed downwards). As shown
in figure 2, Voronoï cells are then built as successive time intervals, each containing a
single bubble. For that, the centres Tk of successive gas residence times tgk are identified.
The mid-distance between successive centres Tk and Tk+1 defines a Voronoï cell boundary.
This process is repeated for all detected bubbles, and the width of the kth Voronoï cell that
contains the kth bubble is given by �Tk = (Tk+1 − Tk−1)/2.

Probability density functions (p.d.f.s) of the Voronoï cell width �Tk normalised by the
average 〈�Tk〉 are presented in figure 3(a) for various gas superficial velocities: all these
data have been collected on the bubble column axis at H/D = 3.625. Care was taken to
ensure a correct convergence of these distributions. The latter comprises between 8000
and 13 000 bubbles: these samples correspond to measuring durations from 95 to 950 s
depending on flow conditions.

Qualitatively, the width �Tk of the time interval containing the kth bubble is an
indication of the local concentration. A short duration �Tk means the presence of a
close-by bubble while a large duration indicates that the kth bubble is somewhat isolated.
We will come back later to the connection between normalised cell durations �Tk/〈�Tk〉
and concentration. For the time being, let us focus on the allure of these p.d.f.s. The
dash line in figure 3(a) represents the p.d.f. of normalised cell durations �Tk/〈�Tk〉 for a
random Poisson process – RPP in short (Ferenc & Néda 2007) – that has no correlation
at any scale. Clearly, and as noted by Raimundo et al. (2019), measured distributions at
large enough Vsg differ from the RPP case. In particular, both very large cell durations
(corresponding to dilute conditions) and very small cell durations (corresponding to
dense conditions) are more probable than for an RPP. Figure 3(c,d) show the p.d.f. with
non-normalised cell durations (�Tk) and with the alternative normalisation �Tk/(D/Vsg),
respectively. The latter represents a large-scale time scale for the gas phase, and gives
similar results in the heterogeneous regime than the normalisation �Tk/〈�Tk〉.

Following Monchaux et al. (2010), the distance to an RPP is commonly appreciated by
examining the standard deviation σvoronoi of the p.d.f. of Voronoï cells widths. As shown
in figure 3(b), such standard deviation drastically increases from a low value, comparable
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Figure 3. (a) Centred p.d.f.s of 1-D Voronoï cells width �Tk/〈�Tk〉 built from Doppler probe signals at
various gas superficial velocities. The dash line represents the 1-D Voronoï distribution for an RPP, i.e. a
random Poisson process. The vertical dashed lines indicate the thresholds for the definitions of clusters and
voids (as defined by Monchaux et al. 2010). (b) Evolution of the standard deviation of 1-D Voronoï distributions
with the gas superficial velocity. The horizontal dash line indicates the standard deviation for an RPP while
the vertical dashed line delineate the homogeneous–heterogeneous transition. Measurements performed in a
D = 0.4 m column, on the column axis at H/D = 3.625. P.d.f.s of 1-D Voronoï cells width (c) �Tk and
(d) �Tk/(D/Vsg) . We remark that in the last two panels the binning used to compute the p.d.f.s calculation is
different from panel (a).

to that of an RPP, to a much higher value (close to unity) when the system shifts from
the homogeneous to the heterogeneous regime. In the homogeneous regime, the measured
standard deviation of Voronoï cells p.d.f.s evolves between 0.8 and 0.85. This is slightly
larger than the 0.71 limit for an RPP of point particles as determined by Ferenc & Néda
(2007) (according to Uhlmann (2020), the standard deviation for an RPP with finite-size
particles is even lower). The origin of that small difference is unclear. This could be the
mark of an inhomogeneous spatial repartition of bubbles in the homogeneous regime
because of some gas maldistribution at injection (Nedeltchev 2020): such a scenario is

962 A40-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

25
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.259


Buoyancy-driven bubbly flows: role of meso-scale structures

supported by the analysis of liquid velocity profiles (Lefebvre et al. 2022). Alternately, that
small difference could be due to the measuring method itself because the optical probe
allows detecting the centres of gas chords and not the centres of bubbles, and because
most bubbles are not spherical. Hence, the value of the standard deviation measured in
the homogeneous regime could be interpreted at the reference RPP level as detected with
the probe technique. The key points in figure 3(b) are the very sharp increase in σvoronoi
observed at the homogeneous–heterogeneous transition, and the large value, well above
that of an RPP, that σvoronoi reaches at high Vsg. The shortcomings of 1-D Voronoï analysis
in complex flows have been discussed elsewhere (Mora et al. 2018, 2019): one key result
is that the clear difference observed with the standard deviation of an RPP unambiguously
demonstrates that clustering does occur in the present flow conditions. Furthermore, for
all heterogeneous conditions investigated (that is, for Vsg up to 24 cm s−1), the standard
deviation σvoronoi remains nearly the same: that feature also indicates that clustering is
a central characteristic of the heterogeneous regime. Finally, let us underline that, as for
turbulent flows laden with inert particles (Sumbekova et al. 2017), the main contribution
to the standard deviation comes from cells at large �Tk/〈�Tk〉 corresponding to low void
fractions, compared with the contribution from cells with intermediate �Tk/〈�Tk〉 (void
fractions close to the mean value) or with low �Tk/〈�Tk〉 (high void fractions).

To quantify the connection between cell width �Tk/〈�Tk〉 and concentration, we
consider two approaches. First, we follow what we did for a turbulent flow laden with
droplets (Sumbekova et al. 2017; Mora et al. 2018), by connecting the ratio �Tk/〈�Tk〉 to
linear number densities, i.e. with the number of inclusions detected per unit length. The
length corresponds to the measuring duration multiplied by the axial velocity Vaxial of
inclusions. The local number density γk (number of inclusions per meter) in the kth cell
equals 1/[�TkVaxial], while 1/[〈�Tk〉Vaxial] is the mean number density γ . Therefore, the
normalised cell width �Tk/〈�Tk〉 = γ /γk represents the inverse of the instantaneous (i.e.
at the scale of the Voronoï cell) number density divided by the mean number density. When
applied to bubble columns (Raimundo 2015; Mezui et al. 2018; Raimundo et al. 2019), we
considered Vaxial as the mean bubble velocity, and γ was assumed to be proportional to the
mean dispersed phase concentration. Under these assumptions, the inverse of �Tk/〈�Tk〉,
i.e. γk/γ , provides the magnitude of the local gas concentration (local at the scale of the
Voronoï cell) with respect to the mean gas fraction at the measuring location. In figure 3(a),
the abscissa �Tk/〈�Tk〉 varies from 0.07 to 10 so that γk/γ covers more than two decades
as it evolves between 0.1 and approximately 14.

However, a second approach is required because, for the heterogeneous conditions
considered here, γk/γ does not coincide with the ratio εk/ε of the void fraction εk relative
to the kth cell to the mean gas hold-up ε at the measuring location. Indeed, in the turbulent
particle-laden flows we have previously analysed, all inclusions travelled with almost the
same axial velocity. This is no longer the case for bubbles in the heterogeneous regime as
their velocities experience strong variations (see figure 2 in Mezui et al. 2022), leading to
a standard deviation as large as 60 % of the mean. Hence, the selection of a mean bubble
velocity to transform time into space induces very large distortions on the concentration
estimate by way of γk. To correct for these distortions and to evaluate reliable local void
fractions, it is appropriate to rely on gas residence times as the latter naturally account
for the actual velocity of each bubble. The void fraction relative to the kth Voronoï cell
equals the sum of gas residence times included in that cell divided by the cell duration
�Tk. As shown in Appendix A, the ratio �Tk/〈�Tk〉 is indeed related to ε/εk, but it does
not coincide with ε/εk as the prefactor between these two quantities varies with the gas
residence time (see (A1) in Appendix A). In consequence, in the following, we will use
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Dense regions Intermediate regions Empty regions

Repartition of bubbles in number in
measured p.d.f.s in the heterogeneous
regime (average values for
Vsg ≥ 9 cm s−1)

38 % 57 % 5 %

Repartition of the actual void fraction
εk/ε in the heterogeneous regime
(average for Vsg ≥ 9 cm s−1)

17 % 73 % 10 %

Repartition of bubbles in number in RPP 30 % 68 % 2 %
Repartition of the actual void fraction

εk/ε in the homogeneous regime
(average values for Vsg ≤ 3 cm s−1)

29 % 67 % 4 %

Repartition of bubbles in number in
measured p.d.f.s in the homogeneous
regime (values for Vsg = 1.3 cm s−1)

33.60 % 63.20 % 3.20 %

Table 1. Typical distributions of the dispersed phase between void regions, intermediate regions and dense
regions in the heterogeneous and homogeneous regimes and comparison with an RPP. From measurements on
the axis of a D = 0.4 m bubble column at H/D = 3.625.

the ratio γk/γ as a crude, qualitative characterisation of meso-scale structures in terms of
concentration, while exact measurements of the gas fraction εk/ε will be considered in § 5
for discussing modelling issues.

Going back to figure 3(a), and whatever the flow conditions, the measured p.d.f.s of
Voronoï cells cross the RPP at two fixed abscissa represented by vertical dashed lines.
A third intersection sometimes occurs in the very dense limit (at �Tk/〈�Tk〉
approximately 0.1, that is, for γk/γ approximately 10), but it will not be considered here
because its occurrence is far too sensitive to the sample size. As for turbulent particle-laden
flows (Monchaux et al. 2010), we define three populations out of the two stable thresholds.
A Voronoï cell (and the bubble it contains) belongs to a ‘dense’ region when �Tk/〈�Tk〉
is below 0.51, or equivalently when γk/γ is higher than 1.96. A Voronoï cell (and the
bubble it contains) belongs to an ‘empty’ or ‘void’ region when �Tk/〈�Tk〉 is above
2.89, or equivalently when γk/γ is lower than 0.34. In between, the cell (and its bubble)
pertains to an ‘intermediate’ region. Let us underline that these thresholds are stable with
respect to Vsg (see figure 3a). They seem also independent of the column diameter as the
same thresholds were observed for a D = 1 m column at Vsg = 0.25 m s−1 (see figure 11
in Raimundo et al. 2019).

Owing to figure 3(a), the probability for bubbles to belong to ‘empty’ or to ‘dense’
regions is larger than in RPP. This is confirmed by the data presented in table 1. On average,
38 % of the bubbles belong to dense regions, while 5 % are within empty regions and 57 %
are in intermediate regions: these figures remain stable within approximately 5 % over the
whole heterogeneous regime, that is, for Vsg from 6 cm s−1 to 25 cm s−1. As expected, the
figures relative to dense and to empty regions are significantly larger than those for an
RPP. Table 1 also confirms that, in the homogeneous regime, the repartition of bubbles in
number between dense, empty and intermediate regions is very close to the repartition in
number for an RPP.

The difference between homogeneous and heterogeneous conditions is also manifest
in terms of void fractions. In the heterogeneous regime, the contributions to the local
void fraction are typically 17 % for the dense regions, 10 % for the empty regions and
70 % for intermediate regions (table 1). These values correspond to average values for
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Figure 4. P.d.f.s of void fraction (in absolute value) (a) in clusters and (b) in void regions for different
superficial velocities. For these statistics, we considered clusters comprising at least two bubbles.
Measurements performed in a D = 0.4 m column, on the column axis at H/D = 3.625.

Vsg ≥ 9 cm s−1: they change by less than 1 % when considering data over the interval
Vsg ≥ 6 cm s−1. Note that there is a slight decrease of the contribution of dense regions to
the local void fraction as Vsg increases, which is compensated by a slight increase with Vsg
of the contributions of empty and intermediate regions.

3.2. Characterisation of meso-scale structures
Once all bubbles have been distributed within the three populations, meso-scale structures
are then formed using the following procedure. Bubbles belonging to a ‘dense’ region
and successive in time are assembled to form a ‘cluster’. Similarly, successive bubbles
belonging to an ‘empty’ region are assembled to form a ‘void’. The same process was
used for intermediate regions. The characteristics of the resulting meso-scale structures in
terms of size and concentration are then extracted.

(i) The void fraction (in absolute value) in a given meso-scale structure is evaluated as
the sum of gas residence times for all bubbles pertaining to that structure divided
by the duration of that structure, the later being the sum of all involved �Tk. The
distributions of void fraction in clusters and in voids are exemplified in figure 4 for
various Vsg.

(ii) The size of a given meso-scale structure is estimated as the duration of the structure
multiplied by the average bubble velocity, the latter being evaluated for the bubbles
belonging to the structure considered: these conditional velocities are analysed in the
next section. Length distributions for clusters and for voids are provided in figure 5
for various Vsg.

We considered two options for clusters: either the minimum number of bubbles in a
cluster is set to one so that all Voronoï cells with a �Tk/〈�Tk〉 below the threshold are
considered as clusters, or the minimum number of bubbles is set to two so that clusters
involving a single bubble are excluded. The second option has been suggested to help
distinguishing between ‘coherent’ and ‘random’ clusters in turbulent particle-laden flows
(Mora et al. 2019). Here, and for all the flow conditions pertaining to the heterogeneous
regime, it happens that 37 % to 40 % of clusters involve a single inclusion.
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Figure 5. P.d.f.s of lengths (a) of clusters and (b) of void regions for different superficial velocities. For these
statistics, we considered clusters that comprise at least two bubbles. Measurements performed in a D = 0.4 m
column, on the column axis at H/D = 3.625.

It should also be underlined that zones below or beyond the above-defined thresholds
also exist for an RPP. Hence, one can still identify and statistically characterise ‘dilute’
and ‘dense’ regions in homogeneous conditions even though the corresponding Voronoï
distributions are very close to and/or almost collapse with an RPP. Using the same
data processing routine to analyse homogeneous and heterogeneous conditions, the
characteristics of clusters and of empty regions are presented over the whole range of
Vsg from homogeneous to heterogeneous regimes, bearing in mind that different physical
origins are associated with meso-scale structures for these two regimes. In particular, the
data in the homogeneous regime are not expected to bear any particular significance as
they could be of random origin, or they could be related to some correlation induced by
‘defects’ in the system (due for example to gas injection, see Lefebvre et al. 2022).

Figures 4 and 5 clearly demonstrate that, for void regions as well as for clusters, the
distributions in the heterogeneous regime markedly differ from the distributions observed
in the homogeneous regime. Moreover, in the heterogeneous regime, the distributions tend
to collapse indicating that clusters and void regions reach an asymptotic state when the
gas superficial velocity becomes large enough. As shown in figure 6, that limiting state
is almost the same when considering clusters with a minimum of one bubble or with a
minimum of two bubbles.

The average characteristics of clusters and of void and intermediate regions are given in
figure 7 as a function of the gas superficial velocity.

(i) The average number of bubbles is approximately 1.8 in void regions and
approximately 4 in intermediate regions. In clusters, it is approximately 4.5 when
n ≥ 2, and it drops to 3.2 when accounting for clusters consisting of a single bubble.
The decrease from 4.5 to 3.2 is consistent with the fact that, as seen above, 2/3 of
the clusters comprise more than one bubble. These average numbers of bubbles are
quite low: they indicate that the clusters are not organised as compact assemblies of
bubbles, but are more like thin sheets. The fact that the probability to find a cluster
comprising N bubbles decays like N−1.17, i.e. that it strongly drops with N, also
supports the proposed picture. In particular, 1-D clusters comprising more than ten
bubbles are very rare: they represent only 3.7 % of the clusters (with n ≥ 1) present
in the heterogeneous regime.
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Figure 6. Comparisons of the p.d.f.s (a) of void fraction in clusters and (b) of cluster lengths when the
minimum number of bubbles is set to one or to two. Measurements performed in a D = 0.4 m column, on
the column axis at H/D = 3.625 and Vsg = 24.7 cm s−1.

(ii) The size of void regions and of intermediate regions varies from 6–7 cm to 20 cm
while the size of clusters ranges from a few millimetres up to 6–7 cm. In the
heterogeneous regime, the mean size of clusters 〈Lcluster〉, that of void regions
〈Lvoid〉 and that of intermediate regions 〈Lint〉 all remain fairly stable. The mean
cluster length asymptotes at 21 ± 3 mm: it is marginally affected if one considers a
minimum of one bubble instead of two to form clusters. The asymptotic mean length
of void regions is significantly larger as 〈Lvoid〉〉 ∼ 74 mm ± 10 mm, and similarly,
for intermediate regions, 〈Lint〉 is approximately 62 mm ± 4 mm.

(iii) The average concentration (in absolute value) in voids steadily increases with the gas
superficial velocity. A similar behaviour holds for intermediate regions. In clusters,
the average concentration sharply increases at the homogeneous–heterogeneous
transition, and for Vsg above ∼ 0.15 m s−1, it tends to stabilise at a large void
fraction, say approximately 50 %. Interestingly, when scaled by the local void
fraction ε (here ε equals the void fraction on the axis εaxis), the mean concentrations
in voids and in intermediate regions increase with the mean gas hold-up, while the
concentration in clusters slightly decreases: additional data are needed to confirm if
the asymptotic trend corresponds to a decrease or to a plateau. The same question
holds concerning the asymptotic behaviour of the difference in concentration
between dense and dilute regions.

4. Absolute and relative bubble velocities conditioned by the local concentration

Paralleling what we did for turbulent particle-laden flows (Sumbekova et al. 2016),
bubbles are classified into three populations namely clusters, void regions and intermediate
regions. Bubble velocity p.d.f.s are built for each of these populations using direct velocity
measurements (no interpolation) performed with a downward oriented Doppler probe
(Lefebvre et al. 2022). Examples of such conditional p.d.f.s are provided figure 8. For both
regimes, the minimum velocities are approximately the same for the three populations,
while the most probable velocity as well as the maximum velocity drift to larger values
when successively considering void regions, intermediate regions and clusters. This drift
is weak in the homogeneous regime: the velocity at the peak increases from approximately
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Figure 7. Mean characteristics of clusters, of void regions and of intermediate regions versus the gas
superficial velocity: (a) average number of bubbles in meso-scale structures; (b) average size; (c) average
absolute gas concentration in meso-scale structures; (d) average concentration scaled by the void fraction on the
column axis. Measurements performed in a D = 0.4 m column, on the column axis, at H/D = 3.625. Vertical
dashed lines delineate the homogeneous to heterogeneous transition.

0.4 m s−1 in void regions to 0.7 m s−1 in clusters, so that the difference is of the order of
the bubble terminal velocity. The drift is significantly larger in the heterogeneous regime
as the most probable velocity goes from ∼0.5 m s−1 in void regions up to 1.3 m s−1 in
clusters: in that case, the difference amounts to 3.5 times the bubble terminal velocity.
Hence, the conditional bubble velocities gathered with the Doppler optical probe confirm
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Figure 8. Bubble velocity p.d.f.s conditioned by the meso-scale structure they belong to, i.e. clusters,
intermediate regions or void regions (a) for Vsg = 3 cm s−1 and (b) for Vsg = 24.7 cm s−1. Measurements
performed in a D = 0.4 m column, on the column axis at H/D = 3.625 with a downward directed Doppler
probe.

our physical expectation that, on average, high void fraction regions are moving up much
faster than low void fraction regions.

To quantify this effect, and for each meso-scale structure, we evaluated the mean
bubble velocity Vb|s for bubbles pertaining to the selected meso-scale structure. These
velocities, which represent absolute velocities in the laboratory frame, are shown in
figure 9 as a function of the gas superficial velocity. It could be observed that the average
conditional velocities relative to void regions Vb|voids, to intermediate regions Vb|int and to
clusters Vb|cluster, all monotonously increase with Vsg. In addition, the velocity differences
between any two out of these three populations remain limited, of the order of UT , in the
homogeneous regime. Beyond the homogeneous–heterogeneous transition, the velocity
differences clearly increase with Vsg: bubbles embedded in dense regions are moving up
faster than bubbles in intermediate regions, which are themselves moving up faster than
bubbles in dilute regions. This observation provides indisputable evidence of the central
role of meso-scale structures on the actual dynamics of bubbles in the heterogeneous
regime.

In figure 9, we have reported the unconditional mean vertical bubble velocity VG shown
in figure 1 (green dots). In the heterogeneous regime, VG happens to be comprised between
Vb|int and Vb|cluster. It is tempting to try to recover the unconditional bubble velocity VG
from conditional measurements. Considering that a fraction Ncluster of bubbles pertains to
clusters, that a fraction Nint belongs to intermediate regions and a fraction Nvoid to void
regions (with Ncluster + Nint + Nvoid = 1), one expects that

VG = NclusterVb|cluster + NintVb|int + NvoidVb|void. (4.1)

For the heterogeneous regime, the conditional mean bubble velocities Vb|cluster, Vb|int
and Vb|void are provided in table 2 for all the gas superficial velocities considered in
the experiments. As the repartition of bubbles between the three populations is already
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Figure 9. Average absolute bubble velocity for bubbles pertaining to clusters Vb|clusters, to intermediate regions
Vb|int and to void regions Vb|voids versus the gas superficial velocity. Measurements performed in a D = 0.4 m
column on the column axis at H/D = 3.625 with a downward directed Doppler probe. The unconditional mean
liquid VL and gas VG velocities from figure 1 are also shown for sake of comparison.

known (see table 1), the mean bubble velocity deduced from (4.1) can be evaluated. As
shown in table 2, there is an excellent agreement between the bubble velocity predicted
using (4.1) and direct, unconditional measurements of the bubble velocity. Moreover,
the contribution of bubbles inside clusters to their vertical transport velocity amounts to
46 %, the contribution of intermediate regions is 51 % and the remaining 3 % arise from
void regions. These figures remain the same within ±0.5% for all Vsg considered in the
heterogeneous regime.

These results provide more evidence that meso-scale structures have a key role in the
dynamics of bubbles and notably on their absolute velocity in the heterogeneous regime.
In some way, they confirm the intuition of Noel De Nevers concerning the role of internal
structures, as this author argued in 1968: ‘In unbaffled systems these (bubble driven)
circulations are unstable and chaotically change in size, shape, and orientation. These
chaotic circulations provide the principal mode of vertical bubble transport in bubble
columns over a wide range of operating conditions’ (De Nevers 1968).

The same analysis was also done for the homogeneous regime. For each of the four
gas superficial velocities Vsg considered in that regime, table 3 provides the conditional
bubble velocities, the resulting unconditional bubble velocity predicted using (4.1) and the
unconditional bubble velocity that was directly measured. The agreement is very good,
except for a 15 % difference for one condition. Note that very similar figures would be
obtained if one considers the repartition for an RPP instead of the repartition of bubbles
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Figure 10. Mean relative velocity between bubbles pertaining to a meso-scale structure, namely clusters,
intermediate regions and void regions, and the liquid phase: evolution with Vsg. The unconditional relative
velocity UR is also shown for comparison (red dots correspond to direct measurements while the dash line
corresponds to interpolated data shown in figure 1). Measurements performed in a D = 0.4 m column, on the
column axis at H/D = 3.625.

that was measured in the homogeneous regime (table 1). Therefore, (4.1) allows to recover
the unconditional bubble velocity from conditional data in the homogeneous regime.
However, the contributions of each population to the vertical transport velocity of bubbles
are different from those found in the heterogeneous regime: they amount to approximately
39 % for clusters, 59 % for intermediate regions and 2 % for void regions.

To appreciate the role of meso-scale structures on the relative motion, we plot in
figure 10 the mean bubble relative velocities with respect to the liquid phase for each
meso-scale structure. As shown in figures 9 and 10 , the mean, unconditional liquid
velocity is very close to the mean bubble velocity on void regions so that Vb|void − VL
remains close to zero in the heterogeneous regime. This is not too surprising because void
regions contain fewer bubbles, and also because of the bubble response time compared
with its transit time through the column (see the discussion in § 6). The two velocity
differences Vb|clusters − VL and Vb|int − VL increase with Vsg in a way similar to the
unconditional relative velocity UR = VG − VL. In particular, the differences in velocities
remain moderate in the homogeneous regime, and they steeply increase at the transition.
Both differences Vb|clusters − VL and Vb|int − VL tend to become more or less constant at
large Vsg (roughly above Vsg ≈ 13–15 cm s−1). In intermediate regions, the average bubble
velocity exceeds that of the liquid by 0.3–0.4 m s−1. In clusters, the difference reaches
approximately 0.7–0.8 m s−1, that is, 3 to 3.5 times the bubble terminal velocity.

A decomposition similar to (4.1) can be applied to the mean bubble relative velocity,
namely:

UR = VG − VL = Nclusters(Vb|clusters − VL) + Nint(Vb|int − VL)

+ Nvoids(Vb|voids − VL). (4.2)
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Even though (4.2) can be directly deduced from (4.1), it is important to analyse the
contributions of the three populations to the mean relative velocity. First, and as expected,
the agreement between the measured unconditional mean bubble relative velocity as
evaluated from (4.2) and as directly measured happens to be as good as that on VG. In the
homogeneous regime, the respective contributions of the three populations to the mean
relative velocity remain the same as for the mean bubble velocity. In the heterogeneous
regime, these proportions are changed with 57 % coming from clusters, 42 % arising from
intermediate regions and less than 1 % for voids. The contribution of clusters to the relative
velocity is thus significantly enhanced (with an increase by more than 10 %) compared
with their contribution to the mean bubble velocity.

The fact that, for both regimes, the unconditional bubble velocity is well recovered
from bubble velocities conditioned by the three meso-scale structures that were identified
indicates that the data processing is reliable and robust. The important point for the
dynamics lies in the respective contributions of the three populations. Let us first underline
that the results presented above are provided for clusters containing at least one bubble. For
both regimes, the figures remain very close when considering a minimum of two bubbles
in clusters, so that our analysis is not sensitive to the precise cluster definition. Also, and
as already said, the decomposition into meso-scale structures in the homogeneous regime
may appear as somewhat artificial, but, owing to their definition, such structures can indeed
be identified from an RPP even though their probability of occurrence is low. We also recall
that the definition of frontiers between populations derives from the specific shape of the
Voronoï cell p.d.f. in the heterogeneous regime. These beginnings being established, the
key point here is that the velocities conditioned by structures happen to be quite different
in the two regimes. In particular, the contribution of clusters to both absolute velocities
and relative velocities of bubbles is significantly larger in the heterogeneous regime than
in the homogeneous regime. These features are clear indications that the physics at play are
different, with collective effects present in the heterogeneous regime while the repartition
of bubbles and their dynamics remain quasi uniform in the homogeneous regime.

The role of meso-scale structures on the bubble motion being clarified, it would
be worthwhile to develop a prediction of the velocity of bubbles pertaining to each
population. This is the objective of the next section.

5. Scaling of conditional relative velocities and meso-scale structure dynamics

In Mezui et al. (2022), we considered an inertia-buoyancy equilibrium at the scale of the
bubble column from which we derived the scaling of transport velocities for liquid and
gas phases. An equilibrium involving inertia and buoyancy is now assumed at the scale
of each meso-scale structure immersed in the two-phase mixture to evaluate the velocity
of that meso-scale structure Us relative to the mean flow of the mixture Um. We borrow
here an argument developed by Cholemari & Arakeri (2009) for turbulent flows driven
by buoyancy: these authors argue that the velocity (gLδρ/ρ)1/2 corresponds to the ‘free
fall’ velocity that a coherent region of density ρ + δρ sinking (or creaming) in a medium
of density ρ reaches after a distance L, and L is such that the flow becomes uncorrelated
at distances of order L. That ‘fall velocity’ corresponds to Us − Um. For a meso-scale
structure, δρ is the difference in density between the structure and its surroundings.

In bubble columns, the density of meso-scale structures is (1 − εstructure)ρL,
where εstructure denotes the void fraction averaged at the scale of the meso-scale
structure. Meanwhile, the mean density of the two-phase mixture is (1 − ε)ρL.
Hence, δρ/ρL = (ε − εstructure), meaning that the difference in density is proportional
to the excess or to the deficit of void fraction in the structure compared with the mean
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void fraction ε in the surrounding medium. Typically, clusters – that are gas dominated
regions – would have an upward directed (i.e. positive) relative velocity with respect to the
mean flow of the gas–liquid mixture of the order of

UR cluster-mixture = Ucluster − Um = Ccluster(gLcluster[εcluster − ε])1/2, (5.1)

where the prefactor Ccluster is (a priori) of order one, while voids, that are liquid dominated
regions, would have a downward directed (i.e. negative) relative velocity with respect to
the mean flow of the gas–liquid mixture:

UR void-mixture = Uvoid − Um = −Cvoid(gLvoid[ε − εvoid])1/2, (5.2)

where Cvoid is a prefactor of order unity. The same reasoning can be applied to
intermediate regions, so that the magnitude of the velocity between intermediate regions
and the mixture obeys

UR int-mixture = Uint − Um = Cint(gLint[εint − ε])1/2, (5.3)

again with a prefactor Cint of order unity. A positive sign has been retained for (5.3)
because, according to figure 7, the mean void fraction in intermediate regions εint is
slightly larger than the local void fraction ε when in the heterogeneous regime (the
opposite holds in the homogeneous regime).

Equations (5.1)–(5.3) connect the relative velocity between a meso-scale structure
and the mixture with the meso-scale structure characteristics in terms of size and
concentration. The relevance of the propositions (5.1)–(5.3) is tested in the next section.
For that, all the necessary information for evaluating the quantities Ls[εs − ε] is available
from experiments (see § 3). We also need to connect the relative velocity Us − Um between
a meso-scale structure and the mixture with the conditional relative bubble velocity
Vb|s − VL which is a quantity directly accessible to measurements.

5.1. Test of the relevance of the scaling proposed for the meso-scale structure relative
velocity

Concerning the quantities Ls[ε − ε], and as all the data exploited here have been collected
on the column axis, the local void fraction ε for the mixture is equal to εaxis. The mean
values 〈Lvoid[εvoid − ε]〉, 〈Lcluster[εcluster − ε]〉 and 〈Lint[εint − ε]〉 are shown versus Vsg in
figure 11. All these quantities happen to remain fairly stable at large Vsg, say for Vsg above
≈10–15 cm s−1. Note also that setting the minimum number of bubbles in clusters to one
or to two does not induce any significant difference on 〈Lcluster[εcluster − ε]〉.

The last ingredient needed to test (5.1)–(5.3) is a connection between the mixture
velocity Um and the mean liquid velocity VL. By definition, Um is the mixture volumetric
flux, that is, the velocity of the centre of volume of both phases (Ishii 1975). Therefore,
Um is related to unconditional phasic velocities by Um = (1 − ε)UL + εVG, and Um − VL
writes

Um − VL = ε(VG − VL) = εUR. (5.4)

The prefactors Cstructure in (5.1)–(5.3) can now be evaluated. Indeed, for each meso-scale
structure, one has

UR structure-mixture = Us − Um = Us + VL − VL − Um = Vb|s − VL − εUR. (5.5)

Note that, in the last equality of (5.5), Us has been identified with Vb|s. Strictly speaking,
these two quantities are not the same as Vb|s represents the mean velocity of bubbles within
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Figure 11. Evolution of the products 〈Lcluster[εcluster − ε]〉 for n ≥ 1 and for n ≥ 2, 〈Lint[εint − ε]〉 and
〈Lvoid[εvoid − ε]〉 with Vsg. Measurements performed in a D = 0.4 m column, on the column axis at
H/D = 3.625.

the structure considered while, as discussed in the introduction of § 5, Us corresponds
to the velocity of the whole coherent region forming the structure meaning that Us
includes information on both gas and liquid phases. In clusters, owing to their large void
fraction in the heterogeneous regime (see figure 7c), it is reasonable to assume that both
phases move at nearly the same velocity and hence that Uclusters ∼ Vb|clusters. A similar
argument could be put forward for intermediate regions when Vsg is large. For void
regions, experience shows that Vb|voids and VL nearly coincide when in the heterogeneous
regime (see figure 9). Hence, assuming Us ∼ Vb|s seems reasonable (to confirm that,
liquid velocity measurements conditioned by the local gas concentration would be useful),
and (5.5) combined with (5.1), (5.2) or (5.3) provides an estimate of the prefactor Cs,
namely,

Cs = UR structure-mixture/(gLs|εs − ε|)1/2, (5.6)

where the denominator is known from figure 11. The values Cs deduced from (5.6) are
given as a function of Vsg in figure 12. They all tend to nearly constant values at large Vsg:
the mean values of Cs in the heterogeneous regime are provided in table 4; all these figures
are almost insensitive to the range of Vsg selected to compute the average.

Moreover, all prefactors are of order unity, with Ccluster ∼ 3, Cint ∼ 1.2 and Cvoid ∼
−0.36. The scalings proposed in (5.1)–(5.3) are therefore consistent, and these models
provide the correct magnitude of the relative velocity of meso-scale structures with respect
to the mixture. These results also confirm that the dynamics of these meso-scale structures
is indeed controlled by a buoyancy–inertia equilibrium applied at their respective scales.

Here, each conditional bubble relative velocity Vb|s − VL has been connected with
the characteristics of the corresponding meso-scale structure. Hence, thanks to (4.1),
the unconditional bubble relative velocity is related with the characteristics of all three
meso-scale structures present in the flow, combined with the repartition of bubbles
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Figure 12. Evolution of the prefactors Ccluster , Cint and Cvoid deduced form (5.6) combined with (5.1)–(5.3)
with Vsg.

between these three populations. This result demonstrates that the enhancement of the
bubble relative velocity observed in the heterogeneous regime is the direct consequence
of the collective dynamics occurring in these buoyancy-driven bubbly flows when the gas
fraction is large enough.

5.2. Scaling of the mean relative velocity: discussion
At this stage, it is worthwhile to come back to the scaling of the relative velocity of (2.1)
that involves the reference velocity (gDε)1/2 identified by Mezui et al. (2022). Let us first
recall that (2.1) arises from scaling laws for mean velocities of both phases that have been
corroborated over a large range of column diameters and flow conditions. However, direct
measurements of the relative velocity in the heterogeneous regime such as those presented
in § 2 are absent from the literature, so that the dependency of the relative velocity
with the column diameter predicted by (2.1) cannot be directly tested from the available
data. Similarly, the analysis in terms of meso-scale structures developed above concerns
but a single column diameter, and more experiments are required to further investigate
meso-scale structure characteristics. Yet, as shown in Mezui et al. (2022), the existence
of an asymptotic heterogeneous state at large Vsg is supported by many experiments
performed in various column diameters and flow conditions. The presence of such an
asymptotic behaviour prompted us to rescale the relative velocities UR structure-mixture using
D as the relevant scale for the dimensions Ls of meso-scale structures and using the gas
hold-up ε for scaling the differences in concentration [εs − ε]. Table 5 provides Ls/D,
[εs − ε]/ε and the quantity 〈gLs[εs − ε]〉1/2/(gDε)1/2 that enter (5.1)–(5.3). The last line
of table 5 provides for each structure the relative velocities UR structure-mixture scaled by the
velocity (gDε)1/2; the resulting coefficients are comprised between 0.1 and 0.6; such O(1)

values seem reasonable.
The scaling for the unconditional relative velocity UR = VG − VL can be deduced from

the above information. Starting from (4.2) and still assuming that Us = Vb|s, we have UR =
Nclusters(Uclusters − Um) + Nint(Uint − Um) + Nvoids(Uvoids − Um) + εUR that transforms
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Mean values evaluated for Vsg ≥ 9 cm s−1
Clusters with

n ≥ 1
Clusters with

n ≥ 2
Intermediate

regions
Void

regions

Mean size 0.018 m 0.022 m 0.062 m 0.074 m
Mean size / D 0.045 0.054 0.155 0.185
〈(εstructure − ε)/ε〉 0.464 0.585 0.054 −0.42
〈gLstructure[εstructure − ε]〉1/2/(gDε)1/2 0.17 0.19 0.15 −0.3
Cstructure (from table 4) 3.06 2.97 1.26 −0.36
Prefactor UR structure-mixture/(gDε)1/2 0.520 0.564 0.189 −0.108

Table 5. Average characteristics of meso-scale structures in the heterogeneous regime measured on the axis of
a D = 0.4 m bubble column and at H/D = 3.625, pre-factors Cstructure and ratio UR structure-mixture/(gDε)1/2.

into

(1 − ε)UR = Nclusters(Uclusters − Um) + Nint(Uint − Um)

+ Nvoids(Uvoids − Um) = (Nclusters

[
(Uclusters − Um)/(gDε)1/2

]

+ Nint

[
(Uint − Um)/(gDε)1/2

]

+ Nvoids

[
(Uvoids − Um)/(gDε)1/2

]
)(gDε)1/2 = CR(gDε)1/2. (5.7)

The prefactor CR has been evaluated over various ranges of Vsg within the heterogeneous
regime: it is given in table 6 where we have also considered the two options for clusters
(namely n ≥ 1 and n ≥ 2). Overall, the dispersion is small, and one gets

(1 − ε)UR ∼ 0.30 ± 0.01(gDε)1/2. (5.8)

As the void fraction in the heterogeneous regime ranges from 20 to 37 % for the
experimental conditions considered here, the ratio UR/(gDε)1/2 evolves from 0.37 to
0.50, to be compared with the value UR ∼ 0.41(gDε)1/2 deduced from direct velocity
measurements (see (2.1)). The difference between these two results remains in the interval
[−11 %;+23 %]. Such a difference is quite acceptable owing to the variety of independent
measurements involved in that analysis (the latter include void fraction, unconditional
and conditional relative velocities, statistics on size and on concentration for the three
meso-scale structures, repartition of bubbles among these structures based on Voronoï
tessellations) and possibly also owing to the assumption Us ≈ Vb|s we made.

The expression of the relative velocity from (2.1) derived from scaling considerations is
recovered here using the partition of bubbles into three distinct populations. Again, and as
seen in § 4, (5.7) and (5.8) show that the increase of the bubble relative velocity beyond the
terminal velocity value originates from the dynamics of the meso-scale structures present
in the heterogeneous regime. In this process, clusters bring the strongest contribution.
Thanks to the significant proportion of bubbles they gather (table 1) and thanks to their
high relative velocity with respect to the mixture (clusters correspond to the largest
ratio UR structure-mixture/(gDε)1/2 in table 5), they contribute 65–68 % to UR. Intermediate
regions host the majority of bubbles but their relative velocity with respect to the mixture
is approximately three times smaller than that of clusters: they contribute 33–35 % to UR.
Last, void regions are sinking in the mixture: they carry few bubbles and their (negative)
contribution to UR is almost negligible (∼2 %).
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Although data are still lacking to directly examine how the relative velocity evolves with
the column diameter, (5.7) and (5.8) provide an indirect way to discuss the dependency of
UR on D. According to experiments, the void fraction weakly varies with D (in Mezui
et al. (2022), the void fraction on the column axis is found to evolve as D−0.2), so that
(5.8) indicates that the relative velocity monotonously increases with D. At first sight,
that prediction seems odd if one refers to a single bubble dynamic that is controlled
by its interaction with the liquid at a scale commensurable with the bubble size, and
not with the size of the domain. However, we have seen that collective dynamics in
these buoyancy-driven bubbly flows plays a central role in the formation of meso-scale
structures, and that the presence of both dense and dilute structures drives the momentum
exchange between phases and leads to an enhancement of the relative velocity. Further,
the various contributions UR structure-mixture appearing in (5.7) are directly related with the
characteristics in terms of size and concentration that each meso-scale structure has in
the asymptotic limit (i.e. in the limit of large Vsg). The question left is thus whether the
scalings with D and with ε used to build table 5 are relevant or if they are artificial.

Concerning ε, an examination of the evolution of the coefficients Cs of figure 12 versus
ε instead of Vsg indicates that a scaling with the void fraction is indeed acceptable for gas
hold-up above approximately 30 %.

Regarding the dimensions of meso-scale structures, it is unlikely that the typical width
of clusters grows with D, but the void regions do have an extension of order D. Such a
statement is supported by our experiments in the D = 0.4 m column (figure 7). It is also
sustained by the results presented in the next section where it is shown that void regions
correspond to large-scale vorticity regions whose dimension is of order D.

5.3. Flow structure in the heterogeneous regime
Concerning the internal structure of the flow in the heterogeneous regime, the spatial
organisation of the gas phase deduced from 1-D Voronoï tessellations has already
demonstrated the presence of thin regions at high void fractions, and of large regions at
low void fractions. When examining the flow through column walls using direct lightning,
these void regions correspond to dark zones (figure 13) while bright regions indicate a
significant presence of bubbles (whose interface reflects light back towards the observer).
These dark regions seem to correspond to the large-scale vortical-like structures that have
often been reported in the literature (and that are illustrated in the video enclosed as
supplementary material associated with the reference Mezui et al. 2022).

To quantify such vortical structures, we exploited the local liquid velocity provided by
a Pavlov tube. Spatial correlations were not accessible with a single sensor, and liquid
velocity measurements conditioned by the local gas concentration were not attempted.
Instead, we considered time series collected from a single Pavlov tube even though its
temporal resolution was limited (approximately 20 Hz, see Mezui et al. (2023) for further
details).

The zero crossings of the signal vL(t) − VL were detected and the density of zero
crossing ns per unit length was evaluated using the mean liquid velocity to transform time
into space. The resulting characteristic length scale n−1

s provides the mean vertical size
of vortical structures. Let us mention that, for a turbulent single-phase flow, Liepmann
& Robinson (1953) related the Taylor microscale λ to the average distance n−1

s between
zero crossings of a streamwise velocity signal of a turbulent flow, and they show that
n−1

s = Bλ, where B is a constant that accounts for intermittency (B = π for a Gaussian
time series with also a Gaussian derivative). In our case, it is not clear if the vertical spatial
scale we construct is related to any turbulence scale, as we are far from the conditions
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D = 400 mm

(a) (b)

Figure 13. Images of flow near column walls in the heterogeneous regime. Bright zones indicate the presence
of many bubbles while dark zones correspond to structures comprising few bubbles. The vertical extent of the
images corresponds to sections at 0.8 and at 2 metres above gas injection (D = 0.4 m, static liquid height =
2 m). Movies are included in the supplementary material of Mezui et al. (2022).

of homogeneity and isotropy required by the model from Liepmann & Robinson. From
measurements in the D = 0.4 m column, n−1

s was found equal to D (within 10 %) for Vsg

larger than ≈10 cm s−1. Although acquired in a single column, this result supports the idea
that the size of vortical structures does scale as the bubble column diameter. A few other
results on the integral length scale of turbulence (Mezui et al. 2023) and on the size of
vortical structures in various bubble columns (Cartellier 2019) also indicate that D is the
relevant scale.

In parallel, let us show that the regions containing bubbles are not in the form
of ‘compact’ clusters of bubbles. Indeed, the high particle Reynolds number bubbles
considered here (see § 2) are in a constant drag coefficient regime (when isolated). If one
considers a compact, close to spherical assembly of N such bubbles, the dynamics of that
ensemble would be also governed by a constant drag coefficient, and its relative velocity
would be equal to N1/6UT . Therefore, the relative velocities between approximately 2UT
and 2.5UT that we measured in heterogeneous conditions at large Vsg (for Vsg above
10 cm s−1, as discussed in § 2), would be recovered with N = 64 for 2UT , or with N = 244
for 2.5UT : these figures are 10 to 50 times larger than the average number of bubbles
detected in clusters (figure 7). Clearly, the existence of compact assemblies of bubbles
does not correspond to observations. The question is now how thin bubbly ‘sheets’ could
induce such an enhancement of the bubble relative velocity.

From these findings, a tentative cartoon of the spatial organisation of phases in the
heterogeneous regime emerges: bubbles accumulate in narrow (a few bubbles in size)
regions located in between large (typically ≈ 0.2D according to figure 7b) vortical
structures that are almost free of bubbles. This situation is sketched in figure 14. The dense
regions containing most bubbles are like thin ‘sheets’ or ‘curtains’ (a few bubble diameter
wide) located in between vortices whose extent is of order D. Thus, these arguments
combined with (5.7) support a relative velocity controlled by the lateral dimension of the
column.
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Fixed phase detection probe

Lcluster
≈ a few bubble size

Lvoid ≈ Lliquid

≈ 0.10.15D

Figure 14. Tentative sketch of the flow organisation. As it can be appreciated in the movies included as
supplementary material in Mezui et al. (2022) (see figure 13), large vortical liquid structures are seen as dark
zones (as they comprise few bubbles), while clusters of bubbles correspond to bright zones. Such large dark
vortices, that are almost free of bubbles, show bubble ‘curtains’ between them. Although collected near the
walls, these structures can be seen as representative of the internal flow structures inside the column.

To conclude, in this section, the relative velocity observed in the heterogeneous
regime has been connected with the characteristics in terms of size and concentration
of dense, intermediate and dilute regions formed in these buoyancy-driven bubbly flows.
These meso-scale structures and the dynamics they induce are believed to be at the
origin of the swarm factor introduced in Eulerian two-fluid simulations to evaluate the
momentum exchange between phases in the heterogeneous regime. Moreover, a number
of experimental results support the existence of an asymptotic flow organisation at large
Vsg, in particular, with the saturation of the gas concentration in dense regions, and with
limiting values of the spatial extent of meso-scale structures. Additional investigations are
required to fully determine how these asymptotic values evolve with parameters, and in
particular with the column diameter. Let us finally underline that, in their simulations of
heterogeneous conditions, Panicker, Passalacqua & Fox (2020) captured the presence of
bubble swarms with a characteristic length scale of order V2

G/g and predicted a significant
increase of the mean gas velocity compared with homogeneous conditions: these findings
are consistent with the experimental results presented here.

6. Velocity fluctuations, internal structure and fast-track mechanism

So far, we have discussed the scalings of the mean transport velocity and of relative
velocities. Let us consider now velocity fluctuations. Mezui et al. (2022) found that the
unconditional standard deviations of liquid velocity V ′

L and of bubble velocity V ′
G evolve

as (gDε)1/2, but these results were mostly validated for a single bubble column diameter.
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Figure 15. Standard deviations std(vb|s − VG) of bubble velocity conditioned by meso-scale structures i.e.
clusters, intermediate and void regions with respect to the unconditional mean bubble velocity VG versus
the gas superficial velocity. Comparison with unconditional standard deviations of liquid and gas velocities.
Measurements performed in a D = 0.4 m column, on the column axis at H/D = 3.625.

Before discussing the possible origin of such a scaling, let us analyse the experimental
data gathered on the axis of the D = 0.4 m column. As before, we take advantage of the
Doppler probe to examine the behaviour of the standard deviation of the bubble velocity
conditional to meso-scale structures. Using the mean unconditional bubble velocity VG
as the reference, we evaluated the standard deviation V ′

b|s = std(vb|s − VG), where std
denotes the standard deviation and vb|s is the instantaneous bubble velocity in the selected
structure, shown in figure 15 for clusters, intermediate regions and void regions. Their
evolutions of the quantities vb|s with Vsg have qualitatively the same allure as those
of mean conditional velocities Vb|s shown in figure 9. Notably, the differences between
meso-scale structures remain small when in the homogeneous regime and increase when
in the heterogeneous regime. In the latter regime, the difference from one structure to the
other typically amounts to 0.1–0.2 m s−1. Also, velocity fluctuations are larger in clusters
than in intermediate regions, and are larger in intermediate regions than in void regions.
These trends are not sensitive to the minimum number of bubbles in a cluster.

As for the mean velocity, the unconditional standard deviation of bubble velocity
can be deduced from the contributions of the three meso-scale structures, weighted by
the proportion of bubbles they contain. Indeed, the sum NclustersV ′

b|clusters + NintV ′
b|int +

NvoidsV ′
b|voids has been compared to the standard deviation V ′

G, and the agreement is good
with a discrepancy of at most 25 % in the homogeneous regime and at most 20 % in the
heterogeneous regime. In the latter case, the contributions to velocity fluctuation mainly
originate from clusters (42–45 % contribution) and from intermediate regions (51–55 %
contribution) with a small remaining contribution (3–4 %) arising from void regions.

The fact that bubble velocity fluctuations are significantly larger than liquid velocity
fluctuations in the heterogeneous regime has already been reported (Mezui et al. 2022).
We show here that this is also true for conditional bubble velocities, with the exception
of the very low Vsg limit that belongs to the homogeneous regime. This is not surprising
owing to the overwhelming contributions of clusters and of intermediate regions to bubble
velocity fluctuations in the heterogeneous regime. Oddly, this is even true in void regions,
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Figure 16. Comparison of the velocity variation w′
structure due to size and concentration of meso-scale

structures pertaining to the same population with bubble velocity fluctuations conditioned by meso-scale
structures V ′

b|structure. Measurements performed in a D = 0.4 m column, on the column axis at H/D = 3.625.

possibly because these statistics recover bubbles having quite diverse environments as the
local void fraction typically ranges from 0.4 to 0.1 times the mean hold-up (see figure 3
and associated comments).

The fluctuations in bubble velocity arise from bubble velocity variations between
different types of meso-scale structures. They can also arise from velocity variations
between meso-scale structures belonging to the same population as both buoyancy and
inertia are variable from one structure to the other. In an attempt to evaluate that second
contribution, we considered the quantities Lstructure[εstructure − ε] that enter (5.1)–(5.3)
for the three meso-scale structures. Following the scaling rules given by (5.1)–(5.3),
the velocity fluctuation associated with variations in size and concentration for a given
meso-scale structure is evaluated as w′

structure = gstd(Lstructure[εstructure − ε])1/2. These
estimations are compared with the bubble velocity fluctuations conditioned by meso-scale
structures in figure 16. The curves are rather stable for Vsg above 10–15 cm s−1. It happens
that w′

structure/V ′
b|structure ∼ 3 for clusters, 1.5 for intermediate regions and approximately

1 for void regions. The contribution of the variability in size and in concentration of
structures is therefore small for clusters, and it remains moderate but still higher than
unity for intermediate regions. Hence, as clusters and intermediate regions bring the
largest contribution to fluctuations, a significant fraction of bubble velocity fluctuations
is therefore related with the velocity differences between the various types of meso-scale
structures. Owing to the key contribution of the latter, we develop hereafter the idea that
a fast-track mechanism is at play and that it connects the relative velocity with bubble
velocity fluctuations.

According to the presumed internal organisation of the flow in the heterogeneous regime
as sketched in figure 14, a plausible mechanism could be the following. As bubbles are
mainly located between vortices, a fast-track mechanism (similar to that observed in a
turbulent flow laden with inertial particles Wang & Maxey 1993) takes place. Bubbles
are channelling between vortices, and they preferentially pick up the side of eddies with
an upward motion (choosing the downward side induces a much larger local relative
velocity and hence a much larger drag). The result is a faster upward directed vertical
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bubble velocity. Such a picture is consistent with the conditional velocity measurements
presented above. It also provides a physical background to the swarm coefficient often
introduced in simulations to force the drag on a bubble to decrease with the local void
fraction.

Such a picture is also consistent with the impact a fast-track mechanism has on the
enhancement of the relative velocity. Indeed, in turbulent flows laden with inert particles,
the enhancement of the settling velocity of dense particles is found proportional to the
velocity fluctuations of the background turbulence, with a prefactor typically between 0.1
and 0.5 depending on particle and on flow characteristics (see for e.g. Wang & Maxey
1993; Mora et al. 2021). Making a crude parallel with the present situation, we can
consider V ′

L as the magnitude of external velocity fluctuations. In § 3, we have seen that on
the axis of a D = 0.4 m column, the liquid fluctuations scale as V ′

L ≈ 0.22(gDε)1/2 while
the mean relative velocity scales as UR ≈ 0.3–0.4(gDε)1/2: these two results indicate
that when in the heterogeneous regime, UR and V ′

L remain proportional with a ratio
approximately 0.5–0.7. This finding is therefore consistent with what is known about
the impact of a fast-track mechanism on the relative motion of inclusions with respect
to a turbulent continuous phase. In addition, the velocity enhancement observed here is
consistent with recent results concerning the frontier between enhancement and hindering
(Mora et al. 2021): the Rouse number of inclusions Ro = UR/V ′

L, which lies here between
0.5 and 0.7, is indeed small enough to avoid the triggering of a loitering scenario.

A question left open at this stage is why bubbles remain (on average) accumulated and
stuck in between large-scale liquid structures. This is a counter-intuitive organisation if
one thinks of bubbles interacting with turbulent eddies in a denser fluid, as bubbles are
preferentially moving towards low-pressure zones, i.e. in the core of eddies. Our belief is
that the situation in bubble columns is not the same as that of bubbles immersed in a weak
turbulent field. We have shown in § 2 that, in the heterogeneous regime, buoyancy is the
source of the mean motion and of velocity fluctuations by way of internal density gradients.
In such flows, the accumulation or the depletion of bubbles are not governed by eddies
interacting with independent, quasi-isolated bubbles, but by collective dynamics that
imposes its forcing on the more inert phase. In other words, a local bubble accumulation
induces an upwelling motion that must be compensated by a nearby downward motion of
an essentially liquid (possibly including a few bubbles) zone. This is why, once formed, the
(thin) clusters of bubbles as well as the empty regions are believed to persist for some time
which is long enough compared with the transit time of the mixture from the bottom to the
top of the bubble column. In our experiments, that transit time is approximately 1.5–3 s in
the heterogeneous regime, and it is indeed small compared with the bubble response time
a2/νL that is approximately 10 s here. In other words, for the flow conditions considered
here, there is not enough time available for bubbles to be significantly dispersed or to
significantly diffuse outside dense regions. Note that similar dynamics have been reported
in experiments (Kimura & Iga 1995) and in simulations (Climent & Magnaudet 1999;
Nakamura et al. 2020) of micro-bubbles-induced convection in shallow conditions with
the formation of mushrooms similar to those arising in Rayleigh–Taylor instability.

The proposed scenario deserves to be tested further using experiments and/or direct
numerical simulations. This scenario is also expected to change when considering different
flow conditions, notably in terms of coalescence efficiency. As a crude quantification of
the limit of validity of this scenario, let us evaluate the size that would have bubbles so that
their terminal velocity (when isolated) equals the relative velocity we measured in the D =
0.4 m column. For a relative velocity approximately 2UT where UT ≈ 0.21–0.23 m s−1,
the bubble diameter should be multiplied by 441/3 ≈ 3.5 compared with the size of the
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bubbles we considered. For a relative velocity approximately 2.5UT , the multiplication
factor would be 2441/3 ≈ 6. Hence, we expect the proposed scenario to be modified when
bubbles above 20 to 40 mm in equivalent diameter start to appear in the flow. Such a limit
also corresponds to bubbles whose terminal velocity, approximately 0.5–0.7 m s−1, would
become comparable to the magnitude of velocity fluctuations at large Vsg in a D = 0.4 m
column. In other words, the Rouse number of such bubbles would become of order one
or above, and loitering could occur instead of fast track, and that may possibly lead to
a decrease in the relative velocity (Mora et al. 2021). Pushing the limit even further, for
bubble size of the order of D (as observed for example in fluidised beds), the dynamic
would drastically change as one approaches slug flows.

7. Conclusions

We report experimental results of the hydrodynamics of bubble columns operated in the
heterogeneous regime. The reactor was operated in controlled conditions by focusing on
variables conditioned by the local void fraction. Experiments in a D = 0.4 m air–water
bubble column were performed with bubbles in the wobbling regime. Furthermore, in our
experimental conditions, the bubbles presented no significant coalescence.

In a first step, the concentration field at small scales and its connection with the
relative motion between phases has been investigated for gas superficial velocities up to
25 cm s−1. From Voronoï tessellations in one dimension built from the signal delivered by
an optical probe, the homogeneous/heterogeneous transition has been shown to correspond
to a standard deviation of the probability density of Voronoï cell width that levels off
from its value for an RPP. The departure from an RPP allows to unambiguously identify
meso-scale structures, namely clusters (i.e. regions where bubbles tend to accumulate),
void regions (i.e. liquid regions including few bubbles) and intermediate regions. These
meso-scale structures have been characterised in terms of size and of concentration. In the
heterogeneous regime, size and concentration p.d.f.s seem to asymptote as Vsg increases.
In particular, the mean size of these meso-scale structures tends towards constant values
for Vsg higher than ≈0.1 m s−1. Also, the absolute concentration in clusters saturates
to 45–50 %, while the concentration in voids and in intermediate regions slightly but
continuously increases with the mean gas hold-up. The picture that comes out from
conditional measurements using optical probes and from Pavlov tubes comprises void
regions that correspond to vortices in the liquid those size is a fraction of D and ‘thin’
clusters – typically a few bubbles wide – structured as sheets in between these vortices.
This picture is consistent with a fast-track mechanism that, for moderate Rouse numbers,
leads to liquid velocity fluctuations that are a fraction of the relative velocity between
phases.

The origin of the large relative velocity observed in the heterogeneous regime has been,
for a long time, a central question in the hydrodynamics of bubble columns. A series of
arguments demonstrating the key role of meso-scale structures on the relative velocity of
bubbles has been presented as follows.

(i) Direct measurements of the unconditional mean relative velocity show that
the relative velocity levels off at the homogeneous–heterogeneous transition. In
addition, the relative velocity asymptotes at large Vsg: the limit, in the D = 0.4 m
column, is approximately 2.4 times the terminal velocity of bubbles.

(ii) Bubble velocity measurements conditional upon the local gas concentration indicate
that bubbles in clusters are moving up much faster, up to 3 to 3.5 times the
terminal velocity, than bubbles in void regions whose speed is nearly equal to the
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unconditional liquid velocity. Similarly, bubbles in intermediate regions are moving
up faster, up to 1.5 to 2 times the terminal velocity, than bubbles in void regions.

As the mean unconditional relative velocity of bubbles is recovered from conditional
mean relative velocities weighted by the proportion of bubbles present in each meso-scale
structure, these findings demonstrate that the flow dynamics in the heterogeneous regime
originates from collective effects linked with the apparition of meso-scale structures.

In addition, by assuming equilibrium between inertia and buoyancy at the scale of each
meso-scale structure, we show that the velocity of each meso-scale structure relative to the
mixture is related to its characteristics in terms of size and concentration. Consequently,
the unconditional mean bubble relative velocity has been related with the characteristics
of all three meso-scale structures present in the flow. Such result opens the way to
the identification of the proper scaling of the relative velocity. In particular, the spatial
extension of void regions seems to be proportional to the bubble column diameter, a
feature that could explain why the relative velocity evolves as (gDε)1/2 as indicated by
unconditional measurements. These conjectures need to be tested over a wider range of
conditions. In particular, the impact of bubble column diameters on the relative velocity
and meso-scale structures need to be investigated. For instance, by examining higher
gas superficial velocities, it would be worthwhile to identify what controls the limits in
concentration of meso-scale structures.
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Appendix A. Evaluation of the gas concentration in a Voronoï cell

A.1. Connection between cell width and cell concentration
The magnitude of �Tk is related to the local and instantaneous concentration, that is, the
concentration at the scale of the kth Voronoï cell. A large �Tk means that neighbouring
bubbles are far from the test bubble, or equivalently that the concentration in the vicinity
of the test bubble is low. Inversely, a small �Tk indicates the presence of close neighbours,
that is, a high void fraction in the vicinity of the test bubble.

Raimundo et al. (2019) argued that the quantity �Tk/〈�T〉 equals the ratio of the local
and instantaneous gas concentration εk to the average gas hold-up ε at the measuring
location, i.e. �Tk/〈�T〉 = ε/εk. This equality must be replaced by (A1) below. Indeed,
let us consider N bubbles detected over a measuring duration Tprobe. By definition, the
void fraction ε equals (

∑
i tgi)/Tprobe, where i goes from 1 to N. By construction, the

Voronoï cells map all the space (that is, the whole measuring duration) so that Tprobe =∑
k �Tk, where k goes from 1 to N. Hence, ε = (

∑
i tgi)/Tprobe = (

∑
i tgi)/

∑
k �Tk =

N〈tg〉/[N〈�T〉], where mean values have been introduced in the last equality. Meanwhile,
the local void fraction εk (i.e. at the scale of the kth cell) is tgk/�Tk. Therefore,

εk/ε = [
tgk/�Tk

]
/
[〈tg〉/〈�T〉] = [

tgk/〈tg〉
]
/
[〈�T〉/�Tk

]
. (A1)

The concentration εk in the kth cell scaled by the local concentration ε is indeed
proportional to 〈�T〉/�Tk, but these quantities are not equal. The proportionality
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Figure 17. Void fraction at the scale of a Voronoï cell.

coefficient happens to depend on the gas residence time tgk divided by the mean gas
residence time 〈tg〉. The coefficient changes from one bubble to another in a given
record. Therefore, it is not possible to univocally transform a threshold in �Tk/〈�T〉
(such a threshold is used to distinguish the three populations, namely clusters, voids
and intermediate regions) into a threshold in terms of cell concentration. Instead, the
distributions of actual concentrations in each population need to be analysed (see figure 4
and related text).

A.2. Gas concentration in a Voronoï cell
Here above, the void fraction εk at the scale of the kth cell is estimated as tgk/�Tk. The
formula is exact for the situation of the bubble indicated as A in figure 17. Let us consider
the three successive bubbles k − 1, k and k + 1. Let us increase the residence time of
bubble k while maintaining everything else fixed. In particular, the centres of the three
bubbles remain located at Tk−1, Tk and Tk+1, so that the kth Voronoï cell keeps its width
�Tk. When the kth bubble grows and reaches the situation B (figure 17), the right-hand
side of the gas residence interval becomes located outside the cell. When the bubble grows
further and reaches the situation C (figure 17), the residence time of the bubble k exceeds
the Voronoï cell width and εk becomes larger than unity. Hence, the formula tgk/�Tk
becomes incorrect when dealing with large bubbles (large tgk) in a dense surrounding
(small �Tk). In practice, one should account only for the fraction of the gas residence
located inside the Voronoï cell. In § 5, we used a somewhat crude correction as we simply
set εk = 1 whenever tgk/�Tk exceeded unity. However, the number of events concerned
by that issue is quite limited (it is always less than 12 % of the population) so that this
approximation does not affect the trends identified nor the mean values.
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