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SYSTEMS OF MAGIC LATIN k-CUBES
JOSEPH ARKIN, VERNER E. HOGGATT, JR. AND E. G, STRAUS

1. Introduction. A Latin k-cube 4 of order n is a k-dimensional array
A= (anu.u),0 =1 =n—1 where

iyooqp € 10, 1, oy m — 1} and @oyoir oy iy 4100

runs through the distinct elements 0, 1, ..., # — 1 as j runs from 0 ton — 1.

A k-tuple of Latin k-cubes, A®, A® ..., A® is orthogonal if, upon super-
position, the k-tuples of entries («;, V. 4, ¢ ® .. ixy oy @3, ® ... 4) run through
all ordered k-tuples (0,...,0) to (k — 1,....k — 1). A system of r = k Latin
k-cubes is orthogonal if every k of its cubes are orthogonal. A major diagonal of
a k-cube of order n are the entries a,,.. ; where 7 of the indices run simultane-
ously from 0 to # — 1 while the remaining & — 7 indices run from # — 1 to 0.
There are thus 2! major diagonals. A minor diagonal is obtained by holding
m indice: fixed (0 < m < k) while letting the other indices run simultaneously
fromOton — lorn — 1 to0.

A Latin k-cube is magic if the sum of the elements in each major diagonal
equals the sum, n(n — 1)/2, of the elements of a row in each of the directions
of the cube. In particular, if all the entries in the major diagonals are distinct,
a case which we shall call strongly Latin, then the k-cube is magic. However it is
easy to construct magic k-cubes which are not strongly Latin. If we have an
orthogonal system of k& magic Latin k-cubes and consider the ordered k-tuples
of their superposition as integers expressed in base n, then this superposition
yields a k-cube whose entries are the integers from 0 to n* — 1 so that the sums
in all the rows, in all the coordinated directions, and in all the major diagonals
are the same, n(n* — 1)/2. We also consider the concept of strongly magic
Latin k-cubes as magic cubes where the sums of the elements in the minor
diagonals are equal to the row sums and the major diagonal sums. We define
a k-cube as completely Latin if the elements in all diagonals are distinct Such
completely Latin cubes are obviously strongly magic. The superposition of a
system of k orthogonal strongly magic k-cubes with the interpretation of the
entries as integers from 0 to n* — 1 leads to a k-cube in which the sum in all
rows and in all diagonals is n(#* — 1)/2.

Many of the ideas in this paper occur in various forms in the mathematical
literature. The construction of magic squares by the use of Latin squares can
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be found in [2]. Completely Latin k-cubes are discussed in [4] and systems of
mutually orthogonal Latin k-cubes are considered in [3].

In §2 we discuss maximal systems of orthogonal magic Latin squares. In §3
we extend the construction of §2 and [1] to systems of orthogonal magic Latin
k-cubes with £ > 2. In §4 we consider some examples.

2. Orthogonal magic Latin squares. If # is a power of a prime then we
can use finite fields to construct maximal systems of # — 1 mutually orthogonal
Latin squares of order n. We now extend this to maximal systems of orthogonal
magic squares of order n.

2.1 THEOREM. If n1s a power of an odd prime then there exists a system of n — 1
mutually orthogonal magic Latin squares of order n so that n — 3 of those squares
are strongly Latin.

Proof. Let F = {xy, ..., x, 1} be the Galois field with n elements ordered so
that x; = — x,_,_; for 1 = 0,1, ..., n — 1. We construct a system of n — 1
orthogonal Latin squares 4" = (¢,;,"), whose entries are the elements of [
by setting a ;" = x; 4 tx;, where ¢ ranges through F*, the non-zero elements
of F. The orthogonality of the system is immediate, since for any two distinct
elements s, t € F* and any pair (y, z) € F? there is a unique solution x;, x; to
the simultaneous equations x; 4+ sx, = vy, x; + tx;, = z. For ¢ £ 1 the
diagonal elements are distinct and thus we get a system of # — 3 orthogonal
strongly Latin squares of order n. For ¢t = 4 1 one of the diagonals has all its
elements 0 while the other diagonal has distinct elements. We complete the

construction by replacing the field elements by the integers 0, 1, ..., n — 1:
with O replaced by (n — 1)/2; so that the sums of all diagonals hecome
nn — 1)/2.

If nis even then (n — 1)/2is not an integer and thus the above construction
is not available. However there is @ compensating feature in the fact that in
fields of characteristic 2 we have 1 = —1.

2.2. THEOREM. If n 15 « power of 2 then there exists « system n — 2 orthogonal
strongly Latin squares of order n.

Proof. We use the same construction as in Theorem 2.1, this time setting
X; = %,—1~; + 1. Then the Latin squares 4" = («¢;'9) with «;¢9 = x; + tx;
t # 0, 1 have the desired property.

Kronecker products of strongly Latin squares are obviously strongly Latin.
To show that we can always associate a magic Latin square of order mn with
the Kronecker product of two magic Latin squares of order m and » respec-
tively, write 4 = (a;;); ¢, j=1,...,m; B= (by,); k,r =0,...,n — 1 and
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C =4 X B = ((aij, b)”)) — (Cin+k,}'n+7) \Vhere Cintk,jntr — AN + bkf. Then
for example

n

St =n"Y ay+m Yy, by =nmm—1)/2 +mnn — 1)/2
s=1 i=1 k=1
=mn(mn — 1)/2.

We have thus proved the following:

2.3. COROLLARY. If n = p%1ps® .. p,m then there exists a system of ¢ mutually
orthogonal magic Latin squares of order n of which s are strongly Latin. Here

(pfi— 1}, s=q¢g—2 when 2= p1<...< pm.

Il
2.
=

q

i=1,...,m
g =min {2% — 2,9, — 1,..., pu"" — 1},
s=min {2 — 2,9 —3,.. . p"" — 3} when 2=p1< ... < P

3. Orthogonal magic k-cubes. For £ > 2 we get an improvement on the
results stated in [1] and we can even insist on obtaining magic cubes.

3.1 THEOREM. If n s a power of an odd prime and n = k > 2 then there exists
a system of n + 1 orthogonal magic Latin k-cubes of order n of which at least
n — (B — 1)2% are strongly Latin.

Proof. We first note that for any k-tuple G = (cy, ..., ¢;) of nonzero elements
of the finite field /' = {xo, x1, ..., X,-1}, the k-cube A, = (ay, ... ;,) with

Ay vev gy = €14 + oo+ Xy

is a Latin k-cube of order n.

IfCD, ..., C® are linearly independent vectors with components in F* then
the cubes 4,(" = Ay, i = 1, ..., k form an orthogonal k-tuple. More gen-
erally, if any k of the vectors G, ..., C™, » = k with components in F* are
linearly independent, then the cubes 4™, ..., A™ form an orthogonal system.

In order to construct the system G®; 1 =1, ...,n + 1, we use the same
ordering of I that we used in the proof of Theorem 2.1. Next we find a poly-
nomial f(x) = ' + a2 4+ ... 4+ a1 € Flx] with nonzero coefficients

ay, ..., az—1 and no zeros in F. To construct such a polynomial we can start for
example with g(x) = x*~! 4+ x¥2 4 ... + x2. Since & — 1 < 7 there must be
some x; € F* for which g(x;) # 0. Now pick a;_» = — g(x;)/x; so that the

polynomial k(x) = g(x) + a;_sx has two zeros x = 0, x; in F. Thus there is
some value — a;_; € F* which is not attained by k(x;) for any x;, € F and
f(x) = h(x) 4+ az— has the desired property.

Now pick any k distinct values yy, ..., yx € F* and let f;(x) = y,*f(yx);
i=1,..,k The n+ 1 vectors GV = (fi(¢), ..., fr(t)); t € F and C*™ =
(1, ..., 1) have the property that any k are linearly independent.
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We need to show that every k X k submatrix of

Fi@) o fi(e) 1

felxer) s frlx,) 1

—k —k —
WY1 ey a1

—k —k —
Ag—1Yx +1 Up—2Vr +2 e Yy L |

is of the rank k. This follows from the fact that the first matrix on the right is a
regular k X k matrix, essentially a Vandermonde matrix, while any k& X k
submatrix of the second matrix is a Vandermonde.

The elements in the main diagonals of 4¢Y are

L(f1(8) &= fo(t) £ oo £ 1)) xld = 0, ..., m — 1} fort € Fand
{(=+1=x1..xDxje=1,..,n} ift=o0c0.

In either case the elements are either all distinct or they are all 0. Thus all
k-cubes will become magic if we replace the field elements by the numbers
0,1, ...,n — 1 where the field element 0 is replaced by the number (n —1 )/2.

If ¢ is chosen so that none of the 2= polynomials f(¢) == fo(¢) & ... £ fi(f)
vanishes then 4" is strongly Latin. Since none of these polynomials vanishes
identically, none has more than & — 1 zeros in F there must be at least n —
(k — 1)2% ! orthogonal strongly Latin k-cubes of order #.

The case in which 7 is a power of 2 leads to an interesting ramification.

3.2. THEOREM. Let n = 4 be a power of 2. Then there exists a system of n + 2
orthogonal Latin cubes (3-cubes) of which at least n are strongly Latin.

Proof. Let F be the field of n elements ordered as in the proof Theorem 2.2.
Letf(x) = x* + ax + b, ab # 0, be an irreducible polynomial in /[x] and pick
three distinct elements yy, ys, v3, € F*. Define fi(x) = y, 2 f(yx);1 =1,2,3
and construct the set of # + 2 Latin cubes of order # with entries from F corre-
sponding to the vectors GV = (fi(t), fo(t), f2(t)); t € F, G™ = (1, 1, 1),
C' = (7Y 278 v h).

To prove that these n 4+ 2 cubes form an orthogonal system it again suffices
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to show that all 3 X 3 submatrices of the matrix

f1 (xl) f] (x,l) 1 y‘-—l byf‘? (Lyl_l 1 1 ...1 0 0
fo(xr) v falen) 1 o=t [ =] by ay,™' 1 X1 .o, 0 a7!
faler) o fae,) 10yt bys™? ayy™' 1 x2.x,?r 10

are regular. This is easily seen since ab # 0 and all the 3 X 3 submatrices on
the ring are Vandermonde. Perhaps we should justify the inclusion of the
(n + 2) — nd cube A’ by showing explicitly that

1 1 0 1 1
X; x; a7l =at a2 x| =a Mo, x) £ 0
x2 x2 0

foralll =7 <j = n.
The elements in the main diagonals of A are

L@+ (0 + fs)x + eafo(t) + eafs())i = 1, ..., 0}
where e», e3 are 0 or 1. Thus A is strongly Latin provided

fi(®) + f2(0) + f3(¢) = 0.

If 4 is not strongly Latin then each main diagonal of A" consists of n equal
elements.

The elements in the main diagonals of A are {x,/i = 1,..., %} and
{x;,+ 1|7 =1, ..., n} so that A is strongly Latin. Finally the elements in
the main diagonals of A’ are

O+ oy Das + ey F ey = 1, ., 0

where e, ¢; = 0 or 1. Thus either A’ is strongly Latin or all its main diagonals
consist of n equal elements. Thus, if there exist two cubes which are not
strongly Latin, then by the orthogonality of the system the other n cubes must
be strongly Latin.

3.3. THEOREM. Let n = k be « power of 2. Then there exists an orthogonal
system of n + 1 Latin k-cubes of order n of which at least n + 2 — k are strongly
Latin.

Proof. We make a construction which is completely analogous to that made
in the proof of the preceding theorem except that we no longer get an analog
to A’. The resulting k-cubes are either strongly Latin or have all the main
diagonals consisting of # equal elements. If there are & — 1 of the cubes which
are not strongly Latin, then by the orthogonality of the system the remaining
cubes are all strongly Latin.

Using Kronecker products we get results for # which are not powers of
primes.
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3.4. COROLLARY. Let n = p\%t ... p,2m. Then there exists an orthogonal system
of q magic Latin k-cubes of order m of which r are strongly Latin. Here

¢g= min {p"+1}, r=¢—1— (k— 12!

i=1,...,m

’l;f2 < Pl < L < Pm;

q= min {2dlv p2d2 + 1, cey l)mdm + 1}
r = min {2d1’ p:‘dz - Sv () Pmd'” - 8}

if 2 =p1 < ... < Pu; k=3,

g = min {21 + 2 — k, p22 + 1, ..., p,m + 1}

r = min {290 4+ 2 — k, p,®2 — (B — 1)281 .., p,tm — (B — 1)2F 1Y
if2=p1<..<pumk>3

Since the polynomials chosen in the proofs of Theorems 3.1, 3.2, and 3.3 are
linearly independent, it follows that for any given k and any sufficiently large
power of a prime # we get a system of orthogonal completely Latin k-cubes of
order n. The superposition of any & of these cubes leads to a large number of
completely magic k-cubes in the sense that the integers from 0 to n* — 1 are
placed in the cubes so that the sums in all straight lines which pass through »
entries are the same number n(n* — 1)/2.

3.5. THEOREM. If n is a power of an odd prime and
nzgk)+k=53"—1)k—-1) —k(k—2)
then there exists a system of n — g(k) orthogonal completely Latin k-cubes of
order n.

Proof. We use the same constructions as in the proofs of Theorems 3.1 and
3.3 but, for odd n, we have to exclude all values of ¢ for which any of the sums

(3~6) fn (t) :i:fp_,(l) =+ "‘fix(t) =0

where
1S <i<..<ig<k (1<s<Ek).

The number of such choices is (3¥ — 1 — 2k)/2 since for each f; we either fail
to include it or include f; or — f; in the sum (3.6). This would give 3* choices.
However we must include at least two f; so this decreases the number of choices
by 1 (choice of none) + 2k (choice of one). Finally we pick the sign of f;, to be
+ and thus divide the number of terms by 2. No polynomial in (3.6) has more
than & — 1 zeros in F and thus the number of k-cubes A in Theorem 3.1
which are completely magic is at least n — (B — 1)(3* — 1 — 2k)/2 =
n — g(k).

If » is a power of 2 then we need only exclude those values of ¢ for which

Folt) 4+ o+ fut) =0 1S4 <..<i,<kl<s<k
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This leads to the exclusion of at most (b — 1)(2¥ — 1 — k) values of t and thus
the number of k-cubes A" in Theorem 3.3 which are completely magic is at
least n — h(k).

For suthciently large prime powers # it is possible to select polynomials f;(t)
with care so that we get systems (with # 4+ 1 or n 4+ 2 elements) of orthogonal
completely Latin k-cubes of order n. We illustrate this here for the case & = 3,
n = 2"

3.7. LEMMA. Let F be a finite field with 2™ elements considered as an m dimen-
sional vector space over the prime field Fy = {0, 1}. Then for each quadratic poly-
nomial g(t) = at* + bt € F [t] with ab ## 0 the values attained by g(t), t € F
form an (m — 1)-dimensional hyperplane H, over F,.

The hyperplane H, is uniquely determined by the ratio a/b* = ¢ and

(3.8) H,=H,= {c* + t|t € F}
is the set of solutions of the equation
(3.9) Tr(cex) = ex 4+ (ex)® + ... + (ex)*" ' = 0.

Since there are 2™ — 1 distinct equations (3.9) it follows that every (m — 1)-
dimensional subspace of F has the form H, for a suitable g.

Proof. Since (t, + t3)? = 4,2 + h2for by, ta € Fwehaveg(ty + t) = g(t) +
g(ts) so that H, is a linear manifold over F,. Since g(t;) = g(¢) if and only if
ty =ty or ty = {» + b/a it follows that H, has 2"~! elements and is a hyper-
plane. For any s € F* the polynomial k() = g(st) attains the same values
over I as the polynomial g(¢). Thus H, = H,. The choice s = 1/b yields

H{I = Hct2+t =H.
For x = ¢t + t we have
cx = (¢t)? 4+ ¢t and Tr(ex) = Tr(ct) + Tr((ct)?) = 2Tr(ct) = 0.

The last statement of the lemma follows from the fact that there are 2 — 1
(m — 1)-dimensional subspaces of F.

3.8. CoLLARY. The intersection of k hyperplanes H,,, ..., H, defined in Lemma
3.7 1s the set of elements x € F which satisfy Tr(cx) = 0 for all ¢ in the linear
subspace of F spanned by cy, ..., ¢, over Fy.

3.9. THEOREM. If m = 11 then there exists a system of n + 2 orthogonal com-
pletely Latin cubes of order n = 2™.

Proof. In the field of order » there is an element e of order m = 11 we now
consider the 7 polynomials g, = €22 + ¢, go = et? + et, g3 = 12 + e, g4 =
g1+ g0, 85 = g1+ g3, 86 = go + g, 87 = g1 + g2 + gz and the corresponding 7
hyperplanes H; = H, where u; = e2, uy = 1/e, uz = 1/e*, uy = e/(1 + e),
us = 1/(1 4+ €)%, ug = 1/(e + €*)?, and u; = 1/(1 -+ e + ¢2). These 7 values
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u are linearly independent over I, and the 7 hyperplanes H; are therefore in
general position.
We now complete the choice of polynomial f; = g1 + ¢, fo = g2 + ¢, f3 =

g3 + ¢3 where the ¢; are determined successively so as to make the 7 poly-

nomials f1, fo, f3 f1 + fo, f1 + f3, fo + f3, f1 + fo + fs irreducible over F and

so that
e? e 1
1 e e #0.
C1 C» Ca2

We first pick ¢; ¢ H,,. This gives us n/2 possible choices for ¢;. Once we have
chosen ¢; we pick ¢» so that ¢co ¢ H,,, c2 ¢ ¢1 + H,i. This gives us n/4 possible
choices for ¢,. Having chosen ¢, we pick ¢3 so that ¢; ¢ H,,, ¢3 ¢ ¢1 + H,,,
¢3¢ ¢ca+ Hy,cs @ ¢y + ¢+ Hy,, and

e e 1
1 e e #0
C1 Co 63|

This gives us at least /16 — 1 choices for ¢;. Once these choices have heen
made we get n + 2 orthogonal completely Latin cubes

A" =[x + folb)x, + fa(Ox, 07
Ay = ety + ex; + xp;
A’ = x4 exy + ey

where I = {x, ..., x,_1} is arranged as in the proof of Theorem 3.2.

4. Examples. We can use the results of Section 3 to construct strongly
magic cubes of every prime power order ¢ = 7 and hence, by Kronecker prod-
ucts, for every order n whose least primary divisor is no less than 7.

We need only show that there exist triples of linearly independent vectors
COC® C® over finite fields of order ¢ = 7 with the properties ¢,(7 # 0,
¢\ # I, for j # k. For ¢ a power of 2 we also need the property ¢,/" +
20 4¢3 52 0. The vectors (1, ¢, 12) with  ## 0, == 1 have the desired prop-
erties for odd ¢ and so for odd ¢ = 7 there are at least 4 Latin cubes so that the
superposition of any 3 vields a strongly magic cube. For ¢ a power of 4 we also
have to rule out the two values of ¢ for which 2 4+ ¢/ + 1 = 0. Thus for even ¢
there are at least 5 Latin cubes so that the superposition of any 3 yields a
strongly magic cube.

Choosing the values t = =4 2, 3 for ¢ = 7 we get the 3 cubes 4 whose
entries are

@ip® =i+ tj+ 2k — 30+ (mod7)

1, j, kB = 0, ..., 6. Their superposition yields a strongly magic cube with entries
expressed in base 7. FFor 4-dimensional cubes our construction yields strongly
magical yields strongly magical cubes of every primary order ¢ = 17.
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