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Inertial focusing in planar pulsatile flows
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Oscillatory flows have the potential to overcome long-standing limitations encountered
when using steady flows for inertial focusing due to low particle Reynolds numbers.
The periodic displacement generated by oscillatory flow increases the total path length
travelled by a suspended particle with no net displacement within a channel or the need
for increased channel length. The effects of unsteady inertial forces on inertial focusing,
however, have not been thoroughly examined. Here, we present a combined theoretical
and experimental study on the effect of Womersley number on inertial focusing in planar
pulsatile flows. The migration velocity for a small and weakly inertial particle was
evaluated for different oscillation frequencies using the method of matched asymptotics.
Using experiments in a custom-built microchannel, we show that oscillatory flows are
remarkably efficient for inertial focusing, even at low particle Reynolds numbers. For
appropriately selected oscillation amplitude and frequency, inertial focusing is achieved
in only a fraction of the channel length (1 % to 10 %) compared to what would be required
in a steady flow. We show that the Womersley number influences the equilibrium focusing
position and the overall focusing efficiency. In fact, above a critical Womersley number,
inertial focusing does not occur despite increasing particle Reynolds number. Lastly, the
application of oscillatory inertial focusing for the direct measurement of particle migration
velocity is demonstrated.

Key words: microfluidics, particle/fluid flow, suspensions

1. Introduction

Inertial focusing refers to the migration of finite-sized particles across streamlines to
well-defined equilibrium positions in the flow (Segré & Silberberg 1961; Di Carlo
et al. 2007). Recently, the phenomenon has received significant attention because of its
applications in the biomedical field, made possible by advances in microfluidics and
microfabrication. The forces responsible for particle migration are entirely hydrodynamic
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in origin and increase proportionally with flow velocity, thus facilitating high-throughput
applications without the need for microscale actuators. Inertial focusing is most commonly
used for separation of particles based on biomarkers such as size, shape or deformability,
particularly as it relates to cancer cells, platelets or bacterial cells from blood samples.
Other applications include precise sheathless alignment of particles, enrichment of dilute
samples and particle exchange across solvents without mixing (Martel & Toner 2014).

The archetypal inertial focusing system consists of a suspension of particles that are
uniformly dispersed at the inlet, undergoing steady laminar flow through a long straight
channel. At the outlet, suspended particles are no longer uniformly dispersed, but rather
exit the channel at well-defined equilibrium positions in the flow. The exact focusing
positions are specific to parameters such as the particle Reynolds number (Rep), particle
characteristics (relative size, shape and deformability), channel cross-sectional geometry
and fluid rheology (Stoecklein & Di Carlo 2019). For the case of a rigid sphere suspended
in an incompressible Newtonian liquid undergoing steady laminar flow, the primary
design parameter is the average distance travelled by a particle before it reaches the
equilibrium position. The necessary distance to be travelled is estimated by the relation
Lf = πDh/RepC�, where Dh is the hydraulic diameter and C� is the lift coefficient (Di
Carlo 2009). For successful focusing to occur, the channel length must satisfy L > Lf ,
which implies long channel lengths (L > 15 cm) for small particles in low-Re flows
(Rep < 0.1).

In practical applications, channel lengths for focusing in steady flows can be reduced
by increasing Rep, which involves an increased flow velocity, larger particles (>5 μm)
or narrow channels. For focusing in unsteady flows, however, channel lengths can be
reduced by implementing an oscillatory flow component. The periodic displacement
generated by the oscillatory component increases the path length travelled within a finite
channel to be effectively infinite, given the oscillation frequency, amplitude and number
of oscillations. Recently, particles as small as 0.5 μm (Rep ≈ 0.005) were successfully
focused in short channels using large-amplitude low-frequency oscillatory flows (Mutlu,
Edd & Toner 2018). While inertial focusing in unbounded and wall-bounded steady
flows are conceptually well understood and have been thoroughly reviewed (Stoecklein
& Di Carlo 2019; Shi & Rzehak 2020), inertial focusing in oscillatory flows, specifically
the effect of unsteady inertial effects on particle migration velocity, are comparatively
unknown (Morita, Itano & Sugihara-Seki 2017).

Early attempts towards the problem of time-dependent lift were first made theoretically
for a rigid sphere at small Rep in an oscillatory simple shear flow (Miyazaki, Bedeaux
& Avalos 1995; Asmolov & McLaughlin 1999), and later for flow in a rotating
cylinder (Coimbra & Kobayashi 2002). Several parallel numerical studies have addressed
time-dependent lift on a sphere in steady shear flow at intermediate Rep (Wakaba &
Balachandar 2005, and references therein). Lift due to oscillatory flow was first studied
numerically near a no-slip wall (Fischer, Leaf & Restrepo 2002, 2004). Unlike previous
studies, only the work of Fischer et al. (2002, 2004) obtains a finite time-averaged lift on
the sphere even though the driving shear flow is purely oscillatory, and this is therefore
directly relevant to the present study.

Here, we present a combined theoretical and experimental study on the effect of
Womersley number on inertial focusing in planar pulsatile flows. The analysis of migration
velocity for a small and weakly inertial particle placed in a purely oscillatory channel flow
was completed using the method of matched asymptotics. Complementary experiments
were performed in a custom-built microfluidic system with an external oscillatory driver,
which was used to generate a purely two-dimensional (2-D) pulsatile flow over a
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Figure 1. (a) Idealized illustration of inertial focusing in planar pulsatile flows between parallel plates.
A spherical particle of radius a is suspended in a pulsatile flow, composed of a steady (ū′(z′)) and an oscillatory
(ũ′(z′, t′)) component. (b) Analytical results, (3.18) and (3.19), of the migration velocity profile along the
channel width for different Womersley number pulsatile flows.

range of oscillation amplitudes and frequencies. Theoretical results and experimental
measurements of focusing position were compared and found to be in good agreement,
in the limit of small particles, over a range of Womersley numbers. Finally, the focusing
efficiency was characterized for a range of oscillation amplitudes and frequencies using
experiments, which determined that, above a critical Womersley number, the focusing
efficiency decreased.

2. Problem formulation

Consider the flow configuration illustrated in figure 1(a). A neutrally buoyant spherical
particle of radius a is suspended in a Newtonian liquid of kinematic viscosity ν as it flows
through a 2-D channel of width l at a distance d from the wall. The underlying flow in the
channel is pulsatile and consists of a weak steady flow component ū′(z′) with centreline
velocity ū′

s and a strong oscillatory flow component ũ′(z′, t′) with centreline displacement
amplitude s and angular frequency ω. The origin of the coordinate system is taken at the
centre of the particle.

The relevant non-dimensional numbers are the relative particle size κ = a/l, the
Strouhal number St = l/s and the relative magnitude of the steady flow ū′

s/sω. Of primary
interest are the channel Womersley number, α = l

√
ω/ν, which is a relative measure of

the unsteady inertial force to the viscous force, and the particle Reynolds number, Rep =
a2sω/lν = κ2α2/St, which quantifies the ratio of the particle’s lateral migration velocity
to its disturbance velocity. The Reynolds number (Re = sωl/ν = α2/St) quantifies the
inertial to viscous forces at the channel scale. It determines focusing position in steady
flows, particularly when Re > 15 (Segré & Silberberg 1961; Schonberg & Hinch 1989).
Here, the isolated effect of oscillatory flow is studied by maintaining Re < 10 and varying
α. As will be demonstrated, both Re and Rep are insufficient for describing oscillatory flow
focusing. Instead St and α must be considered separately, since they result in qualitatively
different effects, especially if α > 5.

3. Asymptotic analysis

The treatment here is for a small particle (Rep � 1 and a/l � 1) in a steady 2-D channel
flow (Schonberg & Hinch 1989) and is extended to the case of a harmonic purely
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oscillatory flow. For a particle with a certain translation velocity U ′
p and angular velocity

Ω ′
p, the governing equations in terms of the position r′, time t′, disturbance velocity u′ and

disturbance pressure p′ are

∇′ · u′ = 0, (3.1)

ν∇′2u′ − 1
ρ

∇′p′ = ∂t′u′ + ũ′ · ∇′u′ + u′ · ∇′ũ′ + u′ · ∇′u′ + U ′
p · ∇′ũ′. (3.2)

The undisturbed velocity is ũ′ = sω(ũeiωt′ + ũ∗e−iωt′)ex, where ũ and its complex
conjugate ũ∗ are obtained by applying z′ = z̆′ + l/2 − d and ũ(z′) = ũ†(z̆′) − ũ†

(−l/2 + d) to the standard pulsatile flow profile for walls at z̆′ = ±l/2:

ũ† = cosh (
√

i αz̆′/l) − cosh (
√

i α/2)

2(1 − cosh (
√

i α/2))
. (3.3)

The transformations arise from placing the origin on a particle moving with the flow at a
distance d/l from the channel wall, leading to

ũ = sinh (
√

i αz′/2l) sinh (
√

i α(z′ + 2d − l)/2l)

1 − cosh (
√

i α/2)
. (3.4)

The above equations are subject to a no-slip condition at the particle surface and the
channel walls as well as regularity at the far field. That is, u′ = U ′

p + Ω ′
p × r′ − ũ′ on

r′ = a, u′ = 0 on z′ = l and z′ = l − d, and finally u′ → 0 as x′ → ∞, respectively.

3.1. Inner problem
For the inner problem, the dimensionless position, time and rate of strain are
defined as r = r′/a, t = t′ω and γ = γ ′(l/sω), respectively. The corresponding rescaled
pressure and velocities are p = p′(l/ρνsω), u = u′(l/sωa), Up = U ′

p(l/sωa) and Ωp =
Ω ′

p(l/sω). The undisturbed velocity is approximated by an oscillatory simple shear flow
(ũI = γ zeitex + γ ∗ze−itex), where

γ =
√

i α
2

sinh (
√

i α(2d − l)/2l)

1 − cosh (
√

i α/2)
. (3.5)

The momentum equations become

∇2u − ∇p = Rep(St ∂tu + ũI · ∇u + u · ∇ũI + u · ∇u + Up · ∇ũI). (3.6)

The boundary conditions for the inner problem are u = Up + Ωp × r − ũI on r = 1 and
u → 0 as r → ∞. The unsteady term is significant at leading order only if RepSt > 1.
Since this is not the case in experiments, this term is neglected, and the equations are
identical to those of the inner problem in Schonberg & Hinch (1989). Consequently,
the inner problem is quasi-steady, and unsteadiness at the channel scale manifests at the
particle scale only through the local shear rate. The solution at the far field (r → ∞) is

u = −5
2
(γ eit + γ ∗e−it)

rxz
r5 + O(r−3). (3.7)
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3.2. Outer problem
For the outer problem, the dimensionless time and rate of strain are the same as before,
while the position is defined as R = r′/l. Dimensionalizing (3.7) and rescaling the
coordinates with l, we find that the asymptotic matching condition for the disturbance
velocity implies that u′ ∼ κ3sω as R → 0. It therefore follows that U = u′/(κ3sω),
Ũ = ũ′/(sω) and P = p′(l/ρνsωκ3). The rescaled momentum equation is

∇2U − ∇P − α2∂tU

= Re(Ũ · ∇U + U · ∇Ũ) + 10π

3
(γ eit + γ ∗e−it)(ex∂Z + ez∂X)δR, (3.8)

subject to U = 0 at Z = −d/l and Z = 1 − d/l as well as U → 0 as X → ∞.

The last term on the right-hand side of (3.8) is the singularity at R = 0 due to the
particle. The contributions of u′ · ∇′u′ and U ′

p · ∇′ũ′ are less than the remaining terms
by a factor of at least κ2 and are hence neglected at this order. The equations for a steady
flow can be recovered setting t = 0 and α → 0 throughout.

In order to proceed, it is necessary to decouple the time-dependent forcing in (3.8) from
the inertial terms for tractability. To do this, a simplifying assumption that κ2 � Re � 1
is made. Although Re ∼ 10 for our experiments, the assumption is not thought to affect
comparison with experiments. This is suggested by the steady flow case, where results
derived assuming Re � 1 in Ho & Leal (1974) are valid at least till Re = 15. Next, we
choose the following ansatz for U and P:

U = U0eit + U∗
0e−it + Re(U1s + U1ei2t + U∗

1e−i2t) + Re2(. . . ),

P = P0eit + P∗
0e−it + Re(P1s + P1ei2t + P∗

1e−i2t) + Re2(. . . ).

}
(3.9)

With the above, the time dependence of U and P has been made explicit. That is, all the
newly defined U i and Pi terms are independent of time. This implies that only U1s and P1s
are relevant to long-term particle migration, with the rest averaging out to zero over a single
oscillation cycle. The ultimate objective is therefore the evaluation of U1s(0) · ez, which
directly yields the particle migration velocity in the laboratory frame. The oscillatory
nature of forcing, however, requires U0 and P0 to be evaluated first. Substituting the ansatz
in (3.8), the O(1) terms give

(∇2 − iα2)U0 − ∇P0 = 10π

3
γ (ex∂Z + ez∂X)δR, (3.10)

∇2P0 = −20π

3
γ ∂X∂ZδR. (3.11)

The above system of partial differential equations are converted into a system of ordinary
differential equations through a Fourier transformation defined as

Û0(k1, k2, Z) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
U0 exp(−i(k1X + k2Y)) dX dY. (3.12)

To obtain cross-stream migration, it is sufficient to consider only the Z component
W0 = U0 · ez. Equations (3.10) and (3.11) in Fourier space are therefore

(d2
Z − k2 − iα2)Ŵ0 − dZP̂0 = 0, (3.13)

(d2
Z − k2)P̂0 = 0, (3.14)
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where k2 = k2
1 + k2

2. The boundary conditions are Ŵ0 = 0 and dZŴ0 = 0 at Z = −d/l and
Z = 1 − d/l. The condition at Z = 0 is written as

(
P̂0 dZP̂0 Ŵ0 dZŴ0

)0+

0− = 5
6π

ik1γ (2 0 0 1) . (3.15)

To obtain the equations for U1s, the O(Re) terms obtained by substituting the ansatz in
(3.8) are gathered and averaged over a single time period. The resulting equation and its
divergence are

∇2U1s − ∇P1s = (W0∂ZŨ∗ + W∗
0 ∂ZŨ)ex + (Ũ∗∂XU0 + Ũ∂XU∗

0), (3.16)

∇2P1s = −2(∂XW0∂ZŨ∗ + ∂XW∗
0 ∂ZŨ). (3.17)

The Fourier transforms of the above equations give

(d2
Z − k2)Ŵ1s − dZP̂1s = ik1(Ŵ0Ũ∗ − Ŵ∗

0 Ũ), (3.18)

(d2
Z − k2)P̂1s = −2ik1(Ŵ0dZŨ∗ − Ŵ∗

0 dZŨ). (3.19)

Note that forcing occurs due to O(1) solutions interacting with the undisturbed flow. At this
order, the boundary conditions at Z = −d/l and Z = 1 − d/l are Ŵ1s = 0 and dZŴ1s = 0.
At Z = 0, P̂1s and Ŵ1s along with the corresponding first derivatives are continuous.

3.3. Evaluation of the migration velocity profile
From the exact solutions to (3.13), (3.14), (3.18) and (3.19), the lateral migration velocity
can be synthesized numerically using

Wp = W1s(0) =
∫ ∞

−∞

∫ ∞

−∞
Ŵ1s(0, k1, k2) dk2 dk1. (3.20)

Since Ŵ1s is even in both k1 and k2, the integration can be limited to the first quadrant so
long as the result is multiplied by a factor of 4. To assist convergence of the integral, the
analytical solution for k � 1 was used:

Ŵ1s(0) = 15k2
1α

2

64πk5 Re

[
iγ cosh(i3/2α(d/l − 1/2))

cosh(i3/2α/2) − 1

]
, (3.21)

where Re denotes the real part.
The variation of the particle migration velocity Wp with d/l for different values of the

Womersley number is shown in figure 1(b). For small Womersley numbers (α � 5), the
migration velocity profiles are very similar to one another and, more importantly, nearly
identical to the migration profile expected for steady flow, within a numerical factor of
exactly 1/2 (Asmolov 1999). The factor of 1/2 arises from the time average of the cos2 t
term over a single oscillation period. For large Womersley numbers (α > 5), the migration
velocity increases near the channel walls (d/l < 0.1) and becomes negligible in the central
region of the channel (0.2 < d/l < 0.5). The equilibrium focusing position can be located
by determining the null point for each of the migration velocity profiles. The value α = 5
is straightforward given that the undisturbed velocity profile (3.3) changes dramatically
beyond this threshold. Less so is the null point, which moves closer to the wall with
increasing α as a result of opposing effects (see figure 3a). Owing to increasing α, velocity
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gradients become larger near the walls and smaller near the centreline (3.3). This implies
that the wall interaction force becomes relatively stronger but is also confined closer to
the wall. Note that results in figure 1(b) are not valid for d/l → 0 and break down when
d/l ∼ κ , as this violates the assumed separation of scales between the outer and inner
problems. The oscillatory flow-induced inertial lift on a sphere close to a wall has been
addressed numerically by Fischer et al. (2004).

4. Experimental methods

Experiments were performed in a straight channel with a rectangular cross-section of high
aspect ratio fabricated from a piece of aluminium sheet metal through wire electrical
discharge machining. The total channel length L was 4 cm and the height was 2.5 mm.
The channel walls were wet sanded to smoothness, resulting in a width l of 300 μm
with <0.2 % deviation from parallel plates along the channel length. The top and bottom
walls of the channel were completed by adhering transparent packaging tape to the sheet
metal. The tape was perforated at the channel inlet and outlet, and microfluidic tubing was
inserted and sealed with epoxy.

The variable-frequency pulsatile flow in the microfluidic device was generated by
combining a steady flow component with an oscillatory flow component. The steady
flow component was generated at the inlet using a syringe pump. A volumetric flow
rate of 20 μl min−1 was used throughout this study unless specified otherwise. For
the given channel dimensions, this flow rate corresponded to a maximum flow speed
ū′

s = 0.54 mm s−1. The oscillatory flow component was generated at the outlet using
an oscillatory pressure signal generated by an external oscillatory driver. This was
accomplished by interfacing the microfluidic tubing at the outlet to a loudspeaker
diaphragm (Vishwanathan & Juarez 2020). The frequencies used here range over 25 �
f � 500 Hz, with the angular frequency defined as ω = 2πf . The maximum values of the
oscillatory velocities ranged from 34 to 89 mm s−1 and were much larger than the steady
flow velocity (sω � ū′

s).
Polystyrene particles were density-matched in an aqueous glycerol solution (23 %

w/w) with density ρ = 1060 kg m−3 and kinematic viscosity ν = 1.687 × 10−6 m2 s−1.
Three different suspensions with particle radii a = 5.4, 8.1 and 10.4 μm were used.
Particle suspensions were in the dilute limit with volume fractions ranging from 0.02 %
up to 0.05 %. Particles were imaged at the channel midplane (height) with bright-field
microscopy using a 10× objective lens with a depth of focus of 10 μm. The acquisition
frequency of 5 Hz and exposure time of 100 μs were used to monitor the rectified
component of particle displacement. The imaging location was at the lengthwise centre
of the channel, or 2 cm away from the inlet. The residence time of a particle is defined
as the shortest time to travel from the inlet to the region of observation and is given
by tR = L/2ū′

s = 37 s. However, during this time, the maximum total distance travelled
by a particle will take into account the oscillatory component, since sω � ū′

s, and so it
is estimated that LR = 4sftR. Therefore, here LR is referred to as the focusing distance
travelled before observation and ranges from 0.8 to 2.1 m.

5. Experimental results

The dynamics of inertial focusing in planar pulsatile flows is qualitatively demonstrated
in the space–time plot shown in figure 2(a). Here, suspended particle concentrations
at each position along the channel width are represented in greyscale, where light
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Figure 2. (a) Space–time plot of suspended particles migrating to equilibrium positions under pulsatile flow.
(b) Histograms of the particle distribution along the channel width for (left) steady flow and (right) pulsatile
flow. The focusing efficiency, denoted by F20, quantifies the fraction of particles found within a distance l/10
of both focusing positions. (c) Transient focusing efficiency for different steady flow velocities. The efficiency
reaches a steady value for all cases after t/tR > 1.5.

grey corresponds to a low concentration of particles and dark grey corresponds to a
high concentration of particles. Initially, particles are uniformly distributed along the
spanwise direction, as they are transported by a purely steady unidirectional flow. After the
oscillatory component is introduced (t = 0), concentration gradients emerge as particles
migrate across streamlines and localize into two dark bands.

Histograms of particle positions along the channel width, obtained from digital particle
identification and tracking techniques, quantitatively demonstrates the transformation from
a uniformly dispersed suspension to a focused suspension, shown in figure 2(b). The
particle number distributions are normalized by the total flux of particles observed. The
peaks of the distribution correspond to the localization of particles after migration across
streamlines. The peak positions are the measured equilibrium focusing positions, defined
by their distance df /l from the channel walls. Since this measurement depends on the local
width of the channel, particle tracking was used to extract the steady flow profile that was
then fitted to a parabolic curve, whose fitting constants determine the precise centreline and
local channel width. The focusing efficiency, denoted by F20, quantifies the total fraction
of particles located within a distance l/10 of both focusing positions and is indicated by
the shaded band shown in figure 2(b). Therefore, F20 ranges from 20 %, corresponding to
a uniformly dispersed suspension, up to 100 %, corresponding to the complete localization
of particles at the focusing positions.

When observing a fixed position along the channel length, the steady flow component
determines both the absolute time required for the particle distribution to reach steady
state and the eventual focusing efficiency. For example, the focusing efficiency for α = 4,
κ = 0.018, Rep = 0.014 and the steady flow speeds ū′

s of 0.27, 0.52 and 1.04 mm s−1

initially starts from 20 % and increases with time, as shown in figure 2(c). The residence
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times tR associated with the steady flow speeds are 74, 37 and 18.5 s, respectively. The rate
of increase in the focusing efficiency is initially identical for all steady flow speeds and
approaches zero by t/tR = 1.5. As expected, the steady state F20 increases with residence
time due to the larger focusing length travelled and reaches maximum values of 50 %,
45 % and 40 %, respectively.

The focusing positions and focusing efficiency are measured only after the particle
distributions reach a steady state. Henceforth, the data presented will correspond to a
steady state with a steady flow speed of ū′

s = 0.54 mm s−1 with a residence time of tR =
37 s. To ensure steady state, measurements are only made after pulsatile flow is applied for
100 s (t/tR > 2.5), after which the particle distribution is measured and synthesized over
another 100 s interval. The data (symbols) for focusing position and focusing efficiency
are mean values (multiple experiments and time-averaged during the 100 s interval). The
coloured regions represent the error, estimated here as half of the maximum difference
of any measurement from the mean. For example, the comparison between instantaneous
values and mean value are evident in figure 2(c).

The focusing positions df /l approach the channel wall as the Womersley number
increases above α > 5, as shown in figure 3(a). For small κ , there is good agreement
between experimental measurements (κ < 0.02) and theory (κ = 0), as indicated by
the dashed line. The theoretical focusing positions are determined by null points in
the migration velocity curves, shown in figure 1(b). For large κ , the deviation of
experimental measurements (κ > 0.02) from theory (κ = 0) increases with particle size.
The corresponding focusing position for a given Womersley number occurs farther away
from the channel wall, while preserving the qualitative theoretical (κ = 0) trend. That
is, the focusing positions continue to approach the channel wall for Womersley numbers
above α > 5. While the focusing position can be described quite accurately with advanced
computational methods for an individual particle, the evaluation of focusing efficiency
requires a comprehensive statistical analysis of particle positions for many particles across
all initial conditions. This is made possible only with an experimental approach.

The focusing efficiency was measured for different particle sizes and Womersley
numbers, shown in figure 3(b). Here, the focusing length of LR = 2.1 m was maintained
across frequencies by independently adjusting the amplitude and frequency such that
the product of the oscillatory velocity magnitude (sω) is equal to a constant. For small
Womersley numbers (α < 5), the focusing efficiency ranges from 50 % to 90 % for the
particle Reynolds numbers of 0.01 and 0.07, respectively. The high extent of focusing
efficiency, F20 > 80 % for Rep = 0.071, illustrates the effectiveness of oscillatory flows for
inertial focusing. For large Womersley numbers (α > 5), the focusing efficiency decreases
monotonically and approaches 20 %, or that of a uniformly dispersed suspension, for the
smallest particle size.

The focusing efficiency was also measured for different oscillatory amplitudes and
Womersley numbers, shown in figure 3(c). Here, the relative particle size of κ = 0.035
was maintained constant throughout. Once again, for small Womersley numbers (α <

5), the focusing efficiency has a similar range of 45 % to 90 % for the oscillatory
velocities of 34 and 89 mm s−1, respectively. For large Womersley numbers (α > 5),
the focusing efficiency decreases monotonically and approaches 20 % for the lowest
oscillatory amplitude. From both cases, for a fixed Womersley number, a larger sω or
κ value determined a higher extent in the F20 value, in agreement with inertial focusing in
steady flows.

A distinct advantage of studying inertial focusing in oscillatory flows compared to
focusing in steady flows is that the migration of individual particles across a large resident
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Figure 3. (a) The focusing position for different relative particle sizes as a function of Womersley number.
The experimental measurements (symbols) are similar to the analytical predictions (dashed) obtained from
figure 1(b). The discrepancy is due to finite particle size (κ > 0.02). (b) The focusing efficiency for suspensions
of different relative particle sizes as a function of Womersley number. The oscillatory velocity amplitude (sω)
is maintained constant across throughout. (c) The focusing efficiency for a suspension of a fixed particle size
as a function of the Womersley number for varying oscillatory velocity amplitude. The oscillatory velocity
amplitude is kept constant for a single curve but varied across curves. (d) The migration velocity profile for
a low (blue) and high (red) Womersley number. The experimental measurements (symbols) are compared to
corresponding theoretical results for point particles in an oscillatory flow (red solid and blue solid, (3.18) and
(3.19)), as well as being compared to point (black dashed) and finite-size (grey stripe; Asmolov et al. 2018)
particles in a steady flow.

path length can be clearly observed and tracked. Therefore, it is possible to accurately,
measure the average migration velocity profile across the channel width, something that is
not easily achieved in steady flows due to practical constraints of resolving single particles
over a large field of view. The guiding principle is, once again, the decoupling of travelled
distance from displacement (Vishwanathan & Juarez 2020). The averaged migration
velocity at each spanwise position for a low-frequency (α = 3.2) and a high-frequency
(α = 7.8) pulsatile flow and relative particle size of κ = 0.035 is shown in figure 3(d).
The migration velocity was measured by tracking the position of many individual
particles (N ≈ 100–1000 per experiment) during the transient regime, i.e. t/tR < 1 in
figure 2(c). Experimental measurements (symbols) compare well with analytical results
for point particles (solid, (3.18) and (3.19)) in an oscillatory flow. Here, symbols represent
average values and error bars represent one standard deviation from the mean. A precise
match with half the magnitude of numerical results for finite-sized particles (grey stripe,
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κ = 0.035; Asmolov et al. 2018) in a steady flow is observed for the low-frequency case.
See the comment about the numerical factor of 1/2 in § 3.3.

6. Discussion

The Womersley number is an important parameter for pulsatile flows (Dincau, Dressaire
& Sauret 2019). It defines the ratio of the channel width to the Stokes boundary layer
thickness, and determines the velocity profile for unsteady laminar flows. While inertial
focusing in pulsatile flows provides an opportunity for reduced channel lengths and
pressure drops in biomedical applications, it first requires understanding the direct link
between transient inertial forces and particle migration velocity profiles in unsteady
laminar flows.

In general, the focusing efficiency is independent of α for small Womersley numbers
(α < 5), as shown in figures 3(b) and 3(c). The constant focusing efficiency for these
cases is due to the migration velocity profiles, which are also independent for 0 < α < 5,
as shown in figure 1(b). However, for large Womersley numbers (α > 5), the focusing
efficiency decreased monotonically with increasing α, as shown in figures 3(b) and 3(c).
The decrease in the focusing efficiency for these cases is due to the migration velocity
profiles, which become increasingly weak at the centre of the channel for α > 5, as shown
in figure 1(b).

For focusing in steady laminar flows, the particle Reynolds number determines the
magnitude of the particle migration velocity, that is, a larger Rep corresponds to increased
focusing efficiency. In contrast, Rep = κ2α2/St does not always directly correlate with
improved focusing efficiency in unsteady oscillatory flows. In fact, above a critical
Womersley number (α > 5), the focusing efficiency decreases with increasing Rep if
only α is increased. Therefore, for the purposes of inertial particle focusing, it is best
to maintain α < 5. For α > 5, although the focusing efficiency decreases, the migration
velocity profile suggests that particles migrate away from the channel wall with speeds
that increase directly with Womersley number. This effect could be leveraged in efforts to
mitigate the fouling of surfaces without affecting the bulk concentration profile.
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