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Abstract

We develop the metric theory of Diophantine approximation on homogeneous varieties
of semisimple algebraic groups and prove results analogous to the classical Khintchine
and Jarník theorems. In full generality our results establish simultaneous Diophantine
approximation with respect to several completions, and Diophantine approximation
over general number fields using S-algebraic integers. In several important examples,
the metric results we obtain are optimal. The proof uses quantitative equidistribution
properties of suitable averaging operators, which are derived from spectral bounds in
automorphic representations.
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1. Introduction

In the classical theory of Diophantine approximation one studies approximations of vectors x ∈
Rd by rational vectors. Beginning with work by Khintchine in the 1920s, there has been a rich
literature investigating the size of the sets of vectors in Rd satisfying various approximation
properties [Spr79, Har98, BD99]. To set the scene we recall two fundamental results in this
subject, the Khintchine and Jarńık theorems.

Let us fix a nonincreasing function ψ : R+
→ (0, 1] which will measure the quality of

rational approximations. A vector x ∈ Rd is called ψ-approximable if there exist infinitely many
(p, q) ∈ Zd × N such that ∥∥∥∥x− p

q

∥∥∥∥ 6
ψ(q)

q
.
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Let W(Rd,Qd, ψ) denote the set of ψ-approximable vectors in Rd. Since W(Rd,Qd, ψ) is the
lim sup set with respect to the balls centered at p/q and radius ψ(q)/q, a straightforward Borel–
Cantelli argument implies that the set W(Rd,Qd, ψ) has Lebesgue measure zero provided that

∑
(p,q)∈Zd×N,p/q∈[0,1)d

(
ψ(q)

q

)d
=
∑
q>1

ψ(q)d <∞. (1.1)

The converse is a fundamental theorem of Khintchine [Khi24]:

Theorem 1.1 (Khintchine). If ∑
q>1

ψ(q)d =∞,

then the set W(Rd,Qd, ψ) has full Lebesgue measure.

If we strengthen (1.1) to require that∑
(p,q)∈Zd×N,p/q∈[0,1)d

(
ψ(q)

q

)α
=
∑
q>1

qd−αψ(q)α <∞

for some α ∈ (0, d), then it easily follows that the Hausdorff dimension of the set W(Rd,Qd, ψ)
is at most α. The converse was established by Jarńık [Jar29]:

Theorem 1.2 (Jarńık). If for some α ∈ (0, d),∑
q>1

qd−αψ(q)α =∞,

then the intersection of W(Rd,Qd, ψ) with every nonempty open subset of Rd has Hausdorff
dimension at least α.

The aim of this paper is to develop the metric theory of Diophantine approximation on
homogeneous varieties of semisimple algebraic groups. In fact, we consider, more generally,
• analogues of Khintchine’s theorem for homogeneous varieties (Theorems 1.5 and 1.6);
• analogues of Jarńık’s theorem for homogeneous varieties (Theorem 1.7).

Both theorems are developed in great generality, i.e. we consider simultaneous Diophantine
approximation with respect to several completions, as well as approximation over number fields
by S-algebraic integers.

Although the question of proving a Khintchine-type theorem for homogeneous varieties was
raised as long as half a century ago by S. Lang [Lan65, p. 189], it has remained widely open.
We are only aware of results for rational quadrics [Dru05]. See also the recent preprint [KM13].
It should be noted that this problem is very different from problems arising in the theory of
Diophantine approximation with dependent quantities, also traditionally called ‘Diophantine
approximation on manifolds’ (see, for instance, [Kle10, BD99]). In the latter subject, one studies
rational approximation of points on varieties by all rational points in Rd, while we are interested
in approximation by rational points lying on the variety.

Let X be a nonsingular subvariety of the affine space An defined over a number field K. We
denote by VK the set of normalized absolute values | · |v of K and by Kv the corresponding
completions. We introduce a metric on X(Kv),

‖x− y‖v := max
16i6n

|xi − yi|v, (1.2)

1436

https://doi.org/10.1112/S0010437X13007859 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007859


Diophantine approximation

and the height function on X(K),

H(x) :=
∏
v∈VK

max(1, ‖x‖v). (1.3)

For S ⊂ VK , we set

XS := {(xv)v∈S | xv ∈ X(Kv); ‖xv‖v 6 1 for almost all v}.

The metric on XS is defined as the maximum of the local metrics (1.2). We assume the existence
of a nonvanishing regular differential form on X of top degree and fix such a form. This defines
measures λv on X(Kv) and a measure λS on XS , which is product of the measures on X(Kv)
normalized so that the subsets {‖xv‖v 6 1} have measure one. Different choices of differential
forms give equivalent measures.

We are interested in Diophantine approximation in XS by elements of X(K), which are
embedded in XS diagonally. Let Ψ = (ψv)v∈S be a collection of nonincreasing functions ψv :
R+

→ (0, 1] such that ψv = 1 for almost all v.

Definition 1.3. We say that a point x = (xv)v∈S ∈ XS is Ψ-approximable if there are infinitely
many z ∈ X(K) such that

‖xv − z‖v 6 ψv(H(z)), v ∈ S. (1.4)

We denote by W(XS ,X(K),Ψ) the set of Ψ-approximable points in XS .

Let
ψS(t) :=

∏
v∈S

ψv(t)
rv ,

with rv = 2 if Kv = C and rv = 1 otherwise. Since X is nonsingular, computing volumes with
respect to the measures λv in local coordinates yields

λS({x ∈ XS | (1.4) holds})�z ψS(H(z))dim(X),

where the implied constant is uniform as z varies in compact sets. Therefore, the standard
Borel–Cantelli argument implies that if∑

z∈X(K)∩D

ψS(H(z))dim(X) <∞ (1.5)

for all bounded subsets D of XS , then the set W(XS ,X(K),Ψ) has measure zero.
Similarly, one can obtain an elementary estimate on the Hausdorff dimension of the set

W(XS ,X(K),Ψ). Let us assume that S is finite, and all functions ψv are equal. It follows from
the definition of the Hausdorff dimension (see § 7 below) that if, with α > 0,∑

z∈X(K)∩D

ψS(H(z))α <∞ (1.6)

for all bounded subsets D of XS , then the set W(XS ,X(K),Ψ) has Hausdorff dimension at
most α.

We prove partial converses of these statements in the setting of homogeneous varieties of
simple algebraic groups. Our main results, which are optimal in many cases, are illustrated by
the following example:

1437
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Example 1.4. Let
X = {Q(x) = a}

be a rational two-dimensional ellipsoid. We fix a finite prime p, a finite set of primes p1, . . . , ps
(possibly including∞) different from p, and ψ : R+

→ (0, 1] a nonincreasing function. We consider
the problem of Diophantine approximation in X(Qp1)× · · · ×X(Qps) by points in X(Z[1/p]). In
this setting, we have the following.

(i) If there exists a bounded subset D of X(Qp1)× · · · ×X(Qps) and ε > 0 such that∑
z∈X(Z[1/p])∩D

ψ(H(z))2s+ε =∞,

then, for almost every (x1, . . . , xs) ∈ X(Qp1)× · · · ×X(Qps), the system of inequalities

‖xi − z‖pi 6 ψ(H(z)), i = 1, . . . , s,

has infinitely many solutions z ∈ X(Z[1/p]). In view of the above discussion, this result is
optimal (up to ε > 0). Namely, as we saw in (1.5), if∑

z∈X(Z[1/p])∩D

ψ(H(z))2s <∞

for all bounded subsets D, then the set of such (x1, . . . , xs) has measure zero.

(ii) If there exists a bounded subset D of X(Qp1)× · · · ×X(Qps) and α ∈ (0, 2s) such that∑
z∈X(Z[1/p])∩D

ψ(H(z))α =∞,

then the set of (x1, . . . , xs) ∈ X(Qp1)× · · · ×X(Qps) such that the system of inequalities

‖xi − z‖pi 6 ψ(H(z)), i = 1, . . . , s,

has infinitely many solutions z ∈ X(Z[1/p]) has Hausdorff dimension at least α. This result
is optimal. Indeed, according to (1.6), if∑

z∈X(Z[1/p])∩D

ψ(H(z))α <∞

for all bounded subsets D, then the set of such (x1, . . . , xs) has Hausdorff dimension at
most α.

These results are obtained by applying Theorem 1.5 to the adjoint group of norm 1 elements in
a rational quadratic algebra which is ramified at the infinite place.

Integrability exponents
Our results depend on spherical integrability exponents which we introduce in this section. Let
GVK denote the restricted direct product of Gv, v ∈ VK . The group of K-rational points G(K)
embeds diagonally in the locally compact group GVK as a discrete subgroup with finite covolume.
A continuous unitary character χ of GVK is called automorphic if χ(G(K)) = 1. Then χ can be
considered as an element of L2(GVK/G(K)). We denote by L2

00(GVK/G(K)) the subspace of
L2(GVK/G(K)) orthogonal to all automorphic characters. The translation action of the group
Gv on GVK/G(K) defines a unitary representation πv of Gv on L2

00(GVK/G(K)). Fix a suitable
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maximal compact subgroup Uv of Gv (as in [GGN12, § 3]). We define the spherical integrability
exponent of πv with respect to Uv by

qv(G) := inf

{
q > 0 :

∀ Uv-inv. w ∈ L2
00(GVK/G(K))

< πv(g)w,w >∈ Lq(G(Kv))

}
. (1.7)

We note that the Langlands program provides explicit bounds and conjectures regarding the
values of the integrability exponents (see [Sar05] for a comprehensive discussion). In particular,
it is known that the integrability exponents qv(G) are always finite (see [Clo03]). The generalized
Ramanujan conjecture for SL2 is equivalent to qv(SL2) = 2 for all v ∈ VK , and the best currently
known estimates give qv(SL2) 6 64/25 (see [Kim03] for Q and [BB11] for general number fields).

There are some known cases where the Ramanujan bound is met. In the setting of Example
1.4, for instance, it is known that qv(G) = 2 due to the celebrated results of Deligne combined with
the Jacquet–Langlands correspondence (see [Lub94, Appendix]). Other situations where qv(G) =
2 are provided by ([Clo02, Shi11]) (we thank P. Sarnak for bringing these to our attention).

For S ⊂ VK , we set

σS := lim sup
N→∞

1

logN
|{v ∈ S : qv 6 N}|, (1.8)

where qv denotes the cardinality of the residue field for non-Archimedean v, and define

qS(G) = (1 + σS) sup
v∈S

qv(G). (1.9)

Main results
Our first theorem concerns Diophantine approximation on a semisimple algebraic group G.

Theorem 1.5. Let G ⊂ GLn be a connected simply connected almost simple algebraic group
defined over a number field K, S ⊂ VK , and Ψ = (ψv)v∈S a collection of nonincreasing functions
ψv : R+

→ (0, 1] such that ψv = 1 for almost all v. Suppose that for a bounded subset D of GS
and a constant α > ((qVK\S(G))/2) dim(G), we have∑

z∈G(K)∩D

ψS(H(z))α =∞. (1.10)

Then the set W(GS ,G(K),Ψ) has full measure in GS .

This result is analogous to Khintchine’s theorem (Theorem 1.1). Comparing (1.10) with (1.5),
we conclude that it is optimal when qVK\S(G) = 2. The assumption that G is simply connected
is essential here, and Theorem 1.5 can be considered as a quantitative version of the strong
approximation property [PR94, 7.4], which is only valid for simply connected semisimple groups.

More generally, we consider a quasi-affine variety X ⊂ An defined over a number field K and
equipped with a transitive action of a connected almost simple algebraic group G ⊂ GLn defined
over K. For S ⊂ VK and a collection of functions Ψ = (ψv)v∈S , we are interested in analyzing
the set W(XS ,X(K),Ψ) defined as above. Even when the set X(K) is not discrete in XS , it
might happen that its closure has measure zero in XS , and in particular, the direct analogue of
Theorem 1.5 fails. To describe the structure of W(XS ,X(K),Ψ), we observe that XS is a union
of open sets

XS,S′ := {x ∈ XS : ‖xv‖v 6 1 for all v ∈ S\S′},
where S′ runs over finite subsets of S containing the Archimedean places of S. Hence, the problem
reduces to analyzing the sets

W(XS,S′ , XS,S′ ∩X(K),Ψ) ⊂ XS,S′ .
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When S′ contains all places v such that ψv 6= 1, it is easy to check that

W(XS,S′ , XS,S′ ∩X(K), (ψv)v∈S) =W(XS′ , XS,S′ ∩X(K), (ψv)v∈S′)

×
( ∏
v∈S\S′

{x ∈ X(Kv) : ‖x‖v 6 1}
)
.

As we will see below (cf. Lemma 5.3), if XS,S′ ∩X(K) is not discrete in XS′ , then the closure of
XS,S′ ∩X(K), embedded in XS′ , is open in XS′ , and we shall prove an analogue of Theorem 1.5
for the sets

W(XS′ , XS,S′ ∩X(K), (ψv)v∈S′) ⊂ XS′ .

To state this result, we introduce a measure of the growth of the number of rational points in
XS,S′ defined by

aS,S′(X) := sup
D

lim sup
h→∞

log |{z ∈ X(K) ∩D : H(z) 6 h}|)
log h

, (1.11)

where D runs over bounded subsets of XS,S′ . We note that aS,S′(X) <∞. When the supremum
in (1.11) is taken over all bounded subsets of XS we use the notation aS(X). In the case of a
group variety, if G is isotropic over VK\S then aS(G) > 0.

Theorem 1.6. Let X ⊂ An be a quasi-affine variety defined over a number field K and equipped
with a transitive action of a connected almost simple algebraic group G ⊂ GLn defined over
K. Let S ⊂ VK , S′ be a finite subset of S containing the Archimedean places of S, and let
Ψ = (ψv)v∈S′ be a collection of nonincreasing functions ψv : R+

→ (0, 1]. Suppose that for a
bounded subset D of XS,S′ and a constant

α >
aS,S′(X)

aS(G)

qVK\S(G)

2
dim(X), (1.12)

we have ∑
z∈X(K)∩D

ψS′(H(z))α =∞. (1.13)

Then XS,S′ ∩X(K) is open in XS′ , and the set W(XS′ , XS,S′ ∩ X(K),Ψ) has full measure in

XS,S′ ∩X(K).

We note that in the setting of Theorem 1.6 , aS(G) > 0; see § 5. The estimate (1.12) contains an
interesting interplay between the arithmetic datum aS,S′(X)/aS(G), which measures the growth
rates of rational points, and the analytic datum qVK\S(G), which measures the spectral gap
for automorphic representations. Typically, aS,S′(X)/aS(G) 6 1 and qVK\S(G)/2 > 1, but their
product must always be at least one. Indeed, if this is not the case, then

aS,S′(X)

aS(G)

qVK\S(G)

2
dim(X) < dim(X),

and one can exhibit a family of approximation functions ψv such that both (1.5) and (1.13) hold.
Since this contradicts Theorem 1.6, we conclude that

qVK\S(G) > 2
aS,S′(X)

aS(G)
,
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which was also observed in [GGN12, Corollary 1.8]. If the equality holds (see, for instance,
Example 1.4), then the result of Theorem 1.6 is optimal.

We now state an analogue of Jarńık’s theorem (Theorem 1.2) which estimates the Hausdorff
dimension of the sets W(XS′ , XS,S′ ∩ X(K),Ψ). The problem of estimating the Hausdorff
dimension in a nonconformal setting is quite subtle, and in particular, there is no version of
Jarńık’s theorem for general rectangular regions defined by a family of functions ψ1, . . . , ψd.
Therefore, we restrict our attention to the case where all the functions ψv are equal to a single
function ψ and write W(XS′ , XS,S′ ∩X(K), ψ) to denote the set of approximable points.

Theorem 1.7. Let X ⊂ An be a quasi-affine variety defined over a number field K and equipped
with a transitive action of a connected almost simple algebraic group G ⊂ GLn defined over
K. Let S ⊂ VK , S′ be a finite subset of S containing the Archimedean places of S, and let
ψ : R+

→ (0, 1] be a nonincreasing function. Suppose that, for some 0 < α <
∑

v∈S′ rv dim(X)
and a bounded subset D of XS,S′ , we have∑

z∈X(K)∩D

ψ(H(z))α =∞. (1.14)

Then XS,S′ ∩X(K) is open in XS′ , and the intersection of the setW(XS′ , XS,S′ ∩X(K),Ψ) with

every nonempty open subset of XS,S′ ∩X(K) has Hausdorff dimension at least

2aS(G)

aS,S′(X)qVK\S(G)
· α.

We note that this estimate is optimal if qVK\S(G) = 2(aS,S′(X)/aS(G)), which holds for a
number of cases (see, for instance, Example 1.4).

Comparison with [GGN12] and strategy of proof
In our earlier work [GGN12], we studied Diophantine approximation on homogeneous varieties
and obtained estimates, sharp in many cases, for Diophantine exponents. Let X be an algebraic
variety defined over a number field K and let v ∈ VK . The Diophantine exponent of a point
x ∈ X(Kv) is defined to be

ωv(x, ε) := min{H(z) : z ∈ X(K), distv(x, z) 6 ε} (1.15)

(if no such z exists, set ωv(x, ε) =∞). This function is a generalization of the uniform irrationality
exponent ω̂(ξ) of a real number ξ and was introduced by M. Waldschmidt in the context of abelian
varieties. It is a nonincreasing function which is bounded as ε → 0+ if and only if x ∈ X(K) and
is finite if and only if x ∈ X(K). It is then a natural problem to obtain bounds for Diophantine
exponents. In [GGN12], we used ergodic theorems on semisimple groups, along with a duality
principle to obtain very general bounds which are sharp in a number of important cases for
homogeneous varieties of semisimple groups. Thus [GGN12] and the present paper should be
viewed as developing different facets of the metric theory of Diophantine approximation on
homogeneous varieties. In the former, estimates for Diophantine exponents are developed, and
in the present paper, we obtain analogues of Khintchine’s and Jarńık’s theorems.

The broad strategy of the present paper is similar to [GGN12] and, philosophically speaking,
this line of attack goes back to work by Dani [Dan85] and Kleinbock and Margulis [KM99] on
the so-called shrinking target problem. We study Diophantine properties of points on a variety
by relating them to visits to shrinking sets, of orbits of a certain group acting on a homogeneous
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space. To aid the reader, we present a short summary of the strategy of the proof in the special

case of group varieties. Given a point x ∈ GS , we associate to it the point (e, x−1)G(K) ∈
GVK/G(K). We consider the action of GVK\S on GVK/G(K). Diophantine properties of x are

then connected to visits of orbits of (e, x−1)G(K) under this action, to a shrinking sequence of

neighborhoods of the identity coset. This is an example of the shrinking target property. The

rate at which these neighborhoods shrink is related to asymptotic properties of the function Ψ.

A duality principle provides the precise dictionary between the dynamics on the homogeneous

space and Diophantine properties of points on varieties. A mean ergodic theorem with rate is

then used to study the distribution of orbits on GVK/G(K). The rate in the ergodic theorem is

related to the spherical integrability exponent.

We stress that while the strategy in the present paper is similar to [GGN12], there are

important technical differences. In particular, substantial analysis is necessary to study the

problem after applying the ergodic theorem and the duality principle. In forthcoming work

we further investigate the shrinking target property for lattice actions on homogeneous varieties

obtaining best possible rates in a wide variety of examples. We refer the reader to [GGN14] for

a survey of our techniques and new examples of exponents for dense lattice orbits.

2. Notation

Let K be a number field. We denote by VK the set of normalized absolute values of K and by

Kv the corresponding completions. The subsets of Archimedean and non-Archimedean absolute

values are denoted by V∞K and V f
K , respectively. We use the notation Iv = {qnv }n>0 for v ∈ V f

K ,

where qv denotes the cardinality of the residue field, and Iv = (0, 1) for v ∈ V∞K . For non-

Archimedean v, we denote by Ov the ring of integers in Kv. For a subset T ⊂ VK , we introduce

the ring OT of T -integers:

OT := {x ∈ K | |x|v 6 1 for non-Archimedean v /∈ T}.

Let G⊂GLn be a connected almost simple linear algebraic group defined over K. For v ∈ VK ,

we set Gv = G(Kv), and for S ⊂ VK , GS denotes the restricted direct product of Gv, v ∈ S, with

respect to G(Ov).

When S = S1 t S2, we have GS = GS1 × GS2 , and in order to simplify notation we often

identify a subset B of GS1 with the subset B × {e} of GS .

We define a height function H on GVK by

H(g) :=
∏
v∈VK

max(1, ‖gv‖v), g ∈ GVK . (2.1)

This extends the definition of the height function from (1.3).

For each v, we fix a good special maximal compact subgroup Uv ⊂ Gv so that Uv = G(Ov)

for all but finitely many v. For S ⊂ V f
K , we set US =

∏
v∈S Uv. Each group Gv is equipped with

an invariant measure mv which we normalize for non-Archimedean v so that mv(Uv) = 1. The

groups GS are equipped with the corresponding product measures mS . In particular, we denote

mVK by m. Since G is semisimple, the subgroup G(K) has finite covolume in GVK . We denote

by µ the invariant probability measure on the quotient space Υ := GVK/G(K).
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3. Group varieties

In this section we state the effective ergodic theorem and the duality principle for group varieties.
An effective mean ergodic theorem involves analysis of suitable averaging operators on the space
L2(Υ) of square-integrable functions of Υ. For T ⊂ VK and a probability measure β on GT , we
introduce the averaging operator πT (β) : L2(Υ) → L2(Υ) defined by

πT (β)φ(ς) =

∫
GT

φ(g−1ς) dβ(g), φ ∈ L2(Υ). (3.1)

In the case where G is simply connected, the asymptotic behavior of these averaging operators
is described by the following theorem.

Theorem 3.1 [GGN12, Theorem 4.2]. Assume that G is simply connected, and let β be the Haar-
uniform probability measure supported on a bi-UVK\S-invariant bounded subset B of GVK\S .
Then, for every φ ∈ L2(Υ),∥∥∥∥πVK\S(β)φ−

∫
Υ
φdµ

∥∥∥∥
2

�δ mVK\S(B)−1/(qVK\S(G))+δ‖φ‖2

for every δ > 0.

We refer the reader to [GN] for more number-theoretic applications of ergodic theorems.
We now turn to a duality principle which connects the behavior of averaging operators and
Diophantine approximation on group varieties.

Proposition 3.2 [GGN12, Proposition 5.3]. Fix S ⊂ VK , finite S′ ⊂ S and a bounded subset Ω
of GS . Then there exists a family of measurable subsets Φε of Υ indexed by ε = (εv)v∈S′ , where
εv ∈ Iv, that satisfies ∏

v∈S′
εrv dim(G)
v � µ(Φε)�

∏
v∈S′

εrv dim(G)
v (3.2)

and the following property holds. If, for a subset B ⊂ GVK\S , ε = (εv)v∈S′ as above, x ∈ Ω and
ς := (e, x−1)G(K) ∈ Υ, we have

B−1ς ∩ Φε 6= ∅,

then there exists z ∈ G(K) such that

H(z) 6 c0 sup
b∈B

H(b) (3.3)

and

‖xv − z‖v 6 εv for all v ∈ S′,
‖xv − z‖v 6 1 for all v ∈ S\S′.

We note that the upper bound in (3.2) was not stated explicitly in [GGN12], but it follows
easily from the construction of the sets Φε.

4. Proof of Theorem 1.5

The proof of Theorem 1.5 is quite long and involved and for the convenience of the reader, we
split it up into several steps.

1443

https://doi.org/10.1112/S0010437X13007859 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007859


A. Ghosh, A. Gorodnik and A. Nevo

The approximating function
Recall that we have assumed that Ψ = (ψv)v∈S is a collection of nonincreasing functions. We
first show that in fact, we may assume that ψv(t) → 0 as t →∞ for at least one v ∈ S and that
Im(ψv) ⊂ Iv for all ψv 6= 1. Note that the divergence assumption (1.10) implies that the group
G is isotropic over VK\S. Indeed, if G is anisotropic over VK\S, then GVK\S is compact (see
[PR94, § 3.1]). Since G(K) embeds discretely in GVK , the number of G(K)-points in GVK\S ×D
is finite, and this contradicts (1.10).

Since G is isotropic over VK\S, it follows from the strong approximation property of simply
connected groups (see [PR94, § 7.4]) that G(K) is dense in GS . Hence, the claim of the theorem
follows immediately if ψv(t) 9 0 as t →∞ for all v ∈ S. From now on, we assume that ψv(t) → 0
as t →∞ for at least one v ∈ S.

For v ∈ V f
K , given a nonincreasing function ψv : R+

→ (0, 1], one can construct a

nonincreasing function ψ̃v : R+
→ (0, 1) such that ψ̃v 6 ψv 6 qvψ̃v and Im(ψ̃v) ⊂ Iv. Now if we

replace ψv 6= 1 in Ψ by ψ̃v, then the divergence assumption (1.10) still holds. Since ψ̃v 6 ψv, the
theorem for ψ̃v’s implies the theorem for ψv’s. Hence, we may assume without loss of generality
that Im(ψv) ⊂ Iv for all ψv 6= 1.

Preparations
In this section, we make more preparations in advance of applying the duality principle and the
ergodic theorem. To simply notation, we set

d := dim(G), q := qVK\S(G), a := aS(G).

We consider a family of bounded bi-UVK\S-invariant subsets of GVK\S defined by

Bh := UVK\S{g ∈ GVK\S : H(g) 6 h}UVK\S .

Let
U := {g ∈ GVK\S : ‖gv − e‖ 6 1 for v ∈ VK\S}.

Since U and UVK\S are compact, there exists c1 > 1 such that

sup
b∈U−1Bh

H(b) 6 c1 h. (4.1)

It follows from the definition of a = aS(G) that, for every δ > 0 and sufficiently large h,

|G(K) ∩D ∩ {h/2 < H 6 h}| 6 ha+δ. (4.2)

Since the function ψS is nonincreasing, it follows from (1.10) that

∞∑
n=1

|G(K) ∩D ∩ {2n−1 < H 6 2n}|ψS(2n−1)α =∞,

and because of (4.2) we also get

∞∑
n=1

2(a+δ)nψS(2n−1)α =∞. (4.3)

Since 0 < ψS 6 1, there exists α0(δ) ∈ [0,∞] such that this series converges for all α > α0(δ) and
diverges for all α < α0(δ). We fix α0 > qd/2 such that series (1.10) diverges for α = α0. Since
divergence in (1.10) implies divergence in (4.3), we have α0(δ) > α0.
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Using the monotonicity of the function ψS , it is easy to check that (4.3) is equivalent to

∞∑
n=1

2(a+δ)nψS(c 2n−1)α =∞ (4.4)

with any c > 0. We choose c = c0c1/2, where c0 is as in (3.3), and c1 is as in (4.1).
In order to continue our argument, it would be convenient to know that α0(δ) <∞. This is

arranged by the following construction. If

2(a+δ)nψS(c 2n−1)α0 → 0 as n →∞,

we set Rn := ψS(c 2n−1). Otherwise, there exists ε > 0 such that the set

N := {n : 2(a+δ)nψS(c 2n−1)α0 > ε}

is infinite. In this case, we set

Rn :=

{
(ε 2−(a+δ)n)1/α0 for n ∈ N ,

ψS(c 2n−1) otherwise.

In both cases, we have Rn 6 ψS(c 2n−1), and since N is infinite,

∞∑
n=1

2(a+δ)nRαn =∞ (4.5)

for α = α0. There exists α1(δ) ∈ [0,∞] such that this series converges for all α > α1(δ) and
diverges for all α < α1(δ). Clearly, α1(δ) > α0. It also follows from the definition of Rn that
Rn � 2−κn with some κ > 0. Hence, α1(δ) <∞.

Let S′ be the finite subset of S on which ψv 6= 1. Recall that

ψS(t) =
∏
v∈S′

ψv(t)
rv .

Since Rn 6 ψS(c 2n−1), we may write

Rn =
∏
v∈S′

(ε(n)
v )rv ,

where ε
(n)
v 6 ψv(c 2n−1) for all v ∈ S′.

Applying the ergodic theorem in conjunction with duality
We are now in a position to apply the ergodic theorem coupled with the duality principle. Let
α < α1(δ). We denote by Φn the collection of measurable subsets of Υ defined by Proposition

3.2 with εv = ε
(n)
v , v ∈ S′, and consider the sequence of functions on Υ defined by

φn := cn1Φn with cn = 2(a+δ)nRα−dn .

According to (3.2), we have µ(Φn)� Rdn and α < α1(δ), and so it follows that∑
n>1

∫
Υ
φn dµ =

∑
n>1

cnµ(Φn) =∞. (4.6)
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Proposition 4.1. Let βn denote the Haar-uniform probability measure supported on B2n and

Fk :=
∑
n>k

∣∣∣∣πVK\S(βn)φn −
∫

Υ
φn dµ

∣∣∣∣.
Then Fk is L2-integrable for sufficiently small δ > 0 and α < α1(δ) sufficiently close to α1(δ).

Proof. Observe that by Theorem 3.1 and Proposition (3.2), for every δ > 0,

‖Fk‖2 �δ

∑
n>k

mVK\S(B2n)−(1/q)+δ‖φn‖2

=
∑
n>k

mVK\S(B2n)−(1/q)+δcnµ(Φn)1/2

6
∑
n>k

mVK\S(B2n)−(1/q)+δ2(a+δ)nRα−d/2n .

By [GGN12, Lemma 6.1], for every δ > 0 and sufficiently large n,

mVK\S(B2n)� 2(a−δ)n.

Hence, for sufficiently large k,

‖Fk‖2 �δ

∑
n>k

2(a(1−1/q)+θ)nRα−d/2n

=
∑
n>k

2(a(1−1/q)+2θ)nRα−d/2n · 2−θn,

where θ = θ(δ) satisfies θ(δ) → 0+ as δ → 0+. We apply Hölder’s inequality to the above sum
with the exponents

r = a/(a(1− 1/q) + 2θ) and r̄ = (1− 1/r)−1.

Note that when δ is sufficiently small, we have r > 1. Then we obtain

‖Fk‖2 �δ

(∑
n>k

2anRr(α−d/2)
n

)1/r

·
(∑
n>k

2−θr̄n
)1/r̄

. (4.7)

Since α0 > qd/2,

α0 − d/2
1− 1/q

> α0.

This implies that

a(α− d/2)

a(1− 1/q) + 2θ
> α

for every sufficiently small δ > 0 and every α > α0. Since α1(δ) > α0, it follows that for α < α1(δ)
sufficiently close to α1(δ) and for sufficiently small δ > 0, we also have

r(α− d/2) =
a(α− d/2)

a(1− 1/q) + 2θ
> α1(δ).

This implies that the series in (4.7) converges, and we conclude that Fk is L2-integrable. 2
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Now let δ > 0 and α < α1(δ) be such that Fk is L2-integrable. We consider a sequence of

subsets

Υn := {ς ∈ Υ : B−1
2n ς ∩ Φn = ∅}

of Υ. Note that by (4.6), on the set
⋂
n>k Υn,

Fk =
∑
n>k

∫
Υ
φn dµ =∞.

Since Fk is L2-integrable, it follows that µ(
⋂
n>k Υn) = 0 and the set Υ∞ := lim inf(Υn) also has

measure zero. We denote by Υ̃∞ the preimage of Υ∞ in GVK . Then m(Υ̃∞) = 0.

Let Ω be a compact subset of GS , and

Ω′ = {x ∈ Ω : ∃ y ∈ U : (y, x−1) /∈ Υ̃∞}.

Since

(U × (Ω\Ω′)−1) ⊂ Υ̃∞,

and U has positive measure, it follows that the set Ω\Ω′ has measure zero. Let us take an

exhaustion GS = ∪j>1Ωj of GS by compact sets. Then ∪j>1Ω′j is a subset of GS of full measure.

Hence, it suffices to show that given a compact subset Ω of GS , almost every element of Ω′ is

contained in W(GS ,G(K),Ψ).

For x ∈ Ω′, there exists y ∈ U such that ς̃ := (y, x−1) /∈ Υ̃∞. Then

ς̃G(K) /∈ Υ∞ = lim inf(Υn),

and ς̃G(K) /∈ Υn for infinitely many n. This means that for infinitely many n, we have

B−1
2n ς̃G(K) ∩ Φn 6= ∅,

and

(U−1B2n)−1(e, x)G(K) ∩ Φn 6= ∅.

Now we are in position to apply Proposition 3.2. It follows that for infinitely many n, there exists

zn ∈ G(K) such that

H(zn) 6 c0 sup
b∈U−1B2n

H(b) 6 c0c1 2n = c 2n−1,

and

‖xv − zn‖v 6 ε(n)
v 6 ψv(c 2n−1) 6 ψv(H(zn)) for all v ∈ S′,

‖xv − zn‖v 6 1 for all v ∈ S\S′.

Recall that ψv(t) → 0 as t →∞ for at least one v. Then since

‖xv − zn‖v 6 ψv(c 2n−1) → 0,

we conclude that if xv /∈ G(K), then the set {zn} must be infinite. This proves that almost every

element in Ω′ belongs to W(GS ,G(K),Ψ), and finishes the proof of Theorem 1.5.
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5. Homogeneous varieties

In this section, we state the ergodic theorem and duality principle for homogeneous varieties. Let
X ⊂ An be a quasi-affine algebraic variety defined over a number field K and equipped with a
transitive action of a connected almost simple algebraic group G ⊂ GLn defined over K. Because
G is not assumed to be simply connected, it usually has nontrivial automorphic characters, and
the behavior of the averaging operators is more subtle than in Theorem 3.1.

Let Xaut(GVK ) be the set of automorphic characters of GVK , namely the set consisting of
continuous unitary characters χ of GVK such that χ(G(K)) = 1. Let S′ be a finite subset of VK .
For an open subgroup U of G

V f
K\S′

, we denote by Xaut(GVK )U the subset of Xaut(GVK ) consisting

of U -invariant characters. By [GGN12, Lemma 4.4], the set Xaut(GVK )U is finite. We denote by
GU the kernel of Xaut(GVK )U in GVK . Then GU is a finite index subgroup in GVK (see [GGN12,
Lemma 4.4]), which clearly contains G(K).

The following theorem describes the asymptotic behavior of the averaging operators acting
in L2(Υ) for G which is not necessarily simply connected.

Theorem 5.1 [GGN12, Theorem 4.5]. Let S be a subset of VK and S′ a finite subset of S. Let
U0 be a finite index subgroup of U

V f
K∩(S\S′) and U = U

V f
K\S

U0. Let B be a bounded measurable

subset of GVK\S ∩G
U which is bi-U

V f
K\S

-invariant and β the Haar-uniform probability measure

supported on the subset U0B of G
(VK\S)∪(V f

K\S′)
. Then for every φ ∈ L2(Υ) such that supp(φ) ⊂

GU/G(K), we have∥∥∥∥π(VK\S)∪(V f
K\S′)

(β)φ−
(∫

Υ
φdµ

)
ξU

∥∥∥∥
2

�δ mVK\S(B)−1/(qVK\S(G))+δ‖φ‖2

for every δ > 0, where ξU is the function on Υ such that ξU = |GVK : GU | on the open set
GU/G(K) ⊂ Υ and ξU = 0 otherwise.

The version of Proposition 3.2 for general homogeneous varieties, i.e. the duality principle,
is as follows:

Proposition 5.2 [GGN12, Proposition 5.5]. Fix S ⊂ VK , finite S′ ⊂ S, x0 ∈XS′ , and a bounded
subset Ω of GS′ . Then there exist ε0 ∈ (0, 1) and a family of measurable subsets Φε of Υ indexed
by ε = (εv)v∈S′ , where εv ∈ Iv ∩ (0, ε0), that satisfy∏

v∈S′
εrv dim(X)
v � µ(Φε)�

∏
v∈S′

εrv dim(X)
v (5.1)

and the following property holds. If, for B ⊂ GVK\S×
∏
v∈V f

K∩(S\S′) G(Ov), ε = (εv)v∈S′ as above,

and ς := (e, g−1)G(K) ∈ Υ with g ∈ Ω, we have

B−1ς ∩ Φε 6= ∅,

then there exists γ ∈ G(O(VK\S)∪S′) such that

H(γ) 6 c0 sup
b∈B

H(b) (5.2)

and, for x = gx0 ∈ XS′ ,
‖xv − γx0

v‖ 6 εv for all v ∈ S′.
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The upper bound in (5.1) was not stated in [GGN12], but it follows from the explicit
construction of the sets Φε. We will also need the following lemma about the structure of rational
points on homogeneous varieties.

Lemma 5.3. Let S be a subset of VK and S′ a finite subset of S containing the Archimedean
places of S. Suppose that the set XS,S′∩X(K), embedded in XS′ , is not discrete. Then the group

G is isotropic over VK\S, and XS,S′ ∩X(K) is open in XS′ .

Proof. We first show that XVK\S must be noncompact. Indeed, since XS,S′∩X(K) is not discrete
in XS′ , there exists a bounded subset D of XS,S′ which contains infinitely many elements of
XS,S′ ∩ X(K). On the other hand, X(K) is discrete in XVK , and if XVK\S were compact, then
there would have been only finitely many elements of X(K) contained in XVK\S×D, which gives
a contradiction.

If G is anisotropic over VK\S, then VK\S is finite by [PR94, Theorem 6.7], and GVK\S
is compact by [PR94, Theorem 3.1]. It follows from finiteness of Galois cohomology over local
fields [PR94, Theorem 6.14] that XVK\S consists of finitely many orbits of GVK\S . Then XVK\S is
compact, contradicting the previous paragraph. This shows that G must be isotropic over VK\S.

To describe the structure of XS,S′ ∩X(K) in XS′ , we note that

XS,S′ ∩X(K) = X(O(VK\S)∪S′).

Let p : G̃ → G denote the simply connected cover of G. By [GGN12, Lemma 6.3], the closure
X(O(VK\S)∪S′) inXS′ is a union of finitely many open orbits of p(G̃S′). This proves the lemma. 2

6. Proof of Theorem 1.6

The proof of Theorem 1.6 follows the same outline as the proof of Theorem 1.5 but with a few
more technicalities as necessitated by the more general setup.

Preliminaries and the approximating function
The assumption (1.13) implies that X(K) ∩ D is infinite. In particular, it follows that the set
XS,S′ ∩X(K), embedded in XS′ , is not discrete, and by Lemma 5.3,

XS,S′ ∩X(K) = X(O(VK\S)∪S′),

is open in XS′ . Moreover, the closure X(O(VK\S)∪S′) in XS′ is a union of finitely many open

orbits of p(G̃S′). Therefore, it suffices to show that, for x0 ∈ X(O(VK\S)∪S′), almost all points

in p(G̃S′)x
0 are approximable. Moreover, it suffices to show that for every compact subset Ω of

p(G̃S′), almost all points in Ωx0 are approximable. From now on we fix such Ω and x0.
If ψv(t) 9 0 as t → ∞ for all v ∈ S′, then the claim of the theorem follows from density.

Hence, we assume that ψv(t) → 0 as t →∞ for at least one v ∈ S′.
As in the proof of Theorem 1.5, we may assume, without loss of generality, that Im(ψv) ⊂

Iv ∩ (0, ε0) with notation as in Proposition 5.2.
We set

U0 =
∏

v∈V f
K∩(S\S′)

(Uv ∩G(Ov)) and U = U
V f
K\S

U0.

Since both Uv and G(Ov) are open and compact in Gv, it follows that the subgroup Uv ∩G(Ov)
has finite index in Uv. Hence, since Uv = G(Ov) for almost all v, U0 is a finite index subgroup
in U

V f
K∩(S\S′). Then U is a finite index subgroup in U

V f
K\S′

. Recall that GU denotes the kernel
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of U -invariant automorphic characters of GVK . It contains G(K) and has finite index in GVK
(see [GGN12, Lemma 4.4]). We note that p(G̃S′) ⊂ GU because G̃ has no nontrivial automorphic
characters (see [GGN12, Lemma 4.1]). We also fix a compact neighborhood U ′ of identity in
GV∞K \S′ contained in GU . Then UU ′ is a neighborhood of identity in GVK\S′ . Let

Bh := UVK\S{g ∈ GVK\S : H(g) 6 h}UVK\S
and

B′h := U0(Bh ∩GU ).

Since U , U ′, and UVK\S are compact, there exists c1 > 1 such that

sup
b∈(UU ′)−1B′h

H(b) 6 c1 h. (6.1)

There exists c2 = c2(x0) > 1 such that

H(γx0) 6 c2 H(γ). (6.2)

To simply notation, we set

d := dim(G), q := qVK\S(G), a := aS,S′(X), a0 := aS(G). (6.3)

Since the function ψS is nonincreasing, we deduce from (1.13) that

∞∑
n=1

|X(K) ∩D ∩ {2n−1 < H 6 2n}| · ψS(2n−1)α =∞,

and from the definition of a, we also get
∞∑
n=1

2(a+δ)nψS(2n−1)α =∞ (6.4)

for every δ > 0. Since 0 < ψS 6 1, there exists α0(δ) ∈ [0,∞] such that series (6.4) converges
for all α > α0(δ) and diverges for all α < α0(δ). We fix α0 > aa−1

0 qd/2 such that series (1.13)
diverges. Since divergence in (1.13) implies divergence in (6.4), we have α0(δ) > α0.

Since ψS is monotone, (6.4) is equivalent to

∞∑
n=1

2(a+δ)nψS(c2n−1)α =∞ (6.5)

with any c > 0. We choose c = c0c1c2/2 where c0 is as in (5.2) and c1, c2 as in (6.1), (6.2).
As in the proof of Theorem 1.5, we make a reduction to the case when α0(δ) < ∞. Let

α0 > aa−1
0 qd/2 be such that series (6.5) diverges. We define Rn as in the proof of Theorem 1.5.

Then Rn 6 ψS(c 2n−1), Rn � 2−κn with some κ > 0, and

∞∑
n=1

2(a+δ)nRαn =∞ (6.6)

for α = α0. Since Rn � 2−κn, series (6.6) converges for sufficiently large α. There exists α1(δ) ∈
[α0,∞) such that series (6.6) converges for all α > α1(δ) and diverges for all α < α1(δ). Since
ψS(t) =

∏
v∈S′ ψv(t)

rv and Rn 6 ψS(c 2n−1), we may write

Rn =
∏
v∈S′

(ε(n)
v )rv ,

where ε
(n)
v 6 ψv(c 2n−1) for v ∈ S′.
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Let β′n be the Haar-uniform probability measure supported on B′n. By Theorem 5.1, the
averages along β′n satisfy the mean ergodic theorem: for every φ ∈ L2(Υ) such that supp(φ) ⊂
GU/G(K),∥∥∥∥π(VK\S)∪(V f

K\S′)
(β′n)φ−

(∫
Υ
φdµ

)
ξU

∥∥∥∥
2

�δ mVK\S(B2n ∩GU )−1/q+δ‖φ‖2 (6.7)

for every δ > 0, where ξU is the function on Υ such that ξU = |GVK : GU | on GU/G(K) ⊂ Υ and
ξU = 0 otherwise.

Applying the mean ergodic theorem in conjunction with duality

Let Φn be a family of measurable subsets of Υ defined by Proposition 5.2 with εv = ε
(n)
v , v ∈ S′.

We set

φn := cn1Φn with cn = 2(a+δ)nRα−dn .

By construction of the sets Φn in Proposition 5.2, Φn is a neighborhood of the identity coset

in Υ with size determined by ε
(n)
v 6 ψv(c 2n−1) (see the proof of [GGN12, Proposition 5.5]). Since

the divergence condition (1.13) is stable under rescaling of the functions ψv, we may arrange that

supp(φn) = Φn ⊂ GU/G(K).

By (5.1),

‖φn‖2 = cnµ(Φn)1/2 � 2(a+δ)nRα−d/2n . (6.8)

As in the case of group varieties, we now consider integrability of the functions Fk.

Proposition 6.1. Let

Fk :=
∑
n>k

∣∣∣∣π(VK\S)∪(V f
K\S′)

(β′n)φk −
(∫

Υ
φk dµ

)
ξU

∣∣∣∣.
Then Fk is L2-integrable for sufficiently small δ > 0 and α < α1(δ) sufficiently close to α1(δ).

Proof. By (6.7) and (6.8), for every δ > 0,

‖Fk‖2 �δ

∑
n>k

mVK\S(B2n ∩GU )−(1/q)+δ‖φn‖2

�
∑
n>k

mVK\S(B2n ∩GU )−(1/q)+δ2(a+δ)nRα−d/2n .

Moreover, by [GGN12, Lemmas 6.1–6.2], for every δ > 0 and sufficiently large n,

mVK\S(B2n ∩GU )� mVK\S(B2n)�δ 2(a0−δ)n.

Therefore, for sufficiently large k,

‖Fk‖2 �δ

∑
n>k

2(a−a0/q+θ)nRα−d/2n

=
∑
n>k

2(a−a0/q+2θ)nRα−d/2n · 2−θn,
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where θ = θ(δ) satisfies θ(δ) → 0+ as δ → 0+. Now we apply Hölder’s inequality with the
exponents

r = a/(a− a0/q + 2θ) and r̄ = (1− 1/r)−1.

When δ is sufficiently small, r > 1. This gives

‖Fk‖2 �δ

(∑
n>k

2anRr(α−d/2)
n

)1/r

·
(∑
n>k

2−θr̄n
)1/r̄

. (6.9)

Since α0 > aa−1
0 qd/2, it is easy to check that

a(α0 − d/2)

a− a0/q
> α0.

Moreover, it follows that for all sufficiently small δ > 0 and all α > α0,

a(α− d/2)

a− a0/q + 2θ
> α.

Since α1(δ) > α0, it follows that for α < α1(δ) sufficiently close to α1(δ) and for sufficiently small
δ > 0,

r(α− d/2) =
a(α− d/2)

a− a0/q + 2θ
> α1(δ).

Hence, by the definition of α1(δ), the series in (6.9) converges, which completes the proof that
Fk is L2-integrable. 2

We fix δ > 0 and α < α1(δ) such that Fk is L2-integrable. Let

Υn := {ς ∈ GU/G(K) : (B′2n)−1ς ∩ Φn = ∅}.

By the definition of Fk, on the set ∩n>kΥn,

Fk = |GVK : GU |
∑
n>k

∫
Υ
φn dµ = |GVK : GU |

∑
n>k

cnµ(Φn).

Since by Proposition 5.2, µ(Φn)� Rdn and α < α1(δ), we conclude that

Fk �
∑
n>k

2(a+δ)nψS(c2n−1)α =∞

on the set ∩n>kΥn. In particular, this shows that µ(∩n>kΥn) = 0 and Υ∞ := lim inf(Υn) also

has measure zero. Let Υ̃∞ be the preimage of Υ∞ in GU . Then m(Υ̃∞) = 0. Let

Ω′ = {g ∈ Ω : ∃y ∈ UU ′ : (y, g−1) /∈ Υ̃∞}.

Then since
(UU ′ × (Ω\Ω′)−1) ⊂ Υ̃∞,

and UU ′ has positive measure in GVK\S′ , the set Ω\Ω′ has measure zero. Then Ω′x0 has full
measure in Ωx0.

Finally, we show that almost every element of Ω′x0 belongs to the setW(XS′ ,XS,S′∩X(K),Ψ).
For g ∈ Ω′, we set ς := (e, g−1)G(K). There exists y ∈ UU ′ such that

yς /∈ Υ∞.
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This implies that for infinitely many n, yς ∈ Υn, i.e.

(y−1B′2n)−1ς ∩ Φn 6= ∅.

Then it follows from Proposition 5.2 that for infinitely many n, there exists γn ∈ G(O(VK\S)∪S′)
such that

H(γn) 6 c0 sup
b∈(UU ′)−1B′2n

H(b) 6 c0c12n,

and for x = gx0 and zn = γnx
0,

‖xv − zn‖v 6 ε(n)
v 6 ψv(c2

n−1) for all v ∈ S′.

We have zn ∈ X(O(VK\S)∪S′) and H(zn) 6 c2H(γn) 6 c2n−1. Hence, since ψv is monotone, we
conclude that

‖xv − zn‖v 6 ψv(H(zn)) for all v ∈ S′.

Recall that ψv(t) → 0 as t→∞ for at least one v ∈ S′. If xv /∈ X(O(VK\S)∪S′), then it follows that
the set {zn} is infinite. Therefore, almost every element of Ω′x0 is in W(XS′ , XS,S′ ∩ X(K),Ψ).
This completes the proof of the theorem.

7. Hausdorff dimension

We start by recalling the notion of Hausdorff measure and dimension. Let (M,dist) be a locally
compact separable metric space. The s-Hausdorff measure Hs is a Borel measure on M defined
by

Hs(E) := lim
ρ→0+

Hsρ(E),

where
Hsρ(E) := inf

∑
i

r(Bi)
s,

and the infimum is taken over all countable covers of E by closed balls Bi such that each Bi has
radius at most ρ, and r(Bi) denotes the radius of Bi. The Hausdorff dimension of the set E is
defined by

dim(E) := sup{s : Hs(E) =∞} = inf{s : Hs(E) <∞}.

We assume that for some d, r0 > 0,

rd � Hd(B(x, r))� rd (7.1)

uniformly over all closed balls B(x, r) with r 6 r0. Then for every nontrivial closed ball B and
s < d, we have Hs(B) =∞.

The following mass transfer principle was proved in [BV06]:

Theorem 7.1 [BV06, Theorem 3]. Let {B(xi, ri)}i∈N be a sequence of closed balls in M with
ri → 0 as i →∞. Suppose that for some s ∈ (0, d) and every closed ball C in M ,

Hd(C ∩ lim supB(xi, r
s/d
i )) = Hd(C). (7.2)

Then for any closed ball B in M ,

Hs(B ∩ lim supB(xi, ri)) = Hs(B). (7.3)
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The proof of Theorem 7.1 is based on construction of a Cantor-like set in B ∩ lim supi∈N
B(xi, ri) and a suitable measure supported on this set with large dimension. The same proof still
applies provided that:

(i) (7.1) holds for all closed balls B(x, r) with r 6 r0 such that B ∩B(x, r) 6= ∅;

(ii) (7.2) holds for all closed balls C contained in the ball B.

Proof of Theorem 1.7
In the proof we use notation as in (6.3). We remind the reader that we restrict our attention to
the case where all the functions ψv are equal to a single function ψ, and we may assume without
loss of generality that ψ(t) → 0 as t →∞.

The assumption (1.13) implies that the set XS,S′ ∩X(K), embedded in XS′ , is not discrete,

and, by Lemma 5.3, its closure XS,S′ ∩X(K) is open in XS′ .
We consider the space XS′ with the metric which is the product of local metrics (1.2). We

cover X with a collection of Zariski open subsets U such that each U supports a nonvanishing
regular differential form of top degree. Since the sets US′ form an open cover of XS′ , it is sufficient
to show that

dim(B0 ∩W(XS,S′ , XS,S′ ∩X(K), ψ)) >
2a0

aq
α

for all nontrivial closed balls B0 in XS′ such that B0 ⊂ US′ ∩XS,S′ ∩X(K) for some US′ .
Let

ρ := dist(B0, (US′ ∩XS,S′ ∩X(K))c) > 0

and

B̃0 := {x ∈ XS′ : dist(x,B0) 6 ρ/2} ⊂ US′ ∩XS,S′ ∩X(K).

Then every closed ball B(x, r) such that r 6 ρ/4 and B(x, r) ∩B0 6= ∅ satisfies B(x, r) ⊂ B̃0.
Let λS′ be the measure on US′ defined by the nowhere-zero differential form. Different

choices of differential forms lead to equivalent measures. Since X is a homogeneous variety,
it is nonsingular, and, computing in local coordinates, we obtain that, for all closed balls
B(x, r) ⊂ US′ ,

rd � λS′(B(x, r))� rd,

where d := (
∑

v∈S′ rv) dim(X). This estimate is uniform over all closed balls B(x, r) with x ∈ B̃0

and bounded r. Therefore, we conclude that

Hd � λS′ � Hd (7.4)

uniformly over Borel subsets of B̃0. In particular, it follows that property (i) (stated after
Theorem 7.1) holds.

We apply Theorem 7.1 to the collection of closed balls B(z, ψ(H(z))) with z ∈ XS,S′ ∩X(K).

Choose any positive s < (2a0/aq)α and set ψ̃ := ψs/d. We have

W(XS,S′ , XS,S′ ∩X(K), ψ̃) = lim supB(z, ψ̃(H(z))).

According to our assumption, for β := (d/s)α > (aq/2a0)d,∑
z∈X(K)∩D

ψ̃S′(H(z))β =∞.
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Hence, by Theorem 1.6, the set W(XS,S′ , XS,S′ ∩ X(K), ψ̃) has full measure in XS′ , and in
particular, it follows from (7.4) that for every closed ball C contained in B0,

Hd(C ∩ lim supB(z, ψ̃(H(z)))) = Hd(C).

This verifies property (ii) (stated after Theorem 7.1), and Theorem 7.1 now implies that

Hs(B0 ∩ lim supB(z, ψ(H(z)))) = Hs(B0) =∞

for every s < (2a0/aq)α. This proves that

dim(B0 ∩W(XS,S′ , XS,S′ ∩X(K), ψ)) >
2a0

aq
α,

as required.
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