COMPACTIFICATIONS OF HARMONIC SPACES

C. Constantinescu and A. Cornea

Many results of the theory of Riemann surfaces derive only from the pro-
perties of the sheaf of harmonic functions on these surfaces. It is therefore
natural to try to extend these results to more comprehensive structures defined
by means of a sheaf of continuous functions on a topological space which should
possess the main properties of the sheaf of harmonic functions on a Riemann
surface. The aim of the present paper is to generalise some known results
from the theory of Riemann surfaces to spaces endowed with sheaves satisfying
Brelot’s axioms [2], which we call harmonic spaces. In order to do so we had
to introduce and to study the maps, associated in a natural way with this
structure, called harmonic maps; they replace the analytic maps between
Riemann surfaces. In this general frame we reconstruct the whole theory of
Wiener compactification as well as the theory of the behaviour of analytic
maps at the Wiener boundary.

The first paragraph contains some simple remarks about the Dirichlet prob-
lem which could not be found in the existing literature. In the second para-
graph we introduce and study the operator & and the Wiener functions which
represent the main tool of the present paper. The harmonic maps are studied
in the third paragraph. In the fourth paragraph we treat some problems con-
cerning general compactifications and in the fifth one the particular case of
Wiener compactification is considered. This compactification is closely related
to Feller’s ideal boundary. The last paragraph is devoted to the problem of
the behaviour of the harmonic maps at the Wiener boundary.

Without mentioning the source we have borrowed intensively ideas, methods
and usual -tricks from various papers on the theory of Riemann surfaces. For
many of them we are indebted to K. Hayashi, M. Heins, Y. Kusunoki, S. Mori,
M. Nakai. A detailed bibliography in this direction may be found in our book
“Ideale Rénder Riemannscher Flichen”, Springer Verlag, 1963.
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2 C. CONSTANTINESCU AND A. CORNEA

§ 1. Preliminaries

1.1. We call a harmonic space a locally compact space® on which it is given
a sheaf of continuous functions, called harmonic functions, satisfying the axioms
1, 2, 8 from [2]. We denote by B (resp. ) the class of harmonic spaces on
which there exists a positive potential (resp. a positive harmonic function).

We shall denote in this paragraph by X a harmonic space on which there
exists a positive superharmonic function, i.e. XePBUPH. For any open subset
U of X we denote by aU the boundary of U. Let U be an open subset of X,
UsP. For any real function f** defined on a set containing oU we denote
by FFEX=FF =Fs (resp. LF* = S%=.F) the set of lower bounded hyper-
harmonic (resp. upper bounded hypoharmonic) functions s on U such that
non-negative (resp. non-positive) outside a compact set Ks of X and for any point
yeoU

lim inf s(x)=> f£(y) (resp. lim sup s(x) < F(3)).

ERgl

Any function of F/* (resp. £¥'*) possesses a non-positive subharmonic
minorant (resp. non-negative superharmonic majorant). If se&f %, se "
then $<s5. This follows for the non-compact components of U from Co-
rollary 1 in [3] and for a compact component of U (Theorem 6 of [3]). We
denote by Hy' * =H7 = Hy (resp. Hy** = H} = Hy) the greatest lower bound of
FZ#* (resp. the least upper bound of % *). The restrictions of H}**, Hf ¥
to any component of {J are either differences of non-negative harmonic func-
tions or identically +  and we have H»*< H%*. The function f is called
resolutive (with respect to (U, X)) if H?'* and Hf ¥ are finite and equal; in

that case we denote by H? *¥=Hjf = Hy their common value.

Lemma 1.1. Let U, U be open subsets of X, UCU', U B, and let f be a
real function on U'N3U. If we denote by f, the function on 29U equal to f on
U' N3U and equal to 0 on 93U — U' we have

HYYV =HLX HYY = HE X
- [} ’ - . ==Jo .
Obviously ¥ V' c. % and therefore Hf *< H}'V. Let s, be a positive super-

harmonic function on X. For any €% ¥ and ¢>0 we have S +esoe. 757

*) We don't require that the space is non-compact and connected.
*¥) f may take the values +oo.
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COMPACTIFICATIONS OF HARMONIC SPACES 3

Hence
H7V'<s5+es.

e and § being arbitrary we get H7 Y < Hy*.

LemmAa 1.2, Let U, V be open subsets of X, VU, and let f be a real
Sfunction on dU. If we denote by f' the function on U equal to f on dU and
equal to H¥* on U then

on V.

We may suppose U is connected. Let s€./7* Then s 77 and
therefore Hp *< Hf**. If Hf * = — o the required equality is obvious.
Suppose now Hy'* finite. Let s 75’ *, s'€.75*. The function on U equal to s
on U—V and equal to s—H/*+ min (H/'%, s') on V is hyperharmonic and

belongs to .77’ *. Hence
Hp*<s—H}*+5.

s and s' being arbitrary we get Hy *< Hp ™.
If ﬁ}"x = + o then for any s' .75 ¥ the function equal to + o on U-V

-and equal to s’ on V belongs to % *. Hence s'= + © and Hp = + o,

THrEOREM 1.1. Let U be an open subset of X, UcP. For any non-negative

Borel-function f on oU we have
HYY = HIX
Let s be a finite positive continuous superharmonic function on X. From

Corollary 3 in [1] it follows that for any natural number 2 the function

min (f, ns) is resolutive. Hence

Hf =lim Huf, ns) < Ef < ﬁﬁ

n—-»x

CoroLLARY 1.1. If s is a non-negative superharmonic function on X and
U an open subset of X, U, then

U, X -Ux
Hs’ =RSX *)

on U.

*) See [2], page 80, definition 9.
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4 C. CONSTANTINESCU AND A. CORNEA

Obviously A" *< R¥V. Let s€5'*. The function on X equal to s on
X — U and equal to min (s, 5) on U is a non-negative superharmonic function.
It follows Ri V<5, Ri"V<H?* on U.

LemMa 1.3. Let U be an open subset of X, UcB, and let f be a non-
negative real function on U such that Hy'* is finite. If u is a continuous

function on U, harmonic on U, |u| < H}~ on U, then u is resolutive and

wu=Hy™"
Since

H_ s <H,< Hy< Hy,
u is resolutive by Theorem 1.1.
Let s€.#s. Then s—u& 74 and therefore
Hf=Hf-wsu< Hf-u+ Hi< s — u+ H,.
s being arbitrary we get
Hi< Hf - u+ Hy, u< Hy.
Similarly we deduce #=> H,.

1.2. A potential p on a non-compact connected space X is called an Evans

potential if there exists a positive potential p' on X such that %,— converges

to infinite at the Alexandroff point of X (here %« =.) p is called also an

Evans potential associated with p'.

LemMma 1.4, If X is connected and mnon-compact, then for any posttive
potential p' there exists an Evans potential associated with p', continuous if p'

is continuous and finite.

The existence of an Evans potential p associated with p’ was proved in Lemma

1 in [1]. Suppose now p' continuous. Let X™* be the Alexandroff com-

b

pactification of X. The function equal to e on X and equal to o« at the
Alexandroff point of X is lower semi-continuous. There exists therefore a con-
tinuous non-negative function f on X* equal to ~ at the Alexandroff point of

X and smaller than ‘ﬁ? on X. R¥y is a continuous superharmonic function
Theorem 3 in [3]. Since it is dominated by p it is a potential and since it domi-
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nates f' it is an Evans potential associated with p'.

1.3. Let U be an open subset of X, f be a real function on U/ and x < aU.
We say that f is associated with zero at x if there exists a regular neighbour-
hood V of x and a positive superharmonic function s defined on a neighbourhood
of V such that | /i <H¢""Y. If f is harmonic on the trace on U of a neighbour-
hood of x then f is associated with zero at x if and only if there exists a re-
gular neighbourhood W of x such that f is bounded on UNW and f=H; """,
Indeed if f is associated with zero at x, then f is bounded on a neighbourhood
of x since H{""Y < H* and by Lemma 1.3 and Lemma 1.2, f = H#""'" for any

Wc V. The converse is trivial.

LemMMA 1.5, Let U be a domain on X, UcB, and n a harmonic function
on U associated with zero at a boundary point y of U. For any Evans potential
D on U we have

lim inf (#(x) +p(x)) =0.

Fad’]

In¥.U and u is

Let V be a regular neighbourhood of y such that #=H
bounded on UN V, and let f be the function on 3(UN V) equal to |zl on UN2V
and equal to 0 on VNoU. Then |u|< Hf"" %

Let p’' be a positive potential on U such that p is an Evans potential as-
sociated with p' and let I be an ultra-filter on U converging to y. If p’ con-

verges to zero along Il then by Lemma 2 in [1]
0 <limylul <limy HF""X =0, limy (% + p) =0.
If ' doesn’t converge to zero along 1 then p converges to infinite along Il and
limy (#+p)=0.

THEOREM 1.2. Let U= P be an open set and u be a non-negalive harmonic
Sunction on U associated with zero at any boundary point of U. The function
son X equal to u on U and equal to 0 on X— U is nearly subharmonic and

the least upper bound of the family of its continous subharmonic minorants.

Let V be a regular domain, U, be a component of U and p. be an Evans
potential on U.. The function H{ * + ¢p.— u is superharmonic on VN U, for

¢>0 and for any boundary point y

lim inf (H$ *(%) + ep. (%) — u(x)) = 0.

@Y
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6 C. CONSTANTINESCU AND.A. CORNEA

This is obvious for- ye U N3V and for ye VNnoaU. it follows from the pre-
ceding lemma ep. being an Evans potential. Hence H:'* + ¢p. — u is non-nega-

tive. ¢ being arbitrary we get

u< Hg ™
on VNU,. U. being arbitrary and s equal to 0 on X— U it follows

s<H*
on V.

For any ¢>0 and any finite system {U,, ..., U} of components of U/ we
denote by se,.., the function on X equal to 0 on X _,«é U, and equal to
max (# — ep,;, 0) on U, where p,; is a continuous Evans potential on U. It is
easy to see that the functions se,...., are subharmonic and continuous and s is

their least upper bound.

§ 2. Harmonizable functions

2.1. In this paragraph X denotes a harmonic space on which there exists

a positive superharmonic function, ie. X R U .

Let U be an open subset of X, U, and / be a real function defined on
a set containing U — K, where K is a compact subset of X. We denote by
DP X =Hf=Hs (resp. £5¥=H7 =Hy) the set of hyperharmonic (resp. hy-
poharmonic) functions s on U such that: a) s possesses a non-positive subhar-
monic minorant (resp. a non-negative superharmonic majorant) ; b) s dominates

(resp. is dominated by) f outside a compact subset Ks of X; c) for any y=aU

lim inf s(x) >0 (resp. lim sup s(x) <0).

x>y Ty

It follows from the definition that %7 ¥, #7'* depend only on the values taken
by f in a neighbourhood of the Alexandroff point of X. If f and f’ coincide
outside a compact subset of X we have ¢ * =7, X, Z7¥=#%* I seZ@i*,
se#7¥ then s<s. This follows for a non-compact component of U from
Corollary 1 in [3] and for a compact component of U from Theorem 6 in [3].
We denote by y'* =hf =hy (resp. by ¥ = b} = hs) the greatest lower bound
of Z¢ ¥ (resp. the least upper bound of #7-¥). Obviously 47 *<h;** and their
restrictions to any component of U are either differences of non-negative har-

monic functions or identically = . If U'is a component of U and X' the
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COMPACTIFICATION OF HARMONICS SPACES 7

component of X containing U then iy’ * =hf**, hf"* = hj*

If s is a non-negative superharmonic function on X, %Y'*¥ is associated with
zero at any boundary point of U and for U= X it is the greatest harmonic
minorant of s. For the first assertion it is sufficient to see that for any rela-

—

tively compact open subset V of X, (RY™")o eyt

LemMma 2.1. Let U be an open subset of X, U<, and let f, f' be real
functions defined on U outside a compact subset of X and « be a positive number.
We have:

a) h-g= —hy;

b) %ar=ahys, o= aks;

c) hpp < hg+ hy, Brog=hs+ he*™®, whenever the second part of
the inequalities has a sense;

d) if F< /' outside a compact subset of X then hy < hy, by < hy;

e) if hy, hy (resp. hy, hy) are finite then

S)HRR

ﬁmax o fY = ﬁf \Y ﬁf’ (resp. kmin S Fy = Z1_f/\ _]@f
The only non-trivial relation is
Emax(f,f’) < —hf\/ 7;]'.

Let s€%ys, s€#ys. Then hfNhy+s—hs+s' — hf €Paaxs.r) and the in-
equality is proved s and s’ being arbitrary.

LemMaA 2.2. Let U be a domain on X, Uc B, and f be a real function
defined on U outside a compact subset of X. If ﬁ}"x is finite then there exists
a non-negative superharmonic function s on U such that for any ¢>0 hy'* +es

677} Y. If U= X then there exists a potential s with the same property.

Let {s+} be a sequence of #s such that
s=2>)(sp— —ﬁf)
n=1

is convergent at a point. This function fulfils the conditions of the lemma.

Suppose now U=X. Let K, be a compact set such that s,=f on X — K,.

*) See [2], page 82, definition 10.

*¥) Here f+f’ is defined arbitrarily if the operation has no sense.
*¥%%) If u, v are differences of non-negative harmonic functions »\ v (resp. u A v)
denotes the least harmonic majorant (resp. the greatest harmonic minorant) of % and v.
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8 C. CONSTANTINESCU AND A. CORNEA

Let { X} be a pseudo-exhaustion of X (See Theorem 8 in [3]) such that XD K;
for j<2m. p,=RI™j, is a potential (Proposition 10 in [2]). It follows that

2

is also a potential (Lemma 3, [3]). There exists a potential p, infinite on
X— U X, by Theorem 9 in [3]. We denote
n=1

b=po+ é?n

n=1

p is a potential and we have for ¢>0, mz—i, j=1and x€ Xm+2j— Xm+j

_ _ 1 2m+23 1 2m+2j
Re(x) + ep(2) = hr(x) 4 = 20 Palx)= = ) saulx)=f(%).
M n=m+2j M pn=m+2;
It follows immediately
het+ep=f

on X— XmH-

We denote by & the set of open relatively compact sets of X. For any
U@ we denote

Gy ={U's@|U DU}
{Bv}vew is a basis of a filter on . We denote this filter by G*.

LeEmMmMa 2.3. Let U be an open subset of X, U<, and f be a real function
on X. Then
1Y% < lim inf HY™"™ < lim sup H¥™"* <Tf-*.
v, &* v, @*
Let se?/?}”x. There exists Ve ® such that s=>f on U— V. For any
V'e®r se 74 ¥, where f, is the function on X equal to f on U and equal
to 0 on X—U. Hence by Lemma 1.1

Unv, U FFUAV, X
f

= Hjy, <s, lim sup

IFUAV, U
f
v, @

<s, lim sup BV < hy.
v, @*

Lemma 2.4. Let U be an open subset of X, U, and f be a non-negative
Sfunction on oU. If u=H%* is finite then Ry ¥ =0.

We may suppose U connected and f lower semi-continuous. For any

se LY u—s e L. Hence
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COMPACTIFICATIONS OF HARMONIC SPACES 9
R *<u-s.
s being arbitrary, k3 * vanishes by Theorem 1.1.

Lemma 2.5. Let U, U' be open subsets of X, UCU' B, and f be a real
Junction defined on U' outside a compact subset of X. If f'= ﬁ?"x is finite then
RS X =ik

If sez#™ and s €% " then s+s' — 7% *. Hence

Bpr<s+s~f, RPE<HRY

In order to prove the converse inequality we suppose U’ connected. Let
s'e 7%, ' superharmonic, s € 7y %, 5 €. %%s,0. The function on U’ equal
to s’ on U'—U and equal to min (s, s+5) on U is superharmonic and belongs
to 77 *. Hence f'<s+75 on U. Since § is arbitrary we get f' <s+ Huu%s',0)-
By definition there exists a non-positive subharmonic minorant S of s’. Since
s’—S is a superharmonic function belonging to .%o Honoesr, oy is finite.
By Lemma 2.4 and Lemma 2.2 there exists a non-negative superharmonic func-
tion s, on U such that for any ¢>0 eso> Huaxs',n on U outside a compact set

of U'. Then s+eso€ ##* and we have, ¢ and s being arbitrary, hpr* < 77 .

LEMMA 2.6. Let XeB, ACX and f be a real function defined on X
outside a compact subset of X, such that LZ}‘ is finite and non-negative and [ is
non-positive quass everywhere® on A outside a compact subset of X. If we denote

u=h¥ then R¥*™ is a potential.

Let p be a potential such that #—pe& #; (Lemma 2.2). There exists a
compact set K such that #—p<f on X— K and f<0 quasi-everywhere on
A - K. It follows

Ri<Ri+p.

LemMma 2.7. Let U be an open set, U=P, and f be a continuous finite
Sunction on U. If hy'Y or BPY or both functions Ry ~, BF** are finite, f is
resolutive with respect to (U, X). If f is resolutive with respect to (U, X) then

BpU =Thp Y+ HP Y, BRU=hPF+ HEE

Suppose 77’V does not take the value + «. Let seZ#" and s be a non-

*) See [2], page 124, definition 21,
*¥) See [2], page 80, definition ‘9.
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positive subharmonic minorant of s. Then s—se& %7 ¥ and &7 * does not take

the value + . Simflarly if KyU does not take the value — « then A% * does
not take the value — .

Suppose now 4% * does not take the value + . Let se€ %7 % S be a non-
positive subharmonic minorant of s and s, be a positive superharmonic
function on X. Since there exists a compact set K on X such that s>f on
U - K there exists a positive number a such that s— S +as, E‘?}]’ X It follows
that H7'* does not take the value + . Let s;e%/'%, s,e.##*  For any
e>0, si+s:+esoe Z4 U and therefore

7135’ U< S1+ Sz 1 eSo.
s;, s; and ¢ being arbitrary we get
U<+ B

Similarly if #7* does not take the value — o then Hj7'* does not take the

value — o and
U= hy X+ Hy X,

From these considerations we see that if #/*" (resp. #%'V) is finite then
H$* (resp. H{*¥) is finite and f is therefore resolutive (Theorem 1.1). If
7y * and K7 ¥ are finite then Hf'* (resp. H7'*) does not take the value + o
(resp. — o), these functions are therefore finite and f is resolutive.

Suppose now f resolutive. Let se Z7#'V and se ¥ *. Then s—sezp*
and therefore

s—s=>n¥*
s and $ being arbitrary we get

U= T+ HY

The converse inequality follows from the first part of the proof. The proof of

the second equality is similar.

2.2. Let U be an open subset of X, U< P and f be a real function defined
outside a compact set of X. We say that /' is associated with zero at the
Alexandroff point of X along U if hsf =0. If UC V&P and f is associated
with zero at the Alexandroff point of X along V then it is associated with zero

at the Alexandroff point of X along U. A potential on X is associated with’
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zero at the Alexandroff point of X along X. If X&' then any non-negative
superharmonic function s on X is associated with zero at the Alexandroff point
of X along any open subset U of X, U= . Indeed let §&.575°*; the function
on X equal to s on X~ U and equal to min (s, ) on U is superharmonic, non-
negative. Since X&PB it must be equal to s. We deduce s=H5'*, 70" ¥ =0
(Lemma 2.4).

THEOREM 2.1. Let U be an open subset of X, U< B, and s be a non-negative
superharmonic function on X. The following two conditions are equivalent:
a) s is associated with zero at the Alexandroff point of X along U

b) any superharmonic function s' on U is non-negative if

lim inf s'(x) =0

x>Y

Jfor any y €0U and if there exists a positive number a such that s'= — as out-

side a compact set of X.

a=b. By Lemma 2.2 there exists a non-negative superharmonic function s,
on U such that for any ¢>0 eso € Zo'*. Then s' +esoe Zs* * for any ¢>0. Hence
s' +eso=>0. ¢ being arbitrary, s’ is non-negative.

b=a. We may suppose U connected. Let p be an Evans potential on U.
Since %Y* ¥ is associated with zero at any boundary point of U we see by Lem-
ma 1.6 that p — #Y'* satisfies the conditions of 5) with « =1. Hence it is non-
g’,X

negative and %¢’* vanishes, being dominated by a potential.

2.3." Let U be an open set on X, U<, and f be a real function defined
on U outside a compact set of X. The function f is called harmonizable with
respect to (U, X) if Wy ™, kf'* are finite and equal; in this case we denote
by W5* = hf = hy their common value. Instead of harmonizable with respect to

(U, U) we shall say harmonizable on U.

TueoreM 2.2. Let U be an open subset of X, U< B, and f, f' be real functions
defined on U outside a compact set of X, harmonizable with respect to (U, X)
and let « be a real number. Then af ®, f+1, max (f, '), min (f, f') are also
harmonizable with respect to (U, X) and we have

*) Here of and f-f' are defined arbitrary when the operations have no sense.

https://doi.org/10.1017/50027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

12 C. CONSTANTINESCU AND A. CORNEA

haf = ahy, hpvs = hs+hp,
hmax(f, f= hf \% h‘f” hmin(f.f’) = hf A hf’;
hf=0=h=0.

This theorem follows immediately from Lemma 2.1.

TueoreM 2.3. Let U, U' be open subsets of X, UCU', U' P, and let f be
a real function defined on U' outside a compact set of X. If f is harmenizable
with respect to (U', X) and if we denote f' =h%'*, f and f' are harmonizable
with respect to (U, X) and rPE=n%x

In order to prove that /' is harmonizable with respect to (U, X) we may
suppose f non-negative. There exists by Lemma 2.2, a non-negative superhar-
monic function s’ on U such that /' —es'e #%* for any ¢>0. Let p be an

X

Evans potential on U. Since %7 * is associated with zero at any point of U'N

2U and since it is dominated by /' on U, B * —p—es'e #% %,
7’1}};}(—1)— ss’gltgfx.

p and ¢ being arbitrary f’ is harmonizable with respect to (U, X).
The other assertions of the theorem follow now from Lemma 2.5.

CoROLLARY 2.1. Let ¥ be a set of superharmonic functions on X, f be the
greatest lower bound of & and U be an open subset of X, UcB. If f pos-
sesses a non-positive subharmonic minorant it is harmonizable wilh respect to
(U, X).

If X&P then f is associated with zero at the Alexandroff point of X along
U. If X, by the preceding theorem it is sufficient to prove that f is harmo-
nizable on X. Obviously s < his<s for any s€.#. Hence hre #y, Tis< ky.

CoroLLARY 2.2, Let X B, U be an open subset of X and f be a real func-
tion defined on X oulside a compact set such that f vanishes quasi-everywhere
on X — U outside a compact set and |f| is dominated by a superharmonic func-
tion on X. If f is harmonizable on X and h}'* =0 then h¥*=0.

Let us denote u = hf;{. By the theorem
hy* =hni3*=0.
Hence by Lemma 2.7 and Corollary 1.1

U,U U, x 5X-U
u=hu =H1‘ » u=Ru .
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From Lemma 2.6 it follows that # is a potential. Hence % = 0.

TureoreMm 2.4. Let U, U' be open subsets of X, UCU', U< B, and let f be a
real function defined on U outside a compact subset of U'. If f is harmonizable
with respect to (U, U') and there exists a superharmonic function on X domina-
ting | /| then f is harmonizable with respect to (U, X). If WY =0 then hy* =0.

Suppose firstly f harmonic on U and non-negative. Since f is dominated
by a superharmonic function on X, 7% * is associated with zero at any point of
oU. Hence for any Evans potential p on U, %¥* —pe #%* and f is harmoniz-
able with respect to (U, X),

In virtue of Theorem 2.2 and the above considerations we may suppose
that 7Y =0. In this case again by Theorem 2.2 we have A7} =0. Since
B ey we get By =0. f is therefore harmonizable with respect to
U, X).

THEOREM 2.5. Let X<, U be an open subset of X, s be a non-negative

superharmonic function on X such that RY ™Y

is a potential and f be a real
function defined on X outside a compact set, |f1<s. If f is harmonizable witi
respect to (U, X) then f is harmonizable on X. If hy'* =0 then hj'* =0.

We denote u =75 * — kf** (resp. = =i} if K5 *=0). The functions 7",
hF X, Wi are finite, since |f] <s, and by Lemma 2.5. we have Ay *=0. By

Lemma 2.7 and Corollary 1.1 we get
u=hyU=Hy?*, u=Ri U<2R¥ "
Being dominated by a potential, # vanishes.

CoroLLARY 2.3. Under the same hypothesis if f is harmonizable on U then
f is harmonizable on X. If hy’® =0 then hf'* =0.
The assertion follows immediately from the theorem using Theorem 2. 4.

COROLLARY 2.4. Let X<= B, U be an open subset of X, such that X— U is

compact and f be a real function defined on X outside a compact set. If f is
harmonizable with respect to (U, X) then f is harmonizable on X. If hy* =0
then hy'* =0.

Let s be a superharmonic function from #[;*. It can be shown like in

[2] (Theorem 14) the existence of a positive superharmonic function s' on X
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14 C. CONSTANTINESCU AND A. CORNEA

which dominates s on U outside a compact subset of X. Since RX ™V is a
potential the conditions of the theorem are fulfilled.

CoroLLARY 2.5, Let X€B, Uy, U, be open disjoint subsets on X and f,
J» be harmonizable functions on X. If X— UU U, s compact then the function

equal to f1 on U: and equal to f» on U, is harmonizable on X.

By Theorem 2.3 this function is harmonizable with respect to (U;, X) (i =
1, 2) and therefore with respect to (U, U Us, X).

Lemma 2.8, Let X< P and let f, g be real finite functions on X, g=0, and
locally bounded such that g and fg are harmonizable on X. Let a, [ be real
numbers a < B and A= {x€ X|f(x)<a}, B={x e X|f(x)=B}. Then min (RS, RY)

is a potential.

Denote

7= a—gﬁ’ f4=max(r~f

T—a

0) fr = max (][;:; R 0)-

The functions gf., &/ are harmonizable. We put # = hgry, v = hes,. Then
R e, v) = Bu N o = 8 NV = Rinin f4, 2fm) = 0.

min (%, v) is therefore a potential. On the other hand, by Lemma 2.2 there
exists a potential p such that

gfasu+p,  gfe<vtp.
Since f4 (resp. fz) is not smaller than 1 on A (resp. B) we have
Ri<u+p, Re<v+p,
min (R, RZ) <min (%, v)+p,
and min (R7, RS) is a potential being dominated by a potential.

THEOREM 2.6. Let X<, X connected, g be a non-negative locally bounded
harmonizable function on X, f be a real finite function on X and for any real

number a denole
A, ={xe X|f(x) = a).

If fg is harmonizable then I@;‘“ is a potential except for a countable set of «.
Conversely if f is continuous and bounded and the set of « for which RZ® is a

potential is dense then fg is harmonizable.
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Let us denote for any real number « s, = R3*. Then hs, = h3, < hg.
Suppose firstly that fg is harmonizable. From the preceding lemma we

see that for any two different real numbers a, B

hsy N Rsy = B g, $3) = 0.
Therefore
Zhsa =V hsa S hg

and ks, is different from zero only for a countable set of a.

Suppose now that f is continuous and bounded and let Z denote the set of
real numbers « for which §. is a potential. We may suppose 0 <f<1. Since
lg — he! is dominated outside a compact set by a potential the function Rz* is
a potential (resp. the function fg is harmonizable) if and only if Rz% is a
potential (resp. fhe is harmonizable) and therefore we may suppose g is harmonic.

Let ¢ be a positive number and {a;}=i=» numbers from Z such that

O=a<ai< - <ay=1,

a;i — ai-1<e (z=1,2,...,n),
Fi={xe Xlai-1< f(x) <a;},
Gi={xe X|ai-1 < f(x)<ai}.

On X—F, ri= R is equal to Rg%—"“* and therefore smaller than s..,+ Sq,.

Hence R} ™ is a potential. We have
1\ X—-Fji =
2iai-i(ri = Ry = su) < fg < Deiri,
i= §=1
n -
?—ll(ri_ Y —sy) < &

Since Ry ™ and §,, are potentials we deduce

M:

n
ai-1hr; < L’fg < ﬁfg < Emhn,
=

i

)
-
-

b

hri<hg, hrg—Rrg<e>hy <eg.
i=1

n
-

¢ being arbitrary fg is harmonizable.

2.4, Lemma 2.9. Let f be a continuous finite function on X and U an open
subset of X, Ue .

a) f is harmonizable on U7 if and only if it is harmonizable with respect to
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16 C. CONSTANTINESCU AND A. CORNEA

U, X.
b) If XB and f is harmonizable on X then f is harmonizable on U.
c) If Xe P, X— U is compact and f is harmonszable on U it is harmonizable

on X.

a) follows immediately from Lemma 2.7. b) results from Theorem 2.3 and
from a). c¢) may be obtained using Corollary 2.4 and a).

A continuous finite function f on X is called a Wiener function if there exists
an open set U with compact complement, U< B, such that f is harmonizable on
U. From the preceding lemma the last assertion is equivalent to the assertion
that f is harmonizable with respect to (U, X).

If X is connnected and belongs to $ — P then any continuous function on

X dominated by a superMarmonic function is a Wiener function.

THEOREM 2.7. If f is a Wiener function and U an open set, U<, then
f is harmonizable on U.

By the definition there exists an open set V with compact complement,
Ve, such that fis harmonizable on V. If UC X — Vthen U is relatively com-
pact and f is harmonizable by Lemma 2.7. On the contrary case let K be a
compact non-polar subset of UN V. Then X— K& P by Theorem 7 in[3]. By
b) of the preceding lemma s is harmonizable on V — K and by c) it is harmoniza-
ble on X— K. Again by b) f is harmonizable on U-- K and by c) on U.

ReMARrk. The restriction of a Wiener function to an open subset U is a
Wiener function on U. If XEP, a continuous finite function is a Wiener func-
tion if and only if it is harmonizable on X. We denote by #(X)=# the set
of all Wiener functions on X. From Theorem 2.2 and Theorem 2.7 we see that
# is a real vector space and from fi, r € # it follows maxfy, 12), min (fi, f2)
e#. If X belongs to B we denote by #o(X)=H, the set of Wiener functions
f for which h} vanishes and call the functions of #, Wiener potentials. #,
coincides with the set of continuous finite functions whose moduli are dominated
by a potential, (Lemma 2.2).

Lemma 2.10. If X (D —-P)U (B — D) then any real finite continuous func-
tion f on X such that |f| possesses a superharmonic majorant is a Wiener

Junction.

Let s be a superharmonic majorant of |f|. Since for any U, s is as-
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sociated with zero at the Alexandroff point of X along U we have
0<HF<h{*=0
and f is harmonizable with respect to (U, X).

Lemma 2.11. Let f be a Wiener function on X and U be an open subset
of X, UcR. If the function g on X equal to f on X— U and equal to H} * on

U is continuons then it is a Wiener function.

Suppose firstly X< P and let /' be a locally bounded harmonizable function
on X such that H%* is finite and g’ be the function on X equal to /' on X-U
and equal toH%* on U Denote %= hys. There exists a potential p dominating
If'—ul. Then p dominates |g'— Rivi + R uyvol and &' — Ruyd + Ry, is
harmonizable. Since RY;y, R¥ZJy, are harmonizable (Corollary 2.1), g' is
harmonizable.

Suppose now X& P and let K be a non-polar compact subset of X—U.
Then X— K= PB. We denote by g the function on X — K equal to 0 on (X - K)
~ U and equal to Hy'* on U, where ¢ is equal to f on KN9U and equal to
0 on 8U— K. Since |f| possesses a superharmonic majorant on X— K, Hy' ¥ is
associated with zero at any point of 83U — K. Hence by Theorem 2.2, Theorem
1.2 and Corollary 2.1, g is harmonizable on X— K. We set /' = f — g, and denote
by g the function on X— K equal to /' on (X—K)— U and equal to H%* ¥
on U. Since f! is harmonizable on X — K, g' is harmonizable on X ~ K by the
above proof. From the equality g=g'+ & it follows that g is harmonizable

on X— K. g is therefore a Wiener function.

Lemma 2.12. Let X be non-compact, X P, and f be a real function on X,
whose modulus possesses a superharmonic majorant and such that
lim supg* Hy <0%.
Let further g be a non-negative harmonizable function on X and F be a closed
set such that g<f on F. Then R} is a potential.

Let us denote u = k.. There exists a potential p dominating |% — g| outside
a compact set. It is sufficient to prove that R4 is a potential. Let us denote
S'=u—fand G=X-F. Since |f| possesses a superharmonic majorant there

*) @* is the filter defined in the page 8.
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18 C. CONSTANTINESCU AND A. CORNEA

exists a superharmonic majorant s for |/'].

Let U@, sy, se #3°U"X. The function R{ +5 — s is hyperharmonic
on G, non-negative on UN G and outside a compact subset of X and its lower
limit at any point of oG — U is non-negative. Hence this function is non-nega-
tive. §, s being arbitrary we get

h?uU,XShg.x+ Rg‘/

on G. If we denote for any U@ by s, the function on X, equal to 0 on
X~-GUU and equal to AS°"'* on GU U we get from the above inequality

su < Sy + Rg,
sv < hst < h§¢1
since RY is a potential and sy is nearly subharmonic.
We have for U, U'e @, UC U, U sufficiently large,
ﬁ?" @nU" (R?g_vl)auv +p.
Since by Lemma 2.3
so=h""" ¥ = lim (R¥™"")eur
U, @
we get

11[511 sggp I—{}, (@nU" <sec+p< h;‘; +p

on GUU. Since

U ,
Hf'u(anu ) %—- I_{?u(anﬂ')

we have
lim sup (lim sup H7"¢""") + 1 ; Uu@nlY) x
u< n sup (lim sup Hy )+hrz3'agp (luvr)’%qp H5 ) < hs, + 0,
RU<RI+p,
where v denotes hi,. Since by Lemma 2.6, R} is a potential, R} is a potential.

TreOREM 2.8. Let X be non-compact, X< P, and f be a finite continuous
Sunction on X whose modulus is dominated by a superharmonic function. If

limg* HY
exisis then f is a Wiener function and
limg* Hf = h¥.

Let s be a continuous finite superharmonic majorant of I71.
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Suppose firstly
limg* Hf =0.
Let ¢ be a positive number and

F={xe Xl|es(x) < f(x)}.

Let s’ be a non-negative hyperharmonic function dominating s on F. Then
s'+ese#ys. Hence
hr<s' +es.

s’ being arbitrary we get ks < R +es and therefore 7y < es since by the preced-
ing lemma RY is a potential. Similarly %> —es. Hence hs =0.

For the general case let us denote
u = limg* Hy.
We want to prove firstly that % is harmonic. We may assume X is connected.
Let {Un} be a pseudo- exhaustlon of X, pbea potent1al on X equal to infinite
on X— U U, and finite on U Ua, x be a point of U U, and ¢ be a positive
number. There exists a relatwely_compact open set U of X, x € U, such that
| HY (%) — u(x)] <e

for any relatively compact open set U'DU. Let a« be a positive number and

G={ye X|p(y)>as(y))}.

U -G is a compact subset of U U, and we have therefore, for a sufficiently large
n=1

n, U~ GCU,. Let us denote by g the function on UUU, equal to f on

2(UU Uy)and equal to H%""* on UU U,. Obviously [gl<s. By Lemma 1.2

H}’ub’g = Hgn.

. 2
Since |f— g| is equal to zero on aUs — G and dominated by —“i on GNaU, we
get
. » 2
|H™ - Hy"| < Hif-g1< _‘!2,
Hence

|H () - ()| < | HY(5) — B+ | HP O (0) — () <et 2202

hm supIH}”'(x) w(x) | <e+ ——— Zp(x)
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¢ and « being arbitrary we get

lim Hf"(x) = u(%).

Let V be an arbitrary regular domain, x< V, and {U,} be a pseudo-exhaus-
tion of X such that Vc U,. We put u,=Hs". Then |u.l<s and

u(x) =1im us(x) =lim ~gu,, dwy = yudwx.

nso nsx

V and x being arbitrary » is harmonic.
We have

lim@' H?-u =0.

By the first part of the proof we see that f— u is a Wiener potential. Since
|| possesses a superharmonic majorant, » is a Wiener function. Hence f is a

Wiener function and we have

hf =hf-u+ bl = u.

§ 3. Harmonic maps

3.1. Let X, X' be two harmonic spaces. A continuous map ¢: X- X' is
called a harmonic map if for any open set U'C X' and any harmonic function
u' on U, w ¢ is harmonic on ¢~ (U'). The composition of two harmonic maps
and the canonic injection of an open set of X in X are harmonic maps. If
¢: X -~ X' is a harmonic map and f’ is a positive continuous finite function on X'
and if we denote by Y (resp. Y’) the harmonic space obtained from X (resp.

X') dividing the sheaf of harmonic functions by f’o¢ (resp. f') then ¢ : Y- Y’
is also a harmonic map.

Tueorem 3.1. If ¢ : X>X' is a harmonic map and s' a hyperharmonic
function on an open set U' C X', then s'>¢ is a hyperharmonic function on ¢~ *(U").

We may suppose s’ is superhamonic. Let V be a relatively compact open set,

Vce '(U'). Then ¢(V) is a compact subset of I’. Let B’ be a finite covering

of ¢(V) with regular domains. We denote by sf!;, the function on U’ equal to

s’ on U'— U V' and equal to
veB’

min  HY'(%')

veveB’
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at any point ' € U% V. Let x€ V and U be a regular domain, x€ UC V such
v'el’

that U is contained in any set ¢ *( V"), for which ¢(x) € V"= %". We denote by s

the functionon N ¢7'(V') equal to min (H. o¢). Since any function
EIESI=ad=hiig e ed’

Hs °¢ is harmonic on this set, s is superharmonic. ~We have s>sg°¢ and
s(x) =sgo@(x). Hence

sy ¢ (%) = s(x) = Hs (%) = Hy' gy 00 ().

Since sy °¢ is continuous it is superharmonic on V (See Theorem 4 in [2]).
Obviously s’ is the least upper bound of the family {sg}y. Since it is upper
directed it follows that s’°¢ is hyperharmonic.

CoroLLARY 3.1. Let ¢ : X X' be a non-constant harmonic map, X con-
nected. If X' P (resp. D), then X =P (resp. D).

If X' 9 there exists a positive harmonic function %' on X. Then u'c¢
is a positive harmonic function on X and X< 9.
Suppose now X' =P and let x{, x; be two different points of ¢(X). There

exists two positive finite superharmonic functions si, s; such that
!
si(x]) = si(xy), s1(x3) = s3(x3).
Then sjo¢, s;o¢ are two positive non-proportional superharmonic functions on

X. Hence X B.

THeOrREM 3.2. Let ¢ : X—> X' be a non-constant harmonic map and X be

connected. Then for any polar set™ A'C X', ¢ (A") is polar.

Let A denote the set of points x< X such that for any neighbourhood U
of x, UN®'(A’) is non-polar. A is obviously closed. Let x= A, and s’ be a
positive superharmonic function on a neighbourhood U of ¢(x) infinite on
U'NA". Lety=U, yx¢(x) and F', F} be two closed sets on U", U' = F' U F;,
o(x)F', y¢F,. Then

s'< (RS )or + (REF Voo
Let U be the component of ¢ X(U') containing x. We have
s'0@ < (R )yro@+ (Rs* u.o9

*) A set A<X is called polar if for any point x& X there exists a positive superhar-
monic function on a neighbourhood U of x infinite on AnU.
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on U. Since s'o¢ is infinite on the non-polar set UN ¢ '(A") it is identically
infinite.  The function (RY )y.c¢ being finite at x it follows that (R )y.c¢ is
identically infinite. Hence y'€¢(U). »' being arbitrary we get ©(U) = {¢(x)},
o(x)e A', UC A. Hence A is open and ¢ is locally constant on A. Since X
is connected either A is empty or A is equal to X and ¢ is constant. By
hypothesis ¢ is non-constant. Hence A is empty and ¢ '(A') polar.

CoroLLARY 3.2. If ¢ : X-> X' is a non-constant harmonic map, X is con-
nected and s' is a superharmonic function on an open set U' C X' then s'o¢ is

superharmonic on ¢~ (U").

Lemma 3.1, Let ¢ : X> X' be a harmonic map and ¥ € X'. If U is an
open set on X containing a compact component of ¢~'(x') then %' is an interior
point of ¢(U).

We may suppose U relatively compact and ¢ '(x') NaU = ¢. Then x'€¢(30)
and there exists a regular domain V'’ such that ¥’ V' and V' N¢(U) = ¢.
Denote V=UN¢ (V'). The set V'—¢(V) is open since it is equal to
V' —@(V). If it is non-empty we may take a compact non-polar set K’ contained
in it. Then the function s'= (RX")s is harmonic and positive on V' — K’ and
converges to zero at any point of 2V". The function s’°¢ is harmonic and
positive on V and converges to zero at any point of oV. This is a contradiction

and we deduce ¢(V) = V' and the proof is complete.
TueorREM 3.3. A zero-dimensional harmonic map™ is an open mab.

TueoreM 3.4. Let ¢ : X X' be a bijective harmonic map. Then ¢~ is

also a harmonic map.

From the preceding theorem it results that ¢! is continuous. Let U be
an open set on X and # be a harmonic function on U. We want to prove that
u°¢™" is harmonic on ¢(U). Let V' be a regular domain in Y', V'Ce¢(U),
and

e
v = Huov‘l.

Then v'o¢ is harmonic on ¢ (V')C¢ (V)T U and converges to x at any
boundary point of ¢~(V'). Hence

*) A continuous map ¥ is called zero-dimensional if ¥ (x’) is totally disconnected for
any x'.
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v'e¢ =u, v':uo(P_l
and #o¢~! is harmonic.

CoroLLARY 3.3. Let &, &' be two harmonic sheaves on the same space.

If Z'C s, then = .

THEOREM 3.5. Let ¢ : X X' be a non-constant harmonic map, X connected.
If any point of X' is polar, then ¢ is an open map with respect to the fine
topologies of X and X'.

Since the theorem has a local character we may suppose that there exists
a positive harmonic function %’ on X’. Dividing the sheaf of harmonic func-
tions on X (resp. X') with «/°¢ (resp. ') we may suppose further that the
constants are harmonic on both spaces.

Let x= X and E be a fine neighbourhood of x. We must prove that ¢(E)
is a fine neighbourhood of ¢(x). There exists a positive superharmonic func-

tion, defined on a neighbourhood of %, such that

s(x) <1< lim inf s(y).

Eby-z
Let U be a regular domain containing x such that s is defined on U and s>1
on U—E. We denote
G={yeUls(y)>1}.

Obviously U — GC E. Since {¢(x)} is a polar set ¢~'(¢(x)) is also polar (Theorem
3.2). ¢ ¢(x)) NAU is therefore of harmonic measure zero with respect to U
(See p. 125 of [2]). Let K be a compact subset of 90U — ¢ (¢(x)) such that

H¥(x) +s(x) <1,

where f denotes the characteristic function of 9U — K. Since ¢(x) & ¢(K) there
exists a regular domain U, ¢(x) € U", U' N ¢(K) = ¢. We denote V=UN¢ (U,
G'=U"—-¢(V-G). From
U-Gce(V-G)C¢(E)
we see that it is sufficient to prove that G’ is thin at ¢(x).
Let K' be a compact subset of G' and s'=(R¥'),. s'o¢ is harmonic on

V¢ (K'). The function Hf +s — s'¢ is superharmonic on V— ¢ '(X') and
its lower limit at any boundary point of V—¢~'(K’) is non-negative. Hence it
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is non-negative and we get

(RTul¢(x)) < HF (%) + s(x),
(R o (¢(2)) = Ks}tig,(li’{")u:(sv(x))sH?(x) +s(x) <1.

This relation indicates that G’ is thin at ¢(x).

TaeEOREM 3.6. Let ¢ : X—> X' be a Farmonic map, X< PU D, X connected.
If U is a non-relatively compact domain of X' then the set of components of

@~ (U") is at most countable.

Since any component of ¢ (U') is not relatively compact the assertion

follows immediately from Theorem 11 in [3].

3.2. TueoreM 3.7. Let ¢ : X X' be a harmonic map, X' €P. If f'is a
Wiener function on X', then f'°¢ is a Wiener function on X.

We may suppose X is connected.

Suppose firstly that /' has a compact carrier K'. Let s’ be a positive finite
superharmonic function on X’ and ¢ be a positive number. There exists two
finite potentials p', " on X' such that |f'— (p' —p")|<es’ on K (Theorem 15
in [2]). Then |f'— (RY — R%.)| <es' on the whole space X' and therefore

—es'o¢+ Ry o9~ Ry o9 <flo¢<es'op+RE o9~ Ry00,
Z’f/o? - _]Zflo;, <2 SSIo(P.
¢ being arbitrary /'c¢ is a Wiener function.

Let now s be a Wiener potential. There exists a potential ' on X' such
that for any ¢>0 |f’| <ep’ outside a compact set K{. There exists a continuous
finite function f{ with compact carrier such that | /' — f{| <ep'. Hence

EflOr; - l:lfro;, S 2 EPIO(F.
e being arbitrary f’o¢ is a Wiener function.
If /' is a Wiener function the f’'—hy is a Wiener potential. From
Slo@=(f'=hs)e@+hseo¢

we see that f/o¢ is a Wiener function.

TaEOREM 3.8. Let ¢ : X X' be a harmonic map, X, X' connected, X< B,
X' €9 —P. The following assertions are equivalent:
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a) there exists a continuous non-negative mon-harmonic function f' on X'
such that f'c¢ is a Wiener function on X;

—1(p7y .
" §s a poten-

b) there exists a closed non-polar set F' on X' such that R}
tial;

¢) if f' is a locally bounded non-negative function on X' such that f'°¢ is
harmonizable on X and g' is a Wiener function on X', |g'| < f!, then g°¢ is a
Wiener function on X.

=L

a=b. Let #' be a positive harmonic function on X', g'= W and for any
real number a
F.={xeX|g(x')=a).
&g' is continuous and non-constant and therefore for any a,
inf g <a <sup g’

the set F. is non-polar because it separates X'. The function #'°¢ and

(g'°¢)(u'o¢) are harmonizable. By Theorem 2. 6. there exists an a,
inf g' <a <sup g’

such that R3.J* is a potential. Let F' be a compact non-polar subset of Fi
and
B = inf #'(x") >0.

2 EF’
From
BRT™™ < Ry
we see that R? ") is a potential.
b=¢. Let K' be a compact non-polar subset of F' and

B= sup f'(x').

a'ex’

By Lemma 2.2 there exists a potential p on X such that |hso,— flo@|<p
outside a compact subset K of X. Then s= hfo,+p+ Rfo, is a superharmonic
majorant of f'o¢ on,X and RZ"*” is a potential being dominated by the
potential 3R ¥ +2 R¥ +2p. By the preceding theorem g'> ¢ is a Wiener func-
tion and therefore harmonizable on X — ¢ '(K'). g'°¢ is therefore a Wiener
function on X by Corollary 2.3.

c=a is trivial since any non-negative continuous function on X’ dominated

by a harmonic function is a Wiener function.
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THEOREM 3.9. Let ¢ : X- X' be a harmonic map, X, X' connected, X E
H—B, X' =H—B, and f' be a continuous non-negative functionon X'. If flo¢
is @ Wiener function on X then for any Wiener function g on X', |g'| < f', g'°¢

is a Wiener function on X.

If ' is harmonic then it is immediate that g'oc¢ is a Wiener function.
Suppose now s’ is not harmonic. Let U be a domain on X, U . We deduce
by the preceding theorem (@=>c¢) that g'°¢ is a Wiener function on U.

3.8. Let X BUH. We denote by N(X) =N the set of open subsets U of
X such that either U=¢ or UED and hy'* =0. If U=x¢ this is equivalent
with the assertion that 1 is associated with zero at the Alexandroff point of X
along U. If VCU and U N then Ve N. Any relatively compact open set
belongs to .

The notion of analytic map of type-Bl introduced and studied by M. Heins
(On the Lindelsf principle, Ann. of Math. 61 (1955), 440-473) can be generalized
directly to the case of harmonic maps between spaces belonging to BU H. We
shall say that a harmonic map ¢ : X-» X' (X, X' € PU D) is of type-Bl at the
point x' € X' if there exists a nmeighbourhood U' of x' such that ¢ (U') €N.
Then there exists a fundamental system of neighbourhoods of x’ with the same
property. The set of points '’ € X’ at which ¢ is of type-Bl is obviously open.
If ¢ is of type-Bl at x'= X’ and U’ is an open subset of X' containing x/ then
the map ¢"(U')-» U’ induced by ¢ is of type-Bl at x'. If ¢ is of type-Bl at
any point of X' we say that ¢ is of type-Bl. If U’ is an open subset of X’ and
¢™H(U") € N, then the map ¢ *(U") - U induced by ¢ is of type-Bl. Any harmonic
map of type-Bl is non-constant on any component of X. Indeed such a component
belongs to N by the definition and this contradicts the fact that the constants

are harmonic on it.

Lemma 3.2, Let ¢ : X—> X' be a harmonic map, X €PUY, f be a real
Sfunction on X, ' be the set of non-negative superharmonic functions s' on X'
such that s'c¢>f and U' be an open subset of X' such that <}7"1(U’_) is either
empty or belongs to B and f=H?"V"). If ' is non-empty, then its greatest

lower bound is harmonic on U'.

Let f' be the greatest lower bound of .&*/, s’ = .’ and §' be a non-negative

superharmonic function on X' greater than s’ on X'—U'. Then 5'e .Y
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Indeed if ¢~(U') is empty this is obvious. Otherwise s'c¢ .7 U and
step=HY "' >7 It follows

FERY™Y, = inf RYY

‘e’
Since {R¥ Y |s'e '} is a lower directed set of harmonic functions on U", f! is

harmonic on U'.

THEOREM 3.10. Let ¢ : X X' be a harmonic map, X' = BU DH. The follow-
ing assertions are equivalent:

a) ¢ is of type-Bl;

b) the set of points at which ¢ is not of type-Bl is polar;

¢) for any open set U'C X' and any locally bounded potential p' on U, p'o¢
is a potential on ¢~ N(U");

d) for any locally bounded function f' on X' and any open subset U' of X',

U'eB, we have

Te~ U, X _ U, X' .
h;’oé ! < hf’ °Y,

¢) there exists a real function f' on X' such that for any compact set K'
of X
0< inf f'(x')
' EK’

and for any open relatively compact subset U’ of X' (U' € ) we hawe it ¥ =0.

a=>b is trivial.

b=>c. Let U' be an open subset of X', »' be a locally bounded potential
on U’ and # be the greatest harmonic minorant of p'e¢ on ¢ '(U'). Let &'
be the set of non-negative superharmonic functions s’ on U’ such that s'c¢=>u
and #' be the greatest lower bound of .&*’. Let V' be a relatively compact open
subset of X/, V'C U, such that ¢ (V') eN. Since u<p'o¢ and p' is bounded
on V', u is bounded on ¢ *(V'). Hence either ¢ (V') is empty or by Lemma
2.7, u=H{ " on ¢'(V'). By the preceding lemma we see that %' is harmonic
on V. #' is therefore harmonic on U’ with the exception of a closed polar
set. From #' <p' it follows that #' is locally bounded. Hence it may be extended
to a harmonic function on U’. Being dominated by a potential it vanishes.
Hence # is equal to zero and p'o¢ is a potential on ¢ (U).

c¢=>d. It is sufficient to do the proof for X’ connected. Suppose firstly s’
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continuous with compact carrier L' and let U’ be an open subset of X', U' .
Let K' be a compact subset of U’ such that X'—K' P and let »' (resp. q')
be a positive potential on U’ (resp. X'—K'). Then p'o¢ (resp. ¢'o¢) is a
potential on ¢”'(U') (resp. ¢"(X'—K')). Let p (resp. q) be a positive Evans
potential on ¢”(U) (resp. ¢”'(X'—~K')) associated with p’'o¢ (resp. ¢’°¢). Obvi-
ously p+ g (resp. p) converges to infinite at the Alexandroff point of X through
¢ UL'—K') (resp. ¢ (K")). Let s&€ #i.s"""%.  There exists an a=>1 such
that ap=5s on ¢"'(K'). The function ap+qg—s is a hyperharmonic function
on ¢ (U'—~K') non-negative outside a compact set of X and its lower limit at
any boundary point of ¢ " U'-K') is non-negative. Hence ap+g=>s on
¢™(U'—K'"). Since q is arbitrary we have ap>$ on ¢ (U"— K'). This ine-
quality being satisfied also on ¢™'(K') we get ap=>5s on ¢ (U'). Since p is
a potential on ¢ (U") it follows s<0 and A%.">*<0. Similarly we get
Rl ¥>0. By Theorem 3.7, f'o¢ is a Wiener function on ¢™'(U") and there-
fore harmonizable on ¢ 1(U"). By Lemma 2.9 a) we see that f'°¢ is harmoniz-
able with respect to (¢”(U"), X) and we get hfos" "% =0.

Let now f' be as in the theorem and s' = #7°*. There exists a continuous
finite function f; on X’ with compact carrier such that f' — fi<s' on U". Then
(f'— f4)ow<s'op on ¢ (U'). For any point y2¢ (U') we have

lim inf s’e¢(x) > lim inf s'(x') >0

z>Y x'->9(y)
. — =1’
since ¢(y)=aU'. Hence s'o¢ Ey/?f/i‘},"io’i.

7MUY, X - e U)X eT iU, X
hfIO?( ) S h?f’—fo'))cwp'*' /’lf ’o(rp ) S S’°SD

since hjas ** =0 by the above proof. s' being arbitrary we get the required
inequality.

d =e is trivial.

e =a. Let U’ be a relatively compact open subset of X'. Since there

exists a positive number a such that 1 <af' on U’ we have
Z,{,—t(w), b.¢ < a%ﬁ,‘;g]'),x = 0
and ¢ (U") eN.

CoroLLARY 3.4. Let ¢ : X~ X' be a harmonic map. If there exists a positive

superharmonic function s' on X' such that s'°¢ is a potential then ¢ is of type-
Bl.

The assertion follows from ¢ =a.
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CoroLLARY 3.5. Let ¢ :-X—»> X' be a harmonic map, X' connected, and o',

v' be positive harmonic functions on X'. The following assertions are equivalent :

a) ¢ is of type-Bl and W’ Av'=0;
b) e Av'op=0.
a =b. Since #' Ay’ =0, min (#/, v') is a potential. Hence
min (#'c¢, v o¢) =min (', v')o¢
is a potential and we get #'c@Av'op =0.
b =a. Since min (#/, »') is a superharmonic function and min (#/, v')°¢ is

a potential, ¢ is of type-Bl by the preceding corollary. On the other hand

(#' ANv')o¢ vanishes since it is a minorant of #'c¢ Av'o¢. Hence ' Av' =0.

CorOLLARY 3.6. Let ¢ : X—> X' be a harmonic map and F' be the set of
points at which ¢ is not of type-Bl. The intersection of F' with any open set
is either empty or non-polar.

This follows from b =a.

CoroLrARrY 3.7. If ¢ : X—> X' is of type-Bl and X' connected then any
closed set FCX —¢(X) is polar.

Let U’ be a domain of X', U’ such that F/'N U’ is non-polar and
U'N¢(X) is non-empty. Then there exists a compact non-polar set K'c F' N U'.
The function

s'= (Rfl o
is a positive potential. Since ¢ is of type-Bl, s'°¢ is a potential on ¢ *(U') by
a =¢. This is a contradiction since it is harmonic.
CorOLLARY 3.8. Let ¢ : X~ X', ¢' : X' X" be harmonic maps and X, X',
X" connected. ¢'o¢ is of type-Bl if and only if ¢ and ¢' are of type-Bl.

Let U” be an open subset of X", U"e%, and p" be a positive locally
bounded potential on U". If ¢, ¢' are of type-Bl then p”o¢’ and therefore
-1

P''ogto@ are locally bounded potentials on ¢'~'(U") and ¢'>¢(U") respectively.
Hence ¢'o¢ is of type-Bl. Conversely if ¢'o¢ is of type-Bl then p"o¢'o¢ is a
-1

—~
potential on ¢’c¢(U"). Let u' be the greatest harmonic minorant of p'"c¢ on

¢'"}(U"). Then #'c¢ is a harmonic minorant of p'"o¢'o@. It follows #'o¢ =0,
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u' =0. Hence p'°¢' is a potential and ¢, ¢’ are of type-Bl by Corollary 3.4.

Tueorem 3.11. Let ¢ : X~ X' be a harmonic map of iype-Bl, X%,
XeH -, X' connected. If f' is a continuous non-negative function on X' such

that f'o¢ is a Wiener function on X then f' is harmonic.

Suppose f' is non-harmonic and let #' be a positive harmonic function on X'.
Let Ui, ..., Un be a finite covering of X' such that U} are open sets with
compact boundaries and U; € for any s, 1<i<m. There exists for any 7 a
non-negative continuous function f; whose carrier lies in U} such that

u’=ﬁf}.

=1
Since X'e9 — B we have Zgi'* =0. Hence by Theorem 3.10 (¢ =d)
Trow ¥ < W X 0 =0,

By Theorem 3.8 (a =>c¢), fio¢ is a Wiener function and therefore harmonizable
on X. From Corollary 2.2. we deduce that it is a Wiener potential. This is a

contradiction since
n
!
wop = E; fico.
=

§4. Compactifications

4.1. We shall suppose from now on X is connected. A compact space X*
such that X is a dense subset of X, is called a compactification of X. Since X

is locally compact it is open in X*  The closed set 4=X"— X is called the
ideal boundary of the compactification X*.

We shall suppose in this paragraph Xe%. For any potential p on X we
denote by I, the set of points y € 4 such that

lim inf p(x) = 0.

Y
We denote further
I'= N\Tp, A=4-T,
v
where p is an arbitrary potential on X. I'is compact. If there exists a bounded

positive harmonic function on X, then I, is non-empty for any p. The family

{I's}» being a filter-basis I is also non-empty in this case. We call I" the har-
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monic boundary of the compactification X*.

Lemma 4.1. If K is a compact set in A, then there exists a continuous
potential p on X such that

lim p(x) = .

z>K
Let y= K. There exists a potential py on X such that

lim inf py(x) > 0.

LY
Let Gy be the set of points y'=4 for which

lim inf py(x) > 0.

a2y’

Since K is compact there exists a finite number of points ¥;, ..., ¥» on K
such that

Kc UGyi.

©i=1
Hence there exists a potential »' on X for which
lim inf »'(x)>0.
2K
If " denotes an Evans potential associated with p', then

lim inf p"(x) = oo,

K

_There exists a continuous non-negative functionf on X* equal to infinite on

K not greater than p”. From
F<Ri< D"

we see that R% is a continuous potential (see Theorem 3 in [3]) on X, converg-

ing to infinite at K.

A real function f on X is called lower (resp. upper) pseudo-bounded #f there
exists a potential p such that f+p (resp. f— p) is lower (resp. upper) bounded,
where © — © = — o 4 o =0, [t is called pseudo-bounded if it is both lower
and upper pseudo-bounded. An open non-compact set UC X is called M.P.-set
if any hyperharmonic function on U is non-negative if its lower lLimit at the
Alexandroff point of U is non-negative. If there exists a superharmonic function

on U with positive infimum, U is of type M.P. (by Corollary 1 of [31]).
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Lemma 4.2, Let U be an M.P.-set and s a lower pseudo-bounded hyper-
harmonic function on U. If

lim inf s(x) =0

zY

for any point y of the relative boundary of U and for any yEI'NU, then s is
non-negative.

Let p be a potential such that s,=s+p is lower bounded. For any natural
number # we denote

K= {y4NTliminf s(x) <~ ).

2y

K, is a compact subset of 4. By the preceding lemma there exists a potential

pn on X converging to infinite at K,. There exists a sequence {es} of positive
numbers such that

Po = 21 Enﬁn
is a potential. For any ye U K,
n=1

lim po(x) = .

z->y

Therefore for any >0 the lower limit of so+¢p, at the Alexandroff point of
U is non-negative. Since U is an M.P.-set, so+¢p, is non-negative. ¢ being
arbitrary, s, is non-negative. We deduce

$=hs = hs,+ hp = hs,=0.

Tueorem 4.1. (Minimum principle) If X is an M.P-set and s is a lower
pseudo-bounded hyperharmonic function on X for which

lim ;nf s(x) =0,
then s is non-negative.

TueoreM 4.2,  Let U be an open subset of X, whose relative boundary is
compact. I'NU is empty if and only if U .

If 'NU is empty then 4NU is a compact subset of A. There exists
therefore a potential » on X converging to « at 4 NU. For any >0

i
V<o

https://doi.org/10.1017/5S0027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

COMPACTIFICATIONS OF HARMONIC SPACES 33

Hence
B =0.

Conversely suppose now 7#}’* =0. The function f on X equalto 1 on U and
equal to 0 on X— U is then harmonizable with respect to (X—3U, X) and
h~®:¥=0. Then by Corollary 2.4, f is harmonizable on X and h}' ¥ =0. By
Lemma 2.2 there exists a potential dominating f outside a compact set. It fol-

lows immediately I'n Uc 4.

TueoreM 4.3. Let X* X be two compactifications of X and = : X* > X"
be a continuous map whose restriction on X is the identity. If we denote by I
the harmonic boundary of the compactification X™' then
a(I) =1".
Let yeI. For any potential p we have

0 <lim inf p(x) < lim inf p(x) =0.
)

a->n(y x>y

Hence n(I')CI'. Let now y'I". For any neighbourhood U of »”'(y') there
exists a neighbourhood U’ of 3’ such that =~'(U')cU. From here we get

0 <lim inf p(x) < lim inf p(x) = 0.
x>y’

zsm=1(y’)

Hence I'; Nz~'(5") is not empty. Since the family {I', Nz *(y")}; is a filter basis
'nz"'(y") is not empty and I'"Cx=(I).

CoroLLARY 4.1. If for a compatification X* of X the harmonic boundary
is not empty then the harmonic boundary of any compactification X* of X is

not empty.

Let X*' be the Alexandroff compactification of X and = : X* - X*, ' :
X* > X*" be the natural maps. From

o (I'")=T"=n(I)
we see that I is not empty.

4.2. In order to develop an interesting theory of Dirichlet problem on the
ideal boundary it seems necessary to require that X is non-compact, X, and
there exists a superharmonic function on X whose infimum is positive. We

shall suppose that X fulfils these conditions. Then X is an M.P.-set. Let
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f be a real function defined on a set which contains 4. We denote by ¥ **
=FF =Fs (resp. P ¥ = SF =) the set of lower bounded hyperharmonic
(resp. upper bounded hypoharmonic) functions s on X such that for any ye4

lim inf s(x) = f(y) (resp. li;n sup s(x) < f(y)).
Sy

X3y

We denote by Hf* =Hf = Hy (resp. Hf**" == Hf = Hy) the greatest lower
bound of .##** (resp. the least upper bound of <5 *"). Obviously Hy< Hy

and Hy, Hy are either differences of non-negative harmonic functions or iden-
tically & o« on X.

LemMa 4.3. Let A be a subset of X, X be the characteristic function of
AN 4, f be a non-negative pseudo-bounded function on X and s=R}. There

exists a positive number « such that
hs < aHy.

There exists a potential » on X and a real number «’ such that f<p-+a'.
Let a>a' and § & Fox. Then 5+p dominates /¥ on A outside a compact
subset X of X. Hence

S<RF+5+p, <5,
5 being arbitrary we get
hs < dﬁx.

If Hy, Hy are finite and equal f, is called resolutive; their common value

is denoted H¥™ = Hf = Hy and is called the solution of Dirichlet problem
with / as boundary function.

LemMa 4.4. Let f be a continuous bounded function on X*. f is resolutive

if and only if it is harmonszable on X. In this case hr= Hy.

Obviously #sC.#s. Hence Hy <h 7. Let s be a superharmonic function on
X with positive infimum and s€./y. Then for any ¢>0, S+es€ s and
therefore

hf<S+tes.

5 and ¢ being arbitrary we get

hf< Hy, hy=Hy.
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Similarly it can be proved the relation %y = Hy.

A compactification X* of X is called resolutive if any continuous bounded
Junction on 4 is resolutive.

Tueorem 4.4. The following properties of a compactification X* of X are
equivalent :

a) X* is a resolutive compactification;

b) any continuous bounded function on X* is a Wiener function on X;

)

c) for any x€ X, 03 converges vaguely to a measure on 4 along the filter

&*
a<>b follows immediately from the preceding lemma.

b<>c¢ follows from Theorem 2.8 and Lemma 2.3.

If X* is a resolutive compactification then for any x<X the map
f~>Hs(x)

is a positive linear functional on the space of continuous finite functions on A.

We denote by vy ™ = w} = wx=w the measure on 4 such that
yfdwx = Hs(x)

for any continuous bounded function f on 4 and we call it the harmonic measure
on 4 at the point x. It follows from Theorem 4.4 and Theorem 2.8 that if

X* is a resolutive compactification, wy converges vaguely to w. along &*.

A function on 4 is called o-integrable if it is w.-integrable for any x< X.
f is w-integrable if and only if it is wsintegrable for an x=X (Axiom 3). If f
is w-integrable, the function x—>S fdwx is harmonic. A set A4 is called o-
measurable if its characteristic function is w-integrable. We denote by w(A)
the function x-> w:(A) and we call it the harmonic measure of A. The set A
-#s called of harmonic measure zero if w(A) is identically zero. We say that a
Droperty is true almost everywhere on 4 if it is true at any point of 4 with the

excebtion of a set of harmonic measure zero.

LemmA 4.5. Let X* be a resolutive compactification of X and f be a lower

*) For any open set Uc$P and xcU we denote by 7 thé harmonic measure on U at

the point x, i.e. the measure for which H? (x)=sfdwg for any continuous finite function f

on dU with compact carrier.
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bounded lower semicontinuous (resp. upper bounded upper semicontinuous) w-
integrable function on 4. Then

ffdw=£1f, (resp. jfdw=I7f).
Let // be a continuous bounded function on 4, f'<f. Then
Hy>Hy = jf’dw»
Hy>sup { f1do = [ fdo.
7
Let s, fo be the function on 4 equal to

lim sup s(x)

2>y
at any y= 4. Then f, is upper semicontinuous, upper bounded and not greater
than f. There exists a continuous bounded function f' on 4

LHsf'sf

and we have
s< Hp = jf'dw < [ sdw,
Hy<( fdo.

TueoreM 4.5. Let X™* be a resolutive compactification and f, f' be w-
integrable functions on 4. Then

jfdw V| id = S max (f, /) dw,
{7do A f1dw = [ min (7, /1 do.

Let ., (resp. .£%) be the set of w-integrable functions f on 4 for which
these relations hold for any continuous bounded (resp. w-integrable) function
f'on 4. Let f be an o-integrable function and {f,} be a monotone sequence
of &, (resp. .¥») converging almost everywhere to /. From the properties of
the integral and of a Riesz space we see that f belongs to - (resp. -2£%).
Since any continuous bounded function on 4 belongs to .2 it follows that any
w-integrable function belongs to .%";. Hence any continuous bounded function

on 4 belongs to ., and therefore any w-integrable function belongs to > and
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the proof is complete.
CoroLLARY 4.2. Let A, A be w-measurable sets on 4. Then
w(Al)Vw(Az =w(A1UAz), tO(Al)/\a)(Az)=w(Aanz).

CoroLLARY 4.3. If U* is an open set on a resolutive combactification X*,

vope L .
then R is a potential.

Let us denote
f=0(d4nU*), s=Rf 7.

Since 1 is a Wiener function, f is pseudo-bounded. By Lemma 4.3 and Lemma

4.5 there exists a positive number a such that ks < aw(d— U*). Hence

hs < w(ANU*)Aaw(d—U*) <max (a, 1) (0(dN U Aw(d—U*)) <
max (o, Do(dNU*=U*) =0

and s is a potential.

TueoreM 4.6. A compactification X* of X is resolutive if and only if 1 is

a Wiener function and one of the following properties are fulfilled:

a) if u is a non-negative pseudo-bounded harmonic function on X and any
point of 4 possesses a neighbourhood U such that 75 "* =0 then u=0;

b) if f is a non-negative pseudo-bounded function on X and for any point
yE 4 there exists a neighbourhood U of vy such that Ty"**=0 then hf =0’

¢) if A, B are subsets of X and ANBNA4d=¢ then min (R}, RY) is a
Dotential;

d) if A, B are subsets of 4 and ANB = ¢ we have
ﬁXAUB = ﬁXA + E’XB:
where /u denotes the characteristic function of M.

We denote by a’ (resp. ¥, ¢’, d') the assertion “a (resp. b, ¢, d) and 1 is a
Wiener function” and by e the assertion “X™ is a 1esolutive compactification
of X”.

e =a'. There exists a finite number of open sets U;, ..., U, on X* such
that

https://doi.org/10.1017/50027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

38 C. CONSTANTINESCU AND A. CORNEA
and
'™ =0.
It follows from Lemma 2.7 and Corollary 1.1
u=Ri™"
and from Lemma 4.3 and Lemma 4.5
u<aio(d4—U),

where a; is a positive number. Hence from Corollary 4.2
u< (st:p ai) A\ w(d—=U;) = (sup i) (N (4~ U;)) =0.
i=1 i i=1

a' =VU. Put u=hys. Since 1isa Wiener function and f is pseudo-bounded

u is finite. By Lemma 2.5 we get
X = X

for any open set U of X* u is pseudo-bounded and therefore vanishes.

Y =¢'. Put f=min (R, RF). For any y=4 there exists a neighbour-
hood U such that either UNA=¢ or UNB=¢. Since f< R’ we get by

Corollary 1.1 and Lemma 2.4 %¢"*=0. Hence 7 =0 and f is a potential.
¢ =d'. Let U, V be open sets of X* such that
AcU, BcV, UNV=g.
Obviously
Hy,< RYOY, Hyp < RIE.

Hence min (H,,, Hy;) is a potential. From

H,,+ Hy,=min (H,,. Hy,) +max (Hy,, H.,),
and Theorem 2.2 we get

Hy 4 Hyp = hmaxfiy, iy = Hxa NV Hyp = Hygop.

The equality Hy,u,; = Hyx,V Hy, can be proved using standard arguments of the
Dirichlet problem.

d' =e. Let f be a continuous bounded function on X* and for "any real
number «, denote

w={xe X*| F (%) = a).
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By the hypothesis there exists at most a countable set of a such that Hy, is
positive, where /. denotes the characteristic function of F, N 4. By Lemma 4.3
we see that R{*"* is a potential for a dense set of « and by Theorem 2.6 f =
f+1is a Wiener function on X. X* is a resolutive compactification by Theorem

4.4.

LeMMma 4.6. Lef f be a continuous finite function on XNI. If f is a
Wiener potential on X, then f is equal to zero on I. Conversely, if f is pseudo-
bounded and equal to zero on I, then f is a Wiener potential on X.

The first assertion follows from the fact that |f| is dominated by a poten-
tial on X (Lemma 2.2).

Let now f be pseudo-bounded and equal to zero on I, p, be a potential on
X such that |f| —p, is upper bounded and s a superharmonic function on X for
which

inf s(x) =1.
2EX

For any ¢>0 we denote
Fg={yEXl[f(y)l25}, Ke"—:?snd.
Since K: is a compact set in A there exists a potential p on X such that

lim p(x) = o,

x->Keg

Then po+p +es< # s, and therefore
hif\<po+D+es, Bifi<es,  hy=0.

TuaeoreM 4.7. If X* is a resolutive compactification then the carrier of o
coincides with the harmonic boundary of X.

Let f be a continuous bounded function on 4 equal to zero on I. We extend
f to a continuous bounded function on X*. From the preceding lemma it fol-

lows that f is a Wiener potential on X. Hence
\fdo=H;=n;=0

and the carrier of w is contained in TI.
Let now U be the complement of the carrier of w and / be a continuous
non-negative bounded function on 4 whose carrier lies in U. We extend f to

a continuous bounded function on X*. fis a Wiener function on X and
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he=Hy={rdo=0.

Hence f isla Wiener potential on X. From the lemma we deduce that ' 4—-U
and the prdof is completed.

TueoreM 4.8. Let X*, X* be two compactifications of X and r : X* - X*!
be a continupus map whose restriction to X is the identical map. If X is a
resolutive compactification then X*' is also a resolutive compactification and for

any continuous bounded function f' on 4'=X* — X we have
Sf’dwff’x*' = Sf'°7rdwff’x*.

We extend f’ to a continuous bounded function on X*'. Then f'or is a
continuous bounded function on X*. Since X* is a resolutive compactification
f' is a Wiener function on X. Hence X" is a resolutive compactification. The

last assertion follows from the obvious relation 7§ %" =7 f%.

4.3. Let X™* be a resolutive compactification. ~We denote by H(X*) the
set of pseudo-bounded harmonic functions which can be extended continuously
on I'U X.

Lemma 4.7. Let us H(X*) and u* be the limit function of w on . We
have

u= Su*dw.

Since # is pseudo-bounded there exists a positive number « and a potential
p on X such that |u|<a+p.

Hence #* is bounded. Let f be a continuous bounded function on X* equal
u* on I. Since u —f is pseudo-bounded continuous on XU T and zero on I it

is a Wiener potential on X by Lemma 4.6. Hence
u=hs=Hs= Su*dw.

Let X™ be a resolutive compactification. A puint y = 4 is called regular,

if for any continuous bounded function f on 4

lim He(x) = f(y).

ey

https://doi.org/10.1017/50027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

COMPACTIFICATIONS OF HARMONIC SPACES 41

Obviously all points of A are non-regular. If y is regular and f is a bounded

function on 4 continuous at y, then

lim Hy(x) =lim He(x) = f(y).

x>y By

THEOREM 4.9. Let X* be a resolutive compactification of X. If any point

of I is regular then
{S fdwlf is a w-integrable fzmction}

is the smallest subset of the set of differences of non-negative harmonic functions

containing H(X™) and closed with respect to the monotone limits.

From the above lemma we get
H(X*) = {S‘f dw| f is a continuous bounded function on A}-

The theorem follows immediately from this equality.

4.4. Let X be an arbitrary™ harmonic space and X* be a compactification
of X. A subset A of X is called polar if for any domain U of X, UE R, there
exists a positive superharmonic functions on U such that

lim_s(x) = .

2-»ANU

For a subset of X this concept coincides with the usual one. If X =% then
the compact subsets of A4 are polar. If X $ — P and there exists a harmonic
function on X with positive infimum then 4 is a polar set. The subsets of a
polar set and the countable union of polar sets are also polar sets. Let X& %,
AC 4 and 7. be the characteristic function of A; A is polar if and only if 74
is resolutive and Hx,=0. Every polar set is therefore of harmonic measure
zero, but not any set of harmonic measure zero is polar. This is however true

for a set of harmonic measure zero of regular points.

LemMa 4.8. Let X B U D and let X* be a compactification of X. A subset
A of X* is polar if and only if for any open subset U of X, U< D, there exist
a compact subset K of X — U and a positive superharmonic function s on X - K
such that KN A =¢ and

*) Not necessarily from .

https://doi.org/10.1017/5S0027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

42 C. CONSTANTINESCU AND A, CORNEA

lim s(x) = .
FR:t

The sufficiency and in the case X P the necessity are trivial. Suppose
now A is polar and X&%B. Let U be an open subset of X, U= P. Then there
exists a domain U’ P such that U’ — U is non-polar. There exists by definition

a positive superharmonic function s' on U’ infinite on AN U'. If we denote

Fn={xc U -Uls'(x)<n}

then F, is non-polar for at least an n. Let K be a compact non-polar subset
of F,. Obviously KNA=¢. Let U. be the components of X— K. Since any
U.< P there exists for any ¢ a positive superharmonic function s. on U, such
that

lim s.(x) = co.
x-24NUL

The function s on X — K equal to s. on U, satisfies the required condition because

there are only a finite number of non-relatively compact components of X— K.

Lemma 4.9. If X" is a resolutive compactification of X, U an open subset

of X, s a positive superharmonic function on U and

A={yed4—-X-TUllims(x) = o},

@Y
then A is of harmonic measure zero.

Let 5&&T", >0, s/ % and s, be the function on X equal to 5 on
X — U and equal to min (5, s’ +es) on U. s, is a superharmonic function and

belongs to .77;*", where f4 is the characteristic function of A on 4. We get
w(A)<s"+es

on U. & and e being arbitrary it follows w(A) SH'E’, and, by Lemma 1.3 and
Corollany 1.1, o(A) = RE S < R 5=v).

Hence w(A) vanishes since RX7s=p is a potential by Corollary 4.3.
Let X* be a compactification of X and ¢ be a map of X on a topological

space. We denote for any ye X*~ X

o*(y) = ng(UﬂX),

where U runs through the set of neighbourhoods of y in X™.
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TueoreM 4.10. Let ¢ : X—> X' be a harmonic non-constant map, X 'B,
X' eBUH, X* (resp. X™*) a compactification of X (resp. X"). If for a set AC 4
the set
U ¢*(y)

vEA

is polar on X' and if X* is a resolutive compactification, then A is of har-

monic measure zero.

Denote
A= U ¢*(y).

yE4

By Lemma 4.8. there exists a compact subset XK' of X’ and a positive super-

harmonic function s’ on X’ — K’ such that KN A’ = ¢ and

lim s'(x') = oo,
x’->A’

The function s’o¢ is a positive superharmonic function on ¢ (X'~ K') and

lim s’o@(x) = o,

x4
From the preceding lemma, A is of harmonic measure zero since

AC4-X—¢p " (X'-K").

§5. Wiener compactification

5.1. We shall suppose in this paragraph that Xe$U$ and that the
-function 1 is a Wiener function. There exists a compactification X* such that:
a) any Wiener function on X possesses a continuous extension to X*; b) the
set of these extensions separates X* These two conditions determine uniquely
the compactification X* except for a homeomorphism whose restriction to X
is the identical map. We shall call this compactification the Wiener compactifica-
tion of X and denote it by X5 4y, = X4 — X will be called the Wiener ideal boun-
dary of X. Further we denote for X} by I', the harmonic boundary of X3
and Ay =dy —Ty. If misunderstandings will not occur we shall write simply
X*, 4, I', 4 instead of Xy, 44, I'y, A4, respectively.

LemMA 5.1.  Let f be a harmonizable function on X and A be the set of

boints where f is not continuous. f possesses a limit at any point of X; — A.

We may suppose f is non-negative. Let y= X*— A and f' be a continuous
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function on X*, 0< f'< 1, equal to 1 on a neighbourhood of y and equal to 0
on A. Then for any a >0, min (f, af') is a continuous bounded harmonizable
function on X. Hence it possesses a limit at y. Since « is arbitrary f possesses
a limit at y.

Let .4 denote the set of continuous functions f such that there exists a
compact set Ky for which f is equal either to 0 or to 1 on any component of
X—Ky. We denote by Xz the compactification for which any function f& .4
can be extended continuously to X5 and such that these extended functions
separate the points of X%. X% is uniquely determined except for a homeo-
morphism which induces the identical map on X. It can be characterized also
by the following property: X% — X is totally disconnected and does not discon-

nect any domain of X3.

TueorREM 5.1. There exists a canonic continuous map = - X5- X% which
induces the identical map on X. {n"'(e)|le< X% — X} is the set of components
Of A/V-

It is sufficient to prove that any function f& .4 is a Wiener function.
This follows from Corollary 2.5.

TaeoreM 5.2. Let X, X' be two harmonic spaces, K (resp. K') be a compact
subset of X (resp. X') and ¢ be an one-to-one harmonic map: X— K- X —K'
such that ¢(x) converges to K' if x converges to K. Then ¢ can be extended
to a homeomorphism X4 — K- X'5 — K'.

This is an immediate consequence of the definitions.

THEOREM 5.3. Let XeP. A compactification X* of X is resolutive if and
only if there exists a continuous map n : X3 — X~ which reduces to the identiy
on X.

Let X* be a resolutive compactification of X. Then for any continuous
bounded function f on X* f is a Wiener function on X (Theorem 4.4). fcan be
extended therefore continuously on X3 and there exists a continuous map
7+ X3— X* which reduces to the identity on X.

Suppose now that there exists such a map = : X5~ X* and let f be a con-
tinuous function on X*. It is sufficient to prove that f is a Wiener function on

X (Theorem 4.4). We observe that fon is a continuous bounded function on
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X3. Since # is a real vector space and a latice with respect to max, min,
there exists a sequence {f»} of continuous bounded functions on X3, such that
J» are Wiener functions on X, and {f.} converges uniformly to fex. Since 1
is a Wiener function # is closed with respect to the uniform convergence. f is

therefore a Wiener function on X.
CoroLLARY 5.1. The Wiener compactification is resolutive.
TaeOREM 5.4. All points of I'y are regular.

Let f be a continuous bounded function on 4. We denote also by f a con-
tinuous bounded extension of f on X*  Since f — hy is a Wiener potential it
can be extended to a continuous bounded function on X* equal to zero on /.
hs can be extended therefore continuously on X* equal to f on I. The asser-
tion follows now from the equality hy= Hs (Lemma 4.4).

5.2. THEOREM 5.5. Let f be a bounded lower semi-continuous function on

I'y and f the function on I'y

7 (%) =lim sup f(y).
Yz

f is continuous and differs from f on a polar set.

Denote by # the function

x—»jfdwx.

u may be extended continuously to 4. If g is a continuous bounded function
on d, g< f on T, then H.<u. Hence u=g on I g being arbitrary we have
u=f on I Since u = H,., u differs from f on a set of harmonic measure zero,
which is therefore polar since all points of I' are regular. Obviously f<u.
Hence u—f is a non-negative lower semi-continuous function equal to zero
almost everywhere on I". Since the carrier of w is equal to I, # — 7 vanishes

identically.

CoroLLARY 5.2. Let G be an open subset of I'y. Then G is open on I,
and G — G is polar.

CoroLLARY 5.3. [y is totally disconnected and either finite or non-metrizable.

TueOREM 5.6. Let F be a closed subset of X. R is a potential if and only
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if FN4,C Ay.
If FN 4C A there exists a potential p on X such that

lim p(x) = o,
mﬂinA
Let K={xe Flp(x)<1}. K is a compact set and therefore R is a potential.
From
RI<RI+p
we see that R} is a potential.

Let us suppose now R{ is a potential. By Corollary 6 of [3] there exists a
continuous potential p, on X, po=1 on F. Hence F N 4C A.

CoroLLArY 5.4. If {x = X|{x} is polar} is denmse outside a compact subset
of X then Ay is dense in 4.

Let y= T, and {U,} be a pseudo-exhaustion of X. Since X — \U U, is a polar
n=1

set y&EX —}2 Ua.. Let U be a neighbourhood of ¥ such that U N (X — Q}Un) = ¢.
We may suppose that UU (Un~Un-y) ¢ for any n. Let us takemxneUﬂ
(Un—Upn-1) such that {x,} is polar. The set {x»|#n=1,2,...} is polar and
has no points of accumulation in X. Let y, be a point of accumulation of this
sequence. ¥, A, N U and the proof is complete.

TuEOREM 5.7. If a point xE 4y possesses a countable fundamental system
of neighbourhoods then X€PB, x€ 'y, and there exists a neighbourhood U of x
such that any point of UN X is not polar.

X &P, since otherwise X, is Stone-Cech compactification. Let x<I" and
{U.} be a fundamental system of neighbourhoods of x. Suppose that there
exists for any »# a polar point x,€ U, N X. Then the set A = {xn|#=1} is polar
and AN 4= {x}. This contradicts Theorem 5.6.

Let now x € 4, p be a potential on X such that

lim p(y) = o,

Y

and {U.} a fundamental system of neighbourhoods of %, Un+1C Us. For any
n let f, be a continuous function on X such that |f.|<p, supfx=1, equal

with zero outside Un — Up+;.  The function f = 3)f» is a Wiener potential. This

n=>1
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is a contradiction since it cannot be extended continuously at x.

Tueorem 5.8. If U is an open subset of X, then U —oU is an open subset
of Xy and if X&P, I'yN (U —23U) is closed™.

Let yeU—23U and f be a continuous function on X* 0<f<1, f(y) =1,
f equal to 0 on 9U. Then f is a Wiener function on X. Let g be a function
on X equal to f on UUSU and equal to 0 on X~ (UU2U). By Lemma 2.11, g
is a Wiener function. It can be extended therefore continuously on X* and
g(y)=1. The set {xeX*lg(x) >%} is a neighbourhood of y contained in
U -oU.

Suppose now X<P and denote u=w(I"'N (T ~-23U)). By Corollary 4.3,
Ri™" is a potential. By Corollary 6 in [3] R3™ is dominated by a continuous
potential p. The function #—p can be extended continuously to X™ equal to
1 on I'N(U~-23U) and non-positive on I'N X—U>I'— (U —-3U). Hence I'N
(U -2930) is closed.

CorOLLARY 5.5. If U is an open subset of X then
U-3U=U-X=U.
Obviously U —oU>U — X—U. Since U — 23U is open and (U —2U) N (X — U)
=¢ we have (U—-20)NX-U=¢, U—-2UcU-X-TU.

CoroLLARY 5.6. If U* is an open connected set of X3 then U*N X is con-
nected.

Otherwise there would exist two open disjoint non-empty sets U;, Us, X< %,
U*NX=U,UU,. Since U*isconnected U*NU;NU,x¢. Let ye U*NU,NU;.
Since y¢3(U*NX) and oU;Ca(U*N X) (i=1,2) y§oUi. Hence ye (U, ~olh)
N (U, —9l;). The set (U, —30:) N (U, —oU:) being open and non-empty and

X being dense in X* we get
UiNU, = XN (U, =20 N (O, =) % ¢,
which is a contradiction.

5.3. LEmMMA 5.2. Let X%, U be an open subset of X and {U.} be the com-
ponents of U. The set

*) U means the boundary of U in X and not in X*,
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(U -20) - \‘J (U.—-20)

is a subset of 4y of harmonic measure zero.

Denote by # the harmonic measure of 4N (U —3U). By Corollary 4.3.
R¥Y is a potential and by Corollary 6 in [3] R;~Y is dominated by a continuous
potential p. The function s. equal to max (-, 0) on U, and equal to 0 on
X — U, is subharmonic and from its boundary behaviour we see that it minorises
o(U.—2U.). Hence

u—p< s < 2hs < (4N (U¢~6m))=w(dﬂ(L‘J(ﬁ(—aUc))),
w(40N (U—zﬁ])):dm(\)(ﬁ;—am))).

TaEeoreM 5.9. A point of I'y is isolated in T, w if and only if it has a positive
harmonic measure. In this case it possesses a fundamental system of connected
neighbourhoods.

If a point of I' is isolated in I" its harmonic measure must be positive since
it is open and I is the carrier of the harmonic measure. Conversely let yeTI
be of positive harmonic measure and denote u = w({y}). #u is a positive har-
monic function. It can be extended therefore to a continuous function on 4
equal to 0 on I"'— {y} and different from 0 at y. It follows that y is isolated
in I

Suppose ¥ € I' has a positive harmonic measure. Let U* be a neighbourhood
of y such that U*NI'={y}). Denote U=U*NX. Obviously yeU-3U. By
the proceding lemma there exists a component V of U such that ye V -2aV.

By Theorem 5.8, V-0V is a neighbourhood of y and it is obviously connected.

CoroLLARY 5.7. The dimension of the space of pseudo-bounded harmonic
Sfunctions on X is equal to n if and only if I'y consists of exactly n posnts.

By Lemma 4.7. this space is isomorphic with the space of continuous
bounded functions on I

TheorEM 5.10. A pseudo-bounded harmonic function is minimal if and only

if it is proportional to the harmonic measure of a point.

Let yeTI" be of positive harmonic measure and » a harmonic function

0<v<w({y}). Since v can be extended continuously to I" we see that v is pro-

https://doi.org/10.1017/5S0027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

COMPACTIFICATIONS OF HARMONIC SPACES 49

portional to w({y}).

Let # be a pseudo-bounded minimal function. It can be extended con-
tinuousfy on I" and we have #=Hj (Lemma 4.7). % is equal to zero on I" with
the exception of a point y=I. Indeed on the contrary case we can find two
non-negative continuous functions fi;, f; on I' not identicaly zero, fi+ f2<u,
min (11, f2) =0. Since Hy; (i=1, 2) are positive and proportional to » we get
a contradiction since

Hf, NHf, = How sy, £ = 0.

5.4. TueoreM 5.11. Let X< B and U be an open subset of X. U&EN if
and only if Iy, C X—U.

Let us denote #=h. By Lemma 2.5 we have
hZ.X = hl‘;’, X

Hence U= M if and only if ki’ *=0. By Lemma 2.7 and Corollary 1.1 this is
equivalent to the equality

u=Ri".
Suppose I'C X—U. Let s be a non-negative hyperharmonic function on X,
s=u on X—U. Then by the minimum principle (Theorem 4.1) s>% on X.

Hence
u=RL"
Suppose now
w= R
Then from
u=w0(I'NX-U) +o(I'-X=0)
it follows

u=Ri™" = Ritneo + R x=m<o(IN X-0U) + (T - X-0U) = 4,
o(IFr=X-0) = Rixxzm.

Since R i=r is a potential (Corollary 4.3), w(I'— X—U) vanishes. I being

the carrier of w and I'— X— U being open, we have I'C X—U.

CoroLLARY 5.8. If two open subsets of X coincide outside a compact subset

of X then they belong or do not belong simultaneously to .

CoroLLARY 5.9. If there exist n disjoint open subsets U, ..., Un each
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of which does not .belong to N and if R :2\°* is not a potential, then the
dimension of the space of psuedo-bounded harmonic functions on X is at least

equal to n+ 1.
The assertion follows from the theorem using Corollary 5.7 and Theorem 5.6.

5.5. LeMMA 5.3. Let F be a closed sel on X, f be a continuous bounded
Sfunction on X and T be its carrier on X. If the closures of F and T in X5
are disjoint and f is a Wiener function on X—F then f is a Wiener function
on X. If X€B and f is a Wiener potential on X — F then f is a Wiener
potential on X.

Suppose firstly X P. There exists a continuous bounded function f; on
X* equal to zero on F and equal to sup |f| on T. f, is a Wiener function on
X and there exists a potential p on X such that fo< hys,+p. If we denote
s=hys,+p, RY is a potential (Lemma 2.6). Since | f|<s, f is a Wiener function
(Corollary 2.3). If f is a Wiener potential on X— F, f is a Wiener potential
on X by the same corollary.

Suppose now X9 - 9. Let K be a compact non-polar subset of X and U
a component of X— K. Since U P and the closures of FNU and TN U in Uy
are disjoint, f is a Wiener function on U by the above proof. Hence f is har-
monizable on X — K and therefore a Wiener function on X.

TueoreM 5.12. Let X' be a harmonic space and X be a domain of X'. We
denote F' = X' — X and by v the identical map X— X'. v possesses a continuous
extension to a map Xs— X', which we shall denote also by . Let us denote
Ffurther U™ = X'5 —F', U* =9~ (U"™).

a) The map U*-> U™ defined by n is a homeomorphism.

b) If X' &P then y([, NU*) =T N U™, 9(4, N U*) = 4 N U™

c) If X&B then any w-measurable set ACTy, N U™ is of harmonic measure
zero (with respect to X) if and only if 7(A) is of harmonic measure zero (with
respect to X').

d) N (F'NX N4 is polar.

7 possesses a continuous extension to a map X*- X'* since the restriction
of any Wiener function on X’ to X is a Wiener function on X.

Let %, y be two different points of U* and V be a neighbourhood of x on
X* such that 7(V)NF'=¢. Let f be a continuous bounded function on X*
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whose carrier lies in V, equal to 1 at x¥ and equal to 0 at y. Its restriction to
X is a Wiener function. Let s’ be the function on X' equal to f on X and
equal to 0 on F'. Since ' is continuous, 7(V) contains its carrier and
2(V)NF'=¢, f'is a Wiener function by the preceding lemma. Hence it may
be extended continuously on X'*. We shall denote equally by s’ this extension.
f'op is equal to f on X and therefore on X™.
a) From
(%)) =f(x) =1, () =f(y) =0,
it follows 7(x) %%(y). 7 is therefore a one-to-one map on U*. From

{x'e X" 1(x) %0} =9({xe X*| f(x) x0}) S9(V)

we see that (V) is a neighbourhood of 7(x) and so 7 induces an homeomorphism
U*- U™,

b) Suppose ¥ = ANU* Then we can take f such that it is a Wiener
potential on X. By the preceding lemma f' is also a Wiener potential on X'.
Since

() =f(x) =1

it follows 9(x) € A’ N U, (AN U*)c A N U™,

Suppose 7(x) € A'NU'*. We may take V such that »(V)NI'=¢. Then f'
is a Wiener potential on X'. From Lemma 2.5 we get h* =0 and by Lemma
2.7, h7* =0. Hence f is a Wiener potential on X and x < 4.

¢) If y(A) is of harmonic measure zero, it is a polar set since all points of
I'" are regular. By Theorem 4.10, A is of harmonic measure zero.

If A is of harmonic measure zero, there exists a positive superharmonic
function s on X converging to infinite at A. scy~! converges to infinite at (A)
which is therefore of harmonic measure zero by Lemma 4.9.

d) Suppose firstly X’ P and denote by 7 the characteristic function of
7 MF'NXN4). We have to show that

I7X, X*
% = 0

Hy'™ is associated with zero at any boundary point of X with respect to X'
Hence the function s’ equal to 0 on F’ and equal to H3'*" on X is the least
upper bound of the set of its continuous subharmonic minorants (Theorem 1.2).

Let s’ be a continuous subharmonic minorant of s’. Since s’ is a Wiener func-

https://doi.org/10.1017/5S0027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

52 C. CONSTANTINESCU AND A. CORNEA

tion it may be extended continuously on X*. Since Hy'*" converges to zero

at I’'NU™ s'is equal to zero on
(Frnayurnu*or.

Since s’ is upper pseudo-bounded it is non-positive by the minimum principle
(Theorem 4.1). It follows

Hy ™ =0.

Suppose now X' is arbitrary. Let K be a compact non-polar subset of X,
Vi, ..., Vs the non-relatively compact components of X — K and V; the com-
ponent of X’ — K which contains V;. The assertion follows using the preceding
results for the pairs (Vi, Vi), (Vi, X), (Vi, X").

§ 6. Behaviour of harmonic maps on the ideal boundaries

6.1. All harmonic spaces considered in this paragraph are connected,
belong to P U H and the constants are Wiener functions.

A harmonic map ¢ : X->X' is called a Fatou map if for any bounded
Wiener function f'on X', f'°¢ is a Wiener function on X. A harmonic map X-
X' is a Fatou map if and only if it can be extended continuously into a map
Xy X5, W e:X->X,¢ :X-»X"are Fatou maps then ¢'o¢ is a Fatou

map. The inclusion map is a Fatou map.

TueoreM 6.1. Let ¢ : X— X' be a harmonic map. If X, X' c9—Por X, X'
€ B, then ¢ is a Fatou map. If X P and X' & H— P the following conditions
are equivalent:

a) ¢ is a Fatou map;

b)Y either the constants are non-harmonic on X' or there exists a continuous
non-constant non-negative function f' on X' such that f'°¢ is a Wiener function
on X;

¢) there exists a closed non-polar set F'C X' such that R?™"" is a potential.

This theorem follows from Theorems 3.7, 3.8, 3.9 remarking that b) asserté
that there exists a continuous non-harmonic non-negative function on X' such

that composed with ¢ it becomes a Wiener function on X,

6.2. Lemma 6.1, Let U be an open set in 4, and ¢ be a continuous map

of X in a compact space Y. If there exists a polar set ACU such that ¢ pos-
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sesses a limit at any point of U— A, then ¢ possesses a limit at any point of U.

Since any compact space can be imbedded into a cube [0, 11’ it is sufficient
to prove the lemma for a real function ¢, 0<¢ <1. Let y= A and f;, be a
continuous real function on X* 0<f,<1, equal to 1 on a neighbourhood of ¥
and equal to zero on 4— U. The function f = ¢/, is continuous on X and pos-
sesses limits at any point of 4— A. Let K be a compact subset of X such that
X—-KeP and s be a positive superharmonic function on X— K converging to

infinite at any point of A. Let « be a positive number and denote
V={xe X~ K|s(x)>a)}.

There exists a real continuous function g on X* 0<g<1, equal to f on X— V.

£ is harmonizable on X — K and

_s s
&g sf<g+

Hence

Z}'-K,X—K_LI';—K, X—KS %;"

a being arbitrary f is harmonizable on X— K. Itis therefore a Wiener function
on X and possesses a limit at y. Since f, is equal to 1 on a neighbourhood of
¥, ¢ possesses a limit at y.

TrEOREM 6.2, If XEB, any continuous map of X in a compact space pos-

sesses a limit at any point of Ay.
Any point of A possesses a polar neighbourhood.

LEMMA 6.2, Let U* be an open subset of X3. Any Wiener function on

U*N X can be extended continuously on U*.

It is sufficient to prove the assertion for a Wiener function f on U*N X,
0<f<1. Let yeU*N4 and f, be a continuous function on X* 0<fo<1,
whose carrier lies in U* and equal to 1 on a neighbourhood of y. The function
f' on X equal to min (£, /4) on U*N X and equal to 0 on X— U* is a Wiener
function by Lemma 5.3. Hence it possesses a limit at y. Since f is equal to
/! on a neighbourhood of y f has a limit at y.

TaeoREM 6.3. Let ¢ : X—> X' be a harmonic map, X=PB. We define ¢*
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with respect to X'3, ¥ and denote
47(¢) ={y < 4,19*(y) = X'3}.
Then:
a) for any y € 4y — 4y (¢), ©*(y) consists of a point;
b) 4,(¢) is an open and closed subset of I'y;
c) if U* is an open subset of X4 and U*N 4,(¢) % ¢ then there exists a
component of U* N X on which ¢ is not a Fatou map.

We may suppose X' — P since otherwise ¢ is a Fatou map and there-
fore may be extended continuously on X*.

Let U* be an open subset of X* Suppose that the restriction of ¢ to any
component of U*N X is a Fatou map. Let s/ be a continuous bounded function
on X'*. Then f'o¢ is a Wiener function on U*N X and by the preceding
lemma it possesses a continuous extension on U *. Hence ¢ possesses a continu-
ous extension on U™ and the assertion c) is proved.

Let ye4—4,(¢). Then y possesses a neighbourhood U™ such that
X'—@(U*N X) has interior points. By Theorem 6.1 the restriction of ¢ to any
component of UU* N X is a Fatou map. From the preceding considerations we
see that ¢ possesses a continuous extension on U*. Hence ¢*(y) consists of a
point and 4,(¢) is closed. By Theorem 6.2 it is a subset of I Let us denote
G=TI- 44(¢). By Corollary 5.2 G is open in I" and G — G is polar and from
Lemma 6.1, ¢ possesses a limit at any point of G. Hence G =G and A;),((P) is
an open subset of I

6.3. Let ¢ : X> X' be a harmonic map. We shall denote also by ¢ its

extension to a continuous map Xj — 4,(¢) > X'5.

TaEOREM 6.4. Let ¢ : X~ X' be a harmonic map, X B. X' N @(Iy — dy(¢))
is exactly the set of points at which ¢ is not of type-Bl.

Let x' € X’ N¢(I'—- 44(¢)) and U’ be a neighbourhood of x'. There exists
a point y € I" such that y& X—¢ (U’). From Theorem 5.11, ¢~ (U’) does not
belong to M. ¢ is therefore not of type-Bl at «'.

Let &X' N¢(I"— 4,(¢)). Since X' N¢(Ir'— 4,(¢)) is a closed subset of X’

there exists. a relatively compact neighbourhood U’ ‘of &’ such that

U N@(I'— 4y4(¢)) =¢. If there would exist a point yeI'= X—¢ ' (U') then

*' see page 43.
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¢*(y) U’ which is impossible by the preceding theorem. Hence I'c X—¢~Y(U")
and XN¢ ' (U') €M by Theorem 5.11.

CorOLLARY 6.1. If X'e ©—B, ¢ is of type-Bl if and only if T’y — 4,(9) is
empty.

If I'— 4,(¢) is empty, ¢ is type-Bl by the theorem. Suppose now ¢ is of
type-Bl.  Then ¢(I'— 4,(¢))C 4’ and the constants are harmonic on X by
Theorem 3.11. Then 4' is polar and I'— 4,(¢) is of harmonic measure zero by

Theorem 4.10. Hence I"'— 4,(¢) is empty since by Theorem 6.3 it is open.
CoroLLARY 6.2, If X' B, ¢ is of type-Bl if and only if
o(I'y) =TY.

If ¢(I') =T" then ¢(I') N X' is empty and ¢ is of type-Bl. Conversely if ¢
is of type-Bl, then ¢(I"' < 4'. If ¢(I') —I'"=x¢ then there would exist an open
subset G of I" such that ¢(G)< A'. This contradicts Theorem 4.10. Hence
¢(NcrI'. Let f' be a non-negative bounded continuous function on X'* equal

to zero on ¢(I'). There exists a potential ' on X' such that
RF < f14p'.
Hence
hfo@ < flog+plop.
Since f'o¢ and p'>¢ are Wiener potentials kf vanishes. It follows ¢(I") = I".

CoroLLARY 6.3. If the set of polar points of I'y is of harmonic measure
zero and if any point of X' is polar, then ¢ is of type-Bl. If ¢ is also a Fatou

map then X' =B and the set of poiar points of I'y is of harmonic measure zero.

Suppose that ¢ is not of type-Bl. Then X'N¢(I'— 4,(¢)) is not empty.
(r—4,(¢))N¢™'(X') being open and non-empty in I" it contains a non-polar
point x. This leads to a contradiction since ¢(x) is polar (Theorem 4.10).

If ¢ is a Fatou map 4y(¢) is empty. By Corollary 6.1, X’B. Let A’ be
the set of polar points of I’. At any non-polar point of I, w(A’)°¢ converges
to zero since the image of such a point does not belong to A’ by Theorem 4. 10.
Hence w(A’)o¢ and therefore w(A’) vanishes.

Lemma 6.3. Let X, X'eB, ¢ : X X' be an open harmonic map of type-
Bl and U be an open subset of X. Then for any x€l,N(U-X-0),

https://doi.org/10.1017/5S0027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454

56 C. CONSTANTINESCU AND A. CORNEA

¢(x) €Ty N (0(U) - X'— (D).
We denote
A={xern(U-X=-D)|e(x) e X'—¢(U)}.

By Corollary 6.2, ¢(A) C I'' and by Theorem 5.8 and Corollary 5.5, I'' N X”—-(;»(U}

is an open subset of 7. Let us denote

u'=o(l’N X':E(UM)').
Then

S\

-l 7 !
u, = R“’ Pl )y h;‘;sb X = 0'
Hence by Theorem 3.10, a=d
p=1(o(U ‘
hgﬁ'o;”(l MX - 0.

Since UC ¢} (¢(U)), K%, vanishes. Hence #'°¢ = Ry... From here and from
Lemma 4.3 we see that u'c¢ converges to zero at any point of A. Hence,

A is empty, since ¢ is continuous on A and %' converges to 1 at ¢(A).

THEOREM 6.5. Let X, X'€P and ¢ : X— X' be a harmonic map of type-
Bl, such that for any ¥ € X! XN ¢ X x') contains at most n points (n< o).
Then for any y' €I'ly, ¢~(y') N Ty contains at most n points. ' has a positive

harmonic measure if and only if all points of ¢ (') NIy have a positive har-

monic measure.

Being 0-dimensional ¢ is open by Theorem 3.3. Let ¥’ and », ... ,¥m
be different points of ¢ '(3") NT. There exists a system of pairwise disjoint
open sets UF, ..., U, such that y;e U¥i=1, ...,m). By the preceding
lemma y' € e(UFNXx) - mﬁif_) for any 7, 1<i<m. Hence ﬁsﬂ(Ui" nXx)
is not empty. Let x’ be a point of this set. We can find for any 7, 1<i<m,
a point ;€U N XN¢ *(x"). Hence ¢ (') contains at least m points and we
get m <n. The last assertion follows from Theorem 4.10 and Theorem 5.9.

CoroLLARY 6.4. Let ¢ be as in the theorem and ' be a harmonic minimal
function on X'. There exists harmonic minimal functions uy, . . . ,ur (K< n)
on X such that

k
wo0 =>u;.

i=1
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Let us divide the sheaf of harmonic functions on X (resp. X') by u'o¢ (resp.
u'). ¢ is also type-Bl with respect to these new harmonic spaces. The function
1 is harmonic and minimal on X' and therefore I (constructed with respect
to the new sheaf) consists of a single point (Theorem 5.10). I’ consists of
k< n points %y, ..., xe since 'c¢ (") (Corollary 6.2). Let w; denote the

harmonic measure of {x;}. We have

k
1= w.
i=1

The required equality follows multiplying this equality by #'c¢.

CoRrROLLARY 6.5. Let ¢ be as in the theorem. If the dimension of the space
of pseudo-bounded harmonic functions on X' is equal to d (d'< ) then the
dimension of the space of pseudo-bounded harmonic functions on X is at most

equal to nd'.

If the dimension of this space is finite there exists a basis formed on mini-

mal functions.

BiBLIOGRAPHY

[1] N. Boboc, C. Constantinescu, A. Cornea, On the Dirichlet problem in the axiomatic
theory of harmonic functions, Nagoya Math. J. 23 (1964), 73-96.

[2] M. Brelot, Lectures on potential theory (part. IV), Tata Institute of Fundamental
Research, Bombay 1960.

[3] C. Constantinescu, A. Cornea, On the axiomatic of harmonic functions I. Ann. Inst.
Fourier 13 (1963), 373-388.

Academia R.P.R.

https://doi.org/10.1017/50027763000011454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011454



