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Abstract. We show that every fibrewise map from a Serre microfibration to a
Serre fibration is n-connected if it is fibrewise n-connected. This generalises a result
of M. Weiss and related results by Bökstedt–Madsen and Galatius–Randal–Williams.
We also discuss an application to configuration spaces.
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1. Introduction. How can one determine the homotopy types of the homotopy
fibres of a map f : X → Y from the homotopy types of its strict fibres? These are the
same in the case where f is a (quasi-)fibration, but the comparison between the two
types of fibres is a difficult task in general. Even in the case where all strict fibres are
homotopy equivalent, more information is required in order to identify this common
homotopy type with that of the homotopy fibre. The required information should
provide a way of understanding how the individual fibres are organised collectively in
a parameterised family of spaces. This information may be expressed by different types
of properties: in terms of lifting properties, as in the case of Serre/Hurewicz fibrations,
in terms of properties of f locally in Y , as in the case of local quasi-fibrations and
related notions, or in terms of point-set topological assumptions on X , Y and f as, for
example, in the case of results about cell-like maps.

In this note, we will be interested in the following notion from [10] which states a
weak lifting property.

DEFINITION 1.1. A map p : E → B is called a Serre microfibration if for any k ≥ 0
and any commutative diagram

{0} × Dk u ��

��

E

p

��

[0, 1] × Dk v �� B

there exists an ε > 0 and a map h : [0, ε] × Dk → E such that h(0, x) = u(x) and
p ◦ h(t, x) = v(t, x) for all x ∈ Dk and t ∈ [0, ε].

EXAMPLE 1.2. Let q : V → B be a Serre fibration and E ⊂ V an open subset. Then,
q|E : E → B is a Serre microfibration. More generally, an open subspace of the total
space of a Serre microfibration defines again a Serre microfibration.
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Weiss’ microfibration lemma [10, Lemma 2.2] states that a Serre microfibration p :
E → B with weakly contractible fibres is actually a Serre fibration. As a consequence,
it is also a weak homotopy equivalence. This result was generalised in [3] as follows: if
the fibres of p are n-connected, then p has the right lifting property with respect to the
inclusions

{0} × Dk → [0, 1] × Dk, k ≤ n. (∗≤n)

As a consequence, each map from a fibre to the homotopy fibre is n-connected,
hence the homotopy fibres are n-connected, and the map p is (n + 1)-connected [3,
Proposition 2.6].

The question of extending these results to arbitrary Serre microfibrations, whose
fibres are abstractly weakly (or n-) homotopy equivalent, faces the problem of finding
a uniform way of comparing them. In this direction, Bökstedt and Madsen [1, Lemma
3.6] proved, under certain point-set topological assumptions, that given a commutative
diagram as follows, where the top map is an open inclusion and p is the projection,

U �� i ��

��
��

��
��

��
X × B

p
����

��
��

��
�

B

then i is a weak homotopy equivalence if for every b ∈ B, the map on fibres,
U ∩ p−1(b) → X , is a weak homotopy equivalence.

The statement below generalises these results to the case of fibrewise n-connected
maps with target an arbitrary fibration. We say that a map is a Serre n-fibration if it
has the right lifting property with respect to the inclusions in (∗≤n) above.

THEOREM 1.3. Let p : E → B be a Serre microfibration, q : V → B be a Serre
fibration and f : E → V a map over B. Suppose that fb : p−1(b) → q−1(b) is (n + 1)-
connected, n ≥ 0, for all b ∈ B. Then, p is a Serre n-fibration and, as a consequence, the
map f : E → V is (n + 1)-connected.

REMARK 1.4. The statement is true, of course, for arbitrary maps q : V → B if we
replace the fibres of q with the homotopy fibres.

The proof of Theorem 1.3 will be given in Section 2. In Section 3, we give an
application to configuration spaces and discuss the connection with the context of
abstract transversality that was used in [1] and [3].

2. The Proof of Theorem 1.3. The proof of Theorem 1.3 follows [10, Lemma 2.2]
and [3, Proposition 2.6].

Let I = [0, 1] be the unit interval. Let XI = Map(I, X) be the space of paths with
the compact-open topology. The following observation is due to Weiss [10, Lemma
2.2].

LEMMA 2.1. Let p : E → B be a Serre microfibration. Then, pI : EI → BI is also a
Serre microfibration.

Proof. This follows directly by adjunction. �
We also recall the following lemma from [3, p. 8].
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LEMMA 2.2 (Galatius–Randal–Williams). Let (Y, X) be a finite CW pair and p :
E → B a Serre microfibration. Suppose we are given a lifting problem

X
u ��

��

E

p

��

Y
v �� B

If there exists a map h : Y → E lifting v and such that h|X is fibrewise homotopic to u,
then there is also a map h′ : Y → E that makes the diagram commute strictly.

LEMMA 2.3. Let p, q and f be as in Theorem 1.3. Then, the map

(f I )b : (pI )−1(b) → (qI )−1(b)

is n-connected for all b : I → B.

Proof. By adjunction, it suffices to prove that for each k ≤ n and each lifting
problem

[0, 1] × ∂Dk u ��

��

E
f

�� V

q

��

[0, 1] × Dk ��

h

��

h

��������������������
[0, 1] b �� B

there exists a map h : [0, 1] × Dk → E over B so that the upper triangle commutes, and
the triangle in the middle commutes up to fibrewise homotopy over B and relative to
[0, 1] × ∂Dk. For t ∈ [0, 1], consider the restricted diagram

{t} × ∂Dk ��

��

p−1(b(t))

��

�� �� E

f

��

p

��
��

��
��

��

{t} × Dk ��

h′
t

���
�

�
�

�
q−1(b(t)) �� �� V

q
�� B

where the lower composite is the constant map at b(t) ∈ B. By assumption, there exists
a map h′

t : {t} × Dk → p−1(b(t)) such that the upper triangle commutes and the lower
triangle commutes up to homotopy relative to ∂Dk. The microfibration property of p
applied to the commutative diagram

{t} × Dk ⋃
[0, 1] × ∂Dk

h′
t∪u

��

��

E

p

��

[0, 1] × Dk �� B
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provides an extension of the lift h′
t : {t} × Dk → p−1(b(t)) ⊆ E to a map h′

t,ε defined on
[t − ε(t), t + ε(t)] × Dk, for some ε(t) > 0, and such that the diagram commutes

[t − ε(t), t + ε(t)] × ∂Dk u ��

��

E

p

��

[t − ε(t), t + ε(t)] × Dk

h′
t,ε

		��������������
�� B

Moreover, since the map f ◦ h′
t : {t} × Dk → V is fibrewise homotopic to the restriction

h|{t}×Dk relative to {t} × ∂Dk, it follows that for each s ∈ [t − ε(t), t + ε(t)], the map

{s} × Dk ⊆ [t − ε(t), t + ε(t)] × Dk h′
t,ε−→ E

f−→ V

is fibrewise homotopic to the corresponding restriction of h relative to {s} × ∂Dk. This
uses that q is a Serre fibration.

By the Lebesgue lemma, there is N > 0 and maps

h′
i : [i/N, (i + 1)/N] × Dk → E,

for i = 0, . . . , N − 1, such that:

(i) h′
i and h′

i+1 agree on {(i + 1)/N} × ∂Dk,
(ii) p ◦ h′

i agrees with b on [i/N, (i + 1)/N],
(iii) the restrictions of f ◦ h′

i and f ◦ h′
i+1 to {(i + 1)/N} × Dk are homotopic relative

to {(i + 1)/N} × ∂Dk, by a fibrewise homotopy over B, to the restriction of h.

The connectivity assumption and (iii) imply that the restrictions of

h′
i, h′

i+1 : {(i + 1)/N} × Dk → p−1
(

b
(

i + 1
N

))

are homotopic relative {(i + 1)/N} × ∂Dk. Thus, inductively, we obtain diagrams as
follows, i ≥ 0,

{ i+1
N

} × Dk ⋃ [ i+1
N , i+2

N

] × ∂Dk ��

��

E

p

��[ i+1
N , i+2

N

] × Dk

h′
i+1





��
[ i+1

N , i+2
N

] b ���� B

where the top map is defined by h′
i and u and the upper triangle commutes up to

fibrewise homotopy. Then, Lemma 2.2 shows that there is a map

hi+1 : [(i + 1)/N, (i + 2)/N] × Dk → E

so that the diagram commutes strictly. This way, we inductively adjust the lifts h′
i so

that they agree at the endpoints and obtain an extension of u,

h : [0, 1] × Dk → E.

https://doi.org/10.1017/S0017089516000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000458


ON SERRE MICROFIBRATIONS AND A LEMMA OF M. WEISS 653

The map f ◦ h is then homotopic to h fibrewise over B and relative to [0, 1] × ∂Dk

because their restrictions to {0} × Dk are homotopic, by construction, and q is a Serre
fibration. �
Proof of Theorem 1.3. We show that every diagram

{0} × Ik u ��

j
��

E

p

��

[0, 1] × Ik v �� B

(1)

admits a diagonal filler for all k ≤ n.
Since q : V → B is a Serre fibration, there is a map g such that the following

diagram commutes:

{0} × Ik
f ◦u

��

j
��

V

q

��

[0, 1] × Ik v ��

g

������������
B

By Lemma 2.3, the map

(f Ik+1
)v : (pIk+1

)−1(v) → (qIk+1
)−1(v)

is 0-connected for k ≤ n. Therefore, there is a map h : [0, 1] × Ik → E so that the lower
triangle of (1) commutes and f ◦ h belongs to the same path component of (qIk+1

)−1(v)
as g does.

We claim that u and h ◦ j are fibrewise homotopic over B. By Lemma 2.3, the map

(f Ik
)v◦j : (pIk

)−1(v ◦ j) → (qIk
)−1(v ◦ j)

is 1-connected for k ≤ n. The maps f ◦ u and f ◦ (h ◦ j) are in the same path component
of (qIk

)−1(v ◦ j) and hence so are the maps u and h ◦ j. Therefore, using Lemma 2.2,
it follows that a diagonal filler to the lifting problem (1) exists, hence p is a Serre
n-fibration.

Since p is a Serre n-fibration, the map p−1(b) → hofibb(p) is n-connected. Then,
the lower map between homotopy fibres in the diagram,

p−1(b)
(n+1)−conn

��

n−conn

��

q−1(b)

∼
��

hofibb(p) �� hofibb(q)

is (n + 1)-connected. By the long exact sequence of homotopy groups, it follows that f
is (n + 1)-connected. �

REMARK 2.4. It would be interesting to investigate partial converses of Theorem
1.3. The problem is as follows: given a Serre microfibration p : E → B, a Serre fibration
q : V → B and a map f : E → V over B which is a weak homotopy (or n-)equivalence,
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when are the maps fb : p−1(b) → q−1(b) also weak homotopy equivalences? If p is a
Serre n-fibration and f is n-connected, then it is easy to see that fb is n-connected for
all b ∈ B, however, the converse claim is not true in general.

3. Applications.

3.1. Relative configuration spaces. In [8], we considered configuration spaces
associated with maps as an attempt to deal with the lack of functoriality. We recall
that given a space X , the space of (ordered) configurations of n points in X is defined
to be the subspace Fn(X) ⊂ Xn consisting of the n-tuples of pairwise distinct points. If
X is a topological manifold, then it is well known that the projection onto the first n
coordinates, πn : Fn+1(X) → Fn(X), is a fibre bundle.

Given a map f : X → Y , the relative (ordered) configuration space of n points
Fn(f ) is the subspace of Fn(X) which consists of the configurations in X whose images
in Y are n-tuples of pairwise distinct points. There is an obvious zigzag of maps

Fn(X) ←↩ Fn(f )
f∗→ Fn(Y ).

If Y is a Hausdorff space, then Fn(f ) ⊂ Fn(X) is open. If in addition X is a topological
manifold, then the projection

Fn+1(f ) → Fn(f )

is a Serre microfibration. Indeed, Fn+1(f ) is then an open subspace of the following
pullback fibration:

Fn,1(f, X) ��

��

Fn+1(X)

πn

��

Fn(f ) �� Fn(X)

We recall the definition of cellular and cell-like maps, see, e.g., [4]. A compact
subset K ⊂ M of a topological d-manifold is cellular if there are d-dimensional balls
Bi ⊂ M, i ≥ 1, with Bi+1 ⊂ int(Bi) and

K =
∞⋂

i=1

Bi.

It follows that, for x ∈ K , the spaces M − {x} and M − K are homeomorphic (see [2])
and the inclusion

M − K −→ M − {x}
is a homotopy equivalence. A map f : M → Y is cellular if f −1(y) ⊂ M is cellular for
all y ∈ Y . A space K is cell-like if there is a topological manifold M and an embedding
ι : K ↪→ M such that ι(K) is cellular in M [4]. There exist embeddings of cell-like spaces
that are not cellular, that is, cellularity depends on the embedding – see [6] for a general
cellularity criterion. For finite-dimensional compact metric spaces, being cell-like is
equivalent to having trivial shape [5]. A map f : X → Y is cell-like if f −1(y) is cell-like

https://doi.org/10.1017/S0017089516000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000458


ON SERRE MICROFIBRATIONS AND A LEMMA OF M. WEISS 655

for all y ∈ Y . Proper cell-like maps between ENRs are hereditary proper homotopy
equivalences [4, Theorem 1.2].

We obtain the following result which generalises [8, Theorem 4.5].

PROPOSITION 3.1. Let M be a topological d-manifold (without boundary), Y an
ENR and f : M → Y a proper cellular map. Then, the maps Fn(f ) → Fn(M) and f∗ :
Fn(f ) → Fn(Y ) are homotopy equivalences for all n ≥ 1.

Proof. We show inductively that Fn(f ) → Fn(M) is a weak homotopy equivalence.
Consider the following diagram:

Fn(f ) ��

p
��														 Fn−1,1(f, M)

q

��

∼ �� Fn(M)

πn−1

��

Fn−1(f ) ∼ �� Fn−1(M)

where the square on the right is a pullback by definition. We know that the projection
p is a Serre microfibration from the discussion above. For any m = (m1, . . . , mn−1) ∈
Fn−1(f ), the map p−1(m) → q−1(m) is given by the inclusion

(M − f −1(f ({m1, . . . , mn−1}))) → (M − {m1, . . . , mn−1}).
This is a weak homotopy equivalence because M is a manifold and f is cellular. Then, it
follows from Theorem 1.3 that the map Fn(f ) → Fn−1,1(f, M) is also a weak homotopy
equivalence and the result follows inductively.

The map f∗ : Fn(f ) → Fn(Y ) is again proper and cell-like/cellular, and therefore a
(proper) homotopy equivalence, see [8, Proposition 4.4]. �

REMARK 3.2. In the case where Y is also a topological d-manifold, Proposition 3.1
specialises to a different proof of [8, Theorem 4.5]. The statement in [8] only requires
that f is proper and cell-like, but cell-like maps in this case are indeed cellular. This
is a consequence of the cellularity criterion of McMillan [6] for dimension d �= 4, and
Repovš [9] for d = 4 (see also Lacher [4, Theorem 4.3]). In dimension 3, the cellularity
of proper cell-like maps requires also the proof of the Poincaré conjecture. See [7] for
a nice survey. In general, a proper, cell-like map f : M → Y where M is a topological
manifold is called a cell-like resolution of Y . Cell-like resolutions play a crucial role in
the recognition problem for topological manifolds.

3.2. Abstract transversality. We comment on the abstract transversality context
of [1] and in particular, the results of [1, Theorem 3.7] and [3, Corollary 2.9]. First, as
a consequence of Theorem 1.3, we have the following proposition.

PROPOSITION 3.3. Let B be a space, X• a simplicial space, and p• : X• → B a
simplicial map which is a degreewise Serre fibration (B is regarded as a constant simplicial
space). Let U• ⊆ X• be a degreewise open subspace. Suppose that for all k ≥ 0 and b ∈ B,
the map

Uk ∩ p−1
k (b) → p−1

k (b)

is (n + 1 − k)-connected. Then, the map ||U•|| → ||X•|| is (n + 1)-connected. (Here,
|| · || denotes the fat realization of the simplicial space.)
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Proof. By Theorem 1.3, the map Uk → Xk is (n + 1 − k)-connected. Then, it
follows from well-known results about the fat realization (see, e.g., [3, Proposition
2.7]) that ||U•|| → ||X•|| is (n + 1)-connected. Note that the fat realization is the same
as the geometric realization of the underlying semi-simplicial space. �

The abstract trasversality context concerns a setup similar to Proposition 3.3 but
with more special and weaker assumptions. The setup involves a space B, a simplicial
space F•, and an open subspace U• ⊆ B × F•. The fibre F• at b ∈ B of the projection

B × F• → B

is regarded as the space of potential structures on b. The subspace U• consists of
those structures which are admissible or transverse. The question is whether a fibrewise
transversality statement, that is, a statement that the map

||Ub,•|| := ||U• ∩ ({b} × F•)|| → ||F•||
is a weak equivalence for all b ∈ B, implies a global transversality statement saying
that

||U•|| → ||B × F•||
is a weak equivalence. For concrete geometric examples of such questions, see [1] and
[3]. Proposition 3.3 fails to fit directly in this context because it requires that the weak
(or n-)equivalences are degreewise. The following proposition is a slight improvement
of related results in [1] and [3] and concerns the case where the maps become fibrewise
n-equivalences after geometric realization.

PROPOSITION 3.4. Let F• be a simplicial set and B a Hausdorff space. Let p• :
B × F• → B be the projection and U• ⊆ B × F• a degreewise open simplicial subspace.
If

||Ub,•|| → ||F•||
is an (n + 1)-equivalence for all b ∈ B, then so is ||U•|| → ||B × F•||.

Proof. The map ||U•|| → B is a Serre microfibration [3, Proposition 2.8]. This uses
that B is Hausdorff. Note that the fibre of this map at b ∈ B is ||Ub,•|| (see [3, Corollary
2.9]). Then, the result follows from Theorem 1.3. �

REMARK 3.5. Special cases of this appear in [3] and [1]. The authors of [3]
considered the case where ||Ub,•|| are n-connected, see [3, Corollary 2.9]. On the other
hand, in [1], it was shown under different point-set topological assumptions that if the
maps ||Ub,•|| → ||F•|| are weak equivalences, then so is the map ||U•|| → ||B × F•||,
cf. [1, 3.6, 3.7].
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