
RELATIVE COHOMOLOGY 

D. G. HIGMAN 

I t is our purpose in this paper to present certain aspects of a cohomology 
theory of a ring R relative to a subring S, basing the theory on the notions 
of induced and produced pairs of our earlier paper (2), but making the paper 
self-contained except for references to a few specific results of (2). The co­
homology groups introduced occur in dual pairs. Generic cocycles are defined, 
and the groups are related to the protractions and retractions of /^-modules. 
Our cohomology groups are modules over the center of R, and in the final 
section we record some facts concerning their annihilators. Attent ion is given 
to the case in which 7̂  is a self dual 5-ring in the sense of (2). Applications of 
the theory to the s tudy of orders in algebras will be found in (4), where, in 
particular, results of (3) are generalized. 

Since this paper was first submit ted, Professor Hochschild has kindly 
given the author the opportuni ty of seeing the manuscript of his paper (8) 
in which the methods of Cartan-Eilenberg (1) are generalized to give a theory 
of relative homological algebra. The present paper (as well as (2)) has some 
results in common with the book of Cartan-Eilenberg and overlaps to some 
extent with the paper of Hochschild; we have indicated some of the relations 
in footnotes. Our point of view and methods differ ra ther widely from 
Hochschild's. 

We are indebted to the referee for suggestions simplifying the notation 
and increasing the generality somewhat, and for the references to (1). 

1. I n d u c e d a n d produced pairs . Let R be a ring with identi ty element. 
We shall use the terms right, left and two-sided R-module in the customary 
way, bu t always assuming tha t the identi ty element of R acts as the identity-
operator. We shall abbreviate ' ' r ight /^-module" to "Tv-module." 

Let S be a ring with identi ty element, x a homomorphism of 5 into R 
mapping the identi ty element of 5 into tha t of R. Then every Tv-module is 
also an Sx-module and hence an ^-module. 

If M is an 5-module, the product M (g) s R becomes an Tv-module when one 
defines (u ® r)x — u 0 rx for u Ç M, and r, x £ R. The (g) notation is t ha t 
of (1), M ® $ R denoting the tensor product over 5 of the 5-module M with 
the left 5-module R. The pair consisting of this i^-module and the natural 
homomorphism K: M —> M 0 s R, which is an 5-homomorphism, we shall 
refer to as the canonical (R, S, x)-produced pair determined by M. We shall 
omit the (R, S, x) when no confusion can occur. 

The term (R, S, x)-produced pair determined by M will be used to refer to 
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20 D. G. HIGMAN 

those pairs consisting of an Tv-module P(M) and an 5-homomorphism 
KM:M —>P(M) which satisfy the condition 

(P) for each R-module N there exists a homomorphism a—>a* of Horn <?(ikf, N) 
into HomR(P(M), N) such that for a £ Homs(M} N), a* is the unique element 
of Horn a (P(ikf), N) which makes the diagram 

P(M) 

M — N 
commutative.1 

T h e Horn notat ion is t ha t of (1), H o m s ( M , N), for example, denoting the 
module of 5-homomorphisms of M into TV. 

Tak ing * to be the na tura l homomorphism of Homs(M, N) into 
HomR(M ® s R, N), we find t h a t the canonical-produced pair satisfies (I) . It. 
follows t h a t any produced pair (P(M), KM) determined by M is isomorphic 
with the canonical one, i.e., t h a t there exists an /^-isomorphism </> of P(M) 
onto M ® s R such t ha t the diagram 

P(M)-^M®SR 

M 
is commuta t ive (2). 

T h e canonical (R, 5 , x)-induced pair determined by M consists of the module 
H o m s ( P , M ) , made into an P-module by set t ing/*(r) =f(rx) for/G Hom s (7? ,M) 
and r, x Ç R, together with the natura l homomorphism e: H o m s (R,M)—>M, 
which is an 5-homomorphism. An (R, 5 , x)-induced pair determined by 

lThe considerations in (2) were conceived of primarily as generalizations to rings and algebras 
of certain parts of the theory of representations of finite groups. The term induced module 
was used in connection with M 0 SR because of its relation to the classical construction for 
the induced representation in that theory. This turns out to be unfortunate because produced 
modules are then injective, induced modules projective, and because of the conflict with the 
terminology of the representation theory of topological groups. We have therefore switched 
notation and terminology in the present paper, interchanging "produced" with "induced" 
and " P " with " I " throughout. 
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M consists of an /^-module I(M) and an S-homomorphism eM: I(M) —> M, 
satisfying the dual of condition (P) , namely 

(I) for each R-module N there exists a homomorphism fi —»/3+ of Homs(N1 M) 
into WomR(N, I(M)) such that for f3 Ç Hom5( iV, M), /3+ is the unique element 
of HomR(N, I{M)) making the diagram 

commutative. 
The canonical-produced pair satisfies (I) with the natural homomorphism 

Hom s ( iV, M) -> Horn*(TV, H o m 5 ( ^ , M)) 

as + . Every produced pair determined by M is isomorphic with the canonical 
one (2). 

Henceforth, (P(M), KM) and (I(M), eM) will denote respectively an 
(R, S, x)-P r°duced pair and induced pair determined by M. A subscript 
(R, S) or (R, S, x) will be used to obtain a more explicit notation when desired; 
thus IiR>S)(M) for I(M), and so on. 

In case M is an 5-module by vir tue of being an /^-module, there exist by 
(P) and (I) unique i?-homomorphisms 

tM: P(M) -> M, j M : M -> I(M), KM tM = j M *M = 1. 

Then KM and j M are 1 — 1 while tM and eM are onto. For the canonical pairs, 
tM is the natural homomorphism M ® s R —> M,jM the natural homomorphism 
M-+Homs(R, M). We shall denote by K(M) the kernel of tMj K(M) = 
P(M)(l-tMKM), and by L(M) the cokernel oijM, L(M) =I(M)/I(M)eMjM. 
Thus K(M) and L(M) are i?-modules determined up to ^- isomorphisms 
independently of the particular choice of induced and produced pairs. I t will 
be convenient to introduce the notation rjM for the injection K(M) —> I(M) 
and -KM for the projection P(M) —*L(M). Note tha t there exists a unique 
5-homomorphism 

XM:L(M) —>P(M), \MTTM = 1. KM^M = 1 — eM jM . 

2. T h e Z^-module s iP(ikf, A) and #'(Af, i\T). Given a ring X, Zx will 
denote the center of X. If M is an 5-module and N an P-module, the module 
HornS(M, N) becomes a Z^-module when we define fz(u) = f(u)z for 
/ Ç H o r n s ( M , iV), « e M and s G Z. If M is an P-module, H o m ^ M , N) is a 
Z^-submodule of Hom jS(ilf, iV). We can verify tha t the homomorphisms 
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*: Horn8(M, N) -> HornR(P(M), N), + : HornS(N, Al) -^ HomR(NJ{M)) 

of conditions (P) and (I) are Z^-homomorphisms. 
Suppose now tha t M and N are P-modules . We obtain a Z / rhomomorphism 

8AffN of Horn s (M, N) into H o m B ( i f ( M ) , iV) by following * with the homo-
morphism of HomR(P(M), N) into HornR(K(M), N) induced by the injection 

v,f of K(M) into P ( M ) . Thus , f o r / £ H o m 5 ( M , N), • 

fÔM'N = W * . 
The kernel of <5,w,.v is HomB(M, N). In fact, i f / is in this kernel, 

0 = (I ~" ^M KM) VMJ* — j ~ in]• 

Hence tMf = f* is an /^-homomorphism, and, since tM is an /^-homomorphism 
onto, / is an P-homomorphism. On the other hand, if / £ Hom / 2(A/, N), 
/ * = / ; , / and 

/ = VMIMJ = 0. 

Dually, we may define a Z^-homomorphism ôA/)Ar of Horns(A/", M) into 
Hom#(7V, L(M)), namely, the product of + with the homomorphism of 
RomR(N, T(M)) into HomR(N, L(M)) induced by TTM; 

for £ ( Horn s (AT, M ) . The kernel of ô3f,;V is Horn* (AT, A/). 
The P-module M determines P-moduIes Kl{M) and P\M) (i = 0, 1, . . .), 

defined by the recursive formulas 

P ( ) (M) = P ° ( M ) = ;U, P*+ 1(A/) = K(KL{M)), Pi+l{M) = P(iT' ;(Af)). 

Dually, M determines P-modules U(M) and P ( M ) , (i = 0, 1, . . .), according 
to'2 

L°(À/) = P ( M ) - M, U+l(M) = L ( P ' ( M ) ) , P+l(M) = / (L<(M)) . 

We shall now define a Z/j-complex (C(M, AT), 5), determined by the ordered 
pair 17, iV of P-modules, by letting 

C\M, N) = Homs( iT ' (M) , iV), Ô* = <W f) i i V for i > 0, 

and 
C(M, AT) = (0), Ô = O f o r i < 0. 

We have ô1'"1 Ô1 = 0 for all i, since, for i > 0, the image B^M, N) of Ô'-1 

is contained in Hom f l( /£*(M), N), which is the kernel of 3*. The cohomology 
groups of this complex, which are Z^-modules, and which are determined 
up to Z/e-isomorphism independently of the part icular choice of induced 
pair determined by M, we shall denote by Rl(M, N). More explicit notat ion 

2This amounts to constructing the standard (R, 5)-projective and infective resolutions of 
.If as in (8). 
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such as H\R<S) (M\ N) will be used where desirable.3 I t is immediate t ha t 
H"(M, N) = UomR(M, N), and, for i > 0, a > 0, 

Hi+a (M, N) = H'iK^M), N). 

We may dualize the above construction to obtain a second Z^-complex 
(C(M,N)*«), taking 

C\M, N) = Homs(N, L\M)), ô* = ôLi(M),N, i > 0, 

and Cl(M, N) = (0), Ô* = 0 for i < 0. We shall denote the image of d1'1 

by Bl{M, N), and the cohomology groups of this complex by Êl{M, N). 
These are again Z#-modules, determined up to Z^-isomorphism independently 
of the choice of produced pair determined by M. We have 

B°(M, N) = HomR(N, M), Hi+« (M, N) = #<(L«(M), N) 

for all i > 0, a > 0. 

3. T h e i s o m o r p h i s m â. Let M and iV be ^-modules. There is a ZRC\ Sx-
isomorphism a of HornS(P(M), N) onto H o m 5 ( M , I(N)) mapping 

fe HornS(P(M),N) 

onto/0" = /vM/+. The inverse r of o- maps g £ Horn # (if, I(N)) onto g r = g * ^ . 
In fact, {KMJ+Y = /+ , and hence/ f f r = (KMf+)*eN = / + e i V = / , so t ha t cr = 1. 
Dually, TO- = 1. In the case of the canonical-induced and -produced pairs, a is 
the natural homomorphism of Homs(M® sR>N) onto Hom 5 (M,Hom 5 ( i ? ,Af ) ) . 

Now assume tha t M and iV are /^-modules so tha t K(M) and L(N) are 
defined. We then have a Z# P\ ^- i somorphism a of Hom ) S ( i^ (M) , A )̂ onto 
Horns(M,L(N)), m a p p i n g / Ç H o m 5 ( X ( M ) , iV) onto 

/ = 1(1 ~ tMKM)f] *N-

Inverse to â is f defined by 

for g 6 H o m s ( A / , L(iV))- Indeed, 

/ Xtf = «jv[(l — tMKM)f]+TTN\N = ^Af[(l — / M « M ) / ] (1 — €tfjtf) 

= * M [ ( 1 — tMKM)f]+ — KM(1 — tMKM)fjN = [(1 — /M«M)/ ] • 

Hence 

/ = VM(J Xtf) = W ( l — tM><M)f] = / , 

whence erf = 1. Dually, ra = 1. 

3It can easily be proved that H\RtS)(M, N) is isomorphic with Ext\RtSx){M, N) as defined 
by Hochschild (8). When this is taken into consideration, the connection between the results 
of §§2-7 of the present paper and (8) will be seen, 

https://doi.org/10.4153/CJM-1957-004-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-004-4


21 U. G. H1GMAN 

We shall show that the diagram 

Homs(M,N)«Homs(K(M),N) 
3N,M 

S 

cr 

Homs(M,L(N)) 
is anti-commutative. If/ Ç Homs(Af, A/"), 

Henc 

But 

and 

1 lent 

(1 — tMKM)f = (1 — tMKM)riMf* = /* ~ W-

/ ^ = (/* - tjuff TN = / * °W ~ (tMf)airN. 

/ * 7TJV = % ( / * ) 71^ = KMf*jNTTN = 0, 

( W ) îV — KM(tMj) TN — KMtMj TTN — / 71"̂  — / . 

Jcr _ J 

Moreover, the diagram 

Homs(K(n),N) Ô 

cr 

Homs(M,L(N)) 

N,K(M) 

Homs(K(h),L(N)) 
°M,L(IM) 

is commutative. For, if/ G Homs(K(M), N), 

f = ^ (Af ) t ( l ~~ tK(M)KK(M))f] KNl 

hence 

(f )* = [(1 - tK(M)KK(M))f]
+TrN. 

Thus 

M 
f = VK(M)(f ) * = ^ ( M ) [ ( l — fe(M)«/S:(M))./] fl"AT 

~ ^iv(M)[(l — ^(M)*K(M))/] ^N — / irN — / , 

proving the desired result. 
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Applying these results to the complexes (C(M, N), 5) and (C(7V, M), b) 
we obtain an ant i -commutat ive diagram 

. . . -> C~\M, N) -̂> C\M, N) - ^ C'(M, N) - ^ C2(M, N) -> . . . 

II II !<? J * 
II II N J ' NI< 

. . . -> C~\N, M) ^ C°(A^, M) ^ (? ' (#, M) ^> C2(yY, M) - » . . . 

Consequently 

T H E O R E M 1. <r induces a ZRC\ Sx isomorphism of HL(M, N) onto Hl{N, M) 
for i > 0. 

COROLLARY. ^ + « ( M , i V ) ^ ^ ( M , L - ( 7 V ) ) and H^^M^N^H^M.K-^N)) 

for i > 0, a > 0, /&e isomorphisms being ZRC\ Sx-isomorphisms. 

4. S o m e special i n d u c e d a n d produced pairs . To give explicit con­
structions for the cohomology groups introduced above one need only supply 
part icular induced and produced pairs, the canonical ones not always being 
the most suitable. Thus , for example, suppose tha t B and A are rings, and let 
T be a subring of A containing the identi ty element thereof. Let M be a 
B' 0 T-module. Here the ' indicates mirror image, and 0 the tensor product 
over the ring of the rational integers. A B' 0 ^-module may be considered 
as a left B-, and a right 2"-module, and we shall use corresponding notat ion 
where convenient. The module M % T A becomes a B' 0 A -module when 
we let b(u ® a) = bu 0 a and (u 0 a)x = ax for b £ B, u £ M and a, 
x G A, while HornT(A, M) becomes a B' 0 ^4-module when we let &/(a) = 
6[/(a)] and /*(a) = / (xa ) for b Ç 5 , / G H o m r ( 4 , M) and s, a G 4 . As may 
be seen by verifying (I) and (P), combining these modules with the natural 
homomorphisms M —» M 0 T A and H o r n T { A , M) —> M yields respectively 
a ( $ ' 0 A, B' 0 T, %)-induced and produced pair determined by M, where 
X is the natural homomorphism B' 0 T—» B' 0 A. If M is a B' 0 ^4-module, 
K(M) and L(M) are the respective kernels of the natural homomorphisms 
M ®TA -> M and M - ^ H o m r ( . 4 , M). 

Now let AT be a 5 ' 0 T-module, N a 5 ' 0 ^ -modu le . Further , let [/ be a 
subring of TC\ZA, containing the identi ty element of A. The module 
H o m n / ^ / T ( ^ ' ^ 0 at ta ins the s ta tus oî a Tf ®u A -module when we define 

*f(u) = f\ut) and f (u) = f{u)x 

for 

/' e Hom-fK>iTAM,N), t G T, x G , ! , « f M; 
n 09 U 

let us denote it by $(M, N). If M is a 5 ' 0 A -module we may replace t 
above by y G A, turning <ï>(M, N) into an A' ®v^4-module. We shall outline 
how one may prove4 

4Combining Theorems 1 and 2 gives Theorem 2 of (8). 
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T H E O R E M 2. / / M and N are B' ® A-modules, then there exists a natural 
ZA-isomorphism of 

where C = A' ®VA,D = V ®VA. 

The first of the cohomology groups mentioned is a %]$'£§,[-module, the 

second a Z c -module , so it makes sense to speak of a Z A-isomorphism between 

them. The natura l homomorphism rj: D —> C is understood. 
T h e main step in the proof consists in the construction of a suitable (C, D, rj)-

induced pair for 3>(M, N). T o this end, consider the diagram 

$(P(M),N) 

v 

©M,N) * H 
fi 

where (a) e is the /^-homomorphism induced by KM: M —> P(M), (P(M), KM) 
being a {B' ® A, B' <g> T, x)-produced pair determined by M, and (b) ft 
is a J9-homomorphism of the C-module II. If now ft+ is a C-homomorphism 
such t h a t the diagram is commuta t ive , then for h G H, u Ç M, (hft+)(uKM) = 
(hft)(u), hence for a G A, 

(hft+)(uKM.a) = a(hft+)(uKM) = [{ah)ft\{u)} 

i.e., 

4,1 (hft+)(uKM.a) = [{ah)ft]{u). 

On the other hand, we may verify t h a t the formula 4.1 does indeed define a 
C-homomorphism making the diagram commuta t ive . Consequently the pair 
( $ ( P ( A / ) , N), e) is a (C, £>, ^ - i nduced pair for 3>(M, N). 

If i l / is a B' <g) A -module, $(A/ , iV) is a C-module, and the homomorphism 
tM\ P(M) —» ilf induces the unique ^4' ® ^ ^ -homomorph i sm j : $ (A/ , AH —> 
$(P(M), N) such t h a t je = 1, as is seen by taking ft = 1 and / / = $(A/ , iV) 
in 4 .1 . Consequently the sequence 

(0) -> $ ( M , xV) - t $ ( P ( M ) , Ar) -X $( iC(M) , A7) -> (0) 

is exact, where 7 is induced by the injection K(M) —» P(M). in the complex 
for constructing the groups /?*(<£(M, iV), Y4) from the produced pair 
(<Î>(/(A/), iV), e) we may therefore identify L(<S>(M, iV)) with $ ( K ( M ) , iV) and 
the projection of $ ( / ( A f ) , N) onto L ( $ ( M , A0) with 7. 

The modules H o m ^ / ( g ) ^ ( A / , iV) and H o m ^ C ^ , $(Af, iV)) are in par t icular 

ZA-modules, the first being a Z g ' * * ^ - and the second a Z r -modu le . T h e 
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natural isomorphism between them is a ZA-isomorphism. One may now 
verify the commutativity of the diagram 

H o m ^ 0 r ( M , N) ->Hom B , g r (X(M), .V) 

1 I 
Horn (A, $(M, N))-+HomD(A, Q(K(M), N)) 

where (1) the arrows pointing down represent the natural isomorphisms, 
(2) the top arrow represents 8M,N, and (3) the bottom arrow represents the 
product of 

+ : Horn (A, $(M, N)) -> Hom^A, 3>(P(M), N)) 

with the homomorphism of the second of these modules into 

Hom^(^, $(K(M),N)) 

induced by y. Application of this fact to the appropriate complexes gives 
Theorem 2. 

5. Generic cocycles. Let M, N and X be /^-modules, and let 

/ G HornS(K(M),N). 

Then fj,f: g —» gf for g G Hom s(J, K(M)) defines n ZRC\ 5x-homomorphism 
Hf of Hom5(X, K(M)) into Homs(X, #) . If 

/ G Horn R(K(M),N) 

we see that \xf is a Z^-homomorphism, and moreover, that the diagram 

Horn 8(X,K (M) ) ÔX'^M) Horn 8(K(X),K(M)) 

Homs(X, N) 8Z? Homs(K(X), N) 

is commutative. For then 

g = Vx(gj)' = M i = Z • 

Application of this to the complexes (C(X, K(M)), 8) and (C(X, N), Ô) 
proves that \if induces a Z^- homomorphism of Ha(X} K(M)) into Ha(X, N) 
for all a > 0. In particular: 

/ / / G HornS(K*(M), N), \xf induces a ZR-homomorphism of IIa(M, K\M)) 
into Ha(M, N) for all a > 0, and nf: P —>/, where I1 is the identity automorphism 
ofK*(M). 

We shall refer to the element V G B*(M, Kl(M)) as the first generic i-cocycle 
determined by M. 

Dually, if 

/ G Horn 5 (AT, L(M)), A,: g ->fg 

defines a ZRC\ 5x-homomorphism \f of Hom(S(L(¥), X) into Horns(A/', AT), 
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which is a Z^-homomorphism if/ £ Hom^TV, L(M)). in the la t ter case, the 
diagram 

Homs(L(M),X) 8x'-^M) HornS(L(M), L(X)) 

M .. M 
Hom3(N,X) d^N Homs(N,L(X)) 

is commuta t ive . Hence \f induces a Z^-homomorphism of Ha(X, L(AI)) into 
Ha(X, N), a > 0. In par t icular : 

/ / / G Hom(TV, Li(AI)), \f induces a ZR-homomorphism of IIa(N, Ll(AT)) into 
IIa(AI, N) for all a > 0, and \f: J1 —->/, where J1 is the identity automorphism 
ofU(M). 

We shall refer to the element J* Ç Bl(Al, Kl(M)) as the second generic 
i-cocycle determined by M. 

As a consequence of the above considerations we obtain 

T H E O R E M 3. If i is a positive integer, and M is an R-module, then the following 
conditions imply each other. 

(a) IF (AI, N) = (0) for all R-modules N. 

(b) II^AI, K\M)) = (0). 

(c) / ' e Bl(AI, N). 

(d) Hi+a(AI, N) = (0) for all R-modules N and all a > 0. 

T h e dual Theorem 3 ' is obtained by replacing II with H, K with L, B with 

5 , and / with / . 

6. P r o t r a c t i o n s a n d r e t r a c t i o n s . 5 Let M be an /^-module. If / / is an 
/^-module and 0 : M —> II is an /v.-homomorphism, we shall call the pair 
(// , 0) and (R, S)-protraction of AI provided t h a t there exists an 5-homo-
morphism X: M —> H such t h a t X0 = 1. T h e kernel N = H(l - 0X) of 0 
will be called the kernel of (77,0) . Two (R, S)-protractions (Hi, 0i) and 
(II2l 0<>) of M with kernel TV will be called R-isomorphic if there exists an 
/^-isomorphism ^ of Hi onto i7 2 such t ha t 0i = /x02. 

Corresponding to an (R, S)-protraction of M with kernel TV there is an 
e l e m e n t / x G UomR(K(AI), TV) defined by 

/x = I?MX*(1 " *X). 

I t can be seen tha t the correspondence (H, 0) —>/x induces a 1-1 mapping 
of the set of classes of ^- isomorphic (R, S)-protractions of M with kernel 
TV onto H'(M, TV), which becomes a group isomorphism when the Baer 
composition is introduced into the set of classes of protract ions. 

The (R, 5)-protract ion (II, 0) of M with kernel N is said to split if there 
exists an /\.-homomorphism a: AI —> H such t ha t « 0 = 1 . Two /^-isomorphic 
protract ions split, or do not, together. L e t / x G HomR(K(M), N) correspond 

5The material of this section overlaps considerably with Cartan and Eilenberg (1, §6, Ch. T1 ), 
as well as with Hochschild (8). 
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to (H, <t>) as above. Then it is easy to see tha t each of the following conditions 
is necessary and sufficient for (H, <£) to split: 

(a) there exists an P-submodule N* of II such tha t II = N ® N*, 
(b) i î ~ N ® M as an i?-module, 
(c) /x eBl(M,N). 
T h e pair (I(M), tM) is an (i£, 5)-protract ion of M with kernel K(M), and 

corresponds to the class of the first generic 1-cocycle 

KM 

An /^-module M will be called (R, S)-projective if, whenever (IT, 4>) is an 
(P , S)-protraction of an P-module H and a: M —> i 7 is an P-homomorphism, 
there exists an P-homomorphism â: M-^ H such tha t a = â<£. From (2, 
Theorem 6) Theorem 3, and the above remarks we conclude 

T H E O R E M 4. Each of the following conditions is necessary and sufficient for 
an R-module M to be (R, S)-projective. 

(a) The (R, S)-protraction (P(M),tM) splits. 
(b) Every (R, S)-protraction of M splits. 
(c) IT(M, N) = (0) for all R-modules N. 
If U is an 5-module, the i^-module P(U) is (R, 5)-projective according to 

(2, Theorem 3) . Hence we have 

COROLLARY. If U is an S-module, /Z''(P(C/), N) = (0) for all R-modules N 
and all i > 0. 

A pair (H, \p) consisting of an P-module H and an P-homomorphism 
\p: M —> H will be called an (R, S)-retraction of M with kernel N if there 
exists an 5-homomorphism p: H—* M such tha t \pn = 1, and if N is the 
cokernel of \f/, N = Hf M\p. This is the dual of the concept of (R, S)-protraction. 
We define P-isomorphism between retractions by dualizing the corresponding 
concept for protractions, and obtain a 1-1 correspondence between the set 
of classes of isomorphic (R, 5)-retract ions of M with cokernel N and the 
elements of Hl(M, N) (and hence of Hl(N, AI) by Theorem 1). The definition 
of split t ing for (R, S)-retractions is dual to tha t for protractions. Of course 
there is a 1-1 correspondence between the set of (R, S)-protractions of M 
with kernel N and the (R} 5)-retract ions of N with cokernel N, such tha t a 
protraction splits if and only if the corresponding retraction splits. 

(P(M)JJM) is an (R, S)-retraction of M with cokernel L(M), and corre­
sponds to the class of the second generic 1-cocycle J1. 

Dual to (R, S)-projective modules we have (R, .5)-injective modules, and 
dual to Theorem 4 we have 

T H E O R E M 4 r . The following conditions 

(a) The (R, S)-retraction (I(M)JM) of M splits. 
(b) Every (R, S)-retraction of M splits. 
(c) Hl{M, N) = (0) for all R-modules N. 

are each necessary and sufficient for an R-module M to be (R, S)-injective. 
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If U is an S-module, I(U) is (R, 5)-injective according to (2, Theorem 3 ') . 
Consequently 

COROLLARY. For every S-module U and every R-module N, / / * ( / ( £ / ) , N) = (0) 
for all i > 0. 

7. C o h o m o l o g y d i m e n s i o n . If an /^-module M is (R, 5)-projective 
[injective], then according to (2, Theorem 6) so is K(M) [L(M)]. Under 
certain circumstances the converse is t rue. We shall consider the hypothesis 

(Ry S; M) There exists an R-isomorphism \xM of I(M) onto P(M). 
Jf (R,S;M) holds, then M is (R, S)-projective if and only if it is (7?, 5 ) -
injective, as follows from (2, Theorems 6, 6 ') . 

T H E O R E M 5. Suppose that the hypothesis (R,S;K(M)) holds. Then K\M) 
(R} S)-projective implies that M is (R, S)-projective. 

Proof. If (R,S;K(M)) holds and K(M) is (R, S)-projective then K(M) 
is (R, 5)-injective. Hence the (7?, S)-retraction (P(M),r}M) of K(M) splits 
by (2, Theorem 6') . Hence P ( M ) ~ M 0 K(M) as an 7?-module, so tha t M 
is (R, 5)-projective by (2, Theorem 6) . 

T h e dual Theorem 5' is obtained by replacing K with L and projective 
with injective. 

I t will be convenient to denote by d{RjS) M the smallest integer i > 0 such 
t ha t H\M, N) = (0) for all 7?-modules N, if such an i exists, set t ing d(RjS) 

M = co otherwise. T h e dual diRjS) M is defined by replacing i 7 by H. By 
Theorems 4, 4 \ d{RjS) M < i if and only if Ki~l{M) is (R, S)-projective, while 
d(R,s) M < i if and only if IJ~X (M) is (R, ^ - in j ec t ive . By Theorem 5, if 
(RtSiK^M)) holds, then d(R,S) M <i+ 1 implies d{R>S) M < i, while if 
(R, S\ V{M)) holds, then d(R,s) M < i + 1 implies d(jR)>s) Af < i. 

T h e two conditions 

( c i ) diRtS) M < i for all i^-modules M. 

(c\i) d(R,S) M < i for all /^-modules M. 

imply each other as we deduce a t once from Theorem 1. We define class (R, S) 

to be the minimum integer i > 0 such t ha t (c.i) and (c'.i) hold if such 

an i exists, lett ing class (R, S) = °o otherwise. From the above we have 

T H E O R E M 6. If the hypothesis (R, S; M) holds for every R-module M, then 
class (R, S) < °° implies class (R, S) = 1. 

T h e hypotheses of this theorem are satisfied if R is a self dual 5-ring in the 
sense of (2). 

Now let us suppose tha t B, A, T and U are rings as in §4, and let M and N 
be B' 0 A -modules. If 

d(B'®A,B'®T)M = i < " ' 
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then I1 (M) c^ K*(M) ® Ki+] (M) as a B' ® 4-module, according to Theorem 
6 of (2). Consequently 

$ ( / ' ( ! ) , N)~ *(K\M), N) ®*(K*+i(M), N) 

as an A' ®v A -module, whence one concludes by the construction of §4 that 

(A'®uA, T'®vAy 

In particular, if M is (Bf ® 4 , W ® T)-projective then $(M, iV) is ( 4 ' (g )^ , 
T' ® c/^4)-injective (8, Lemma 2). Moreover, we conclude that 

class(,4'<g>^4, T'®uA) = d A\Az=d(A><* A T'<* J / 1 

{A ®uA, 1 ®uA) {A ®uA, I ®uA) 
> class(5' ® A,B' ® T), 

considering A in the natural way as an A' ®n A -module. 

8. The ideals 3?*(Af) and 3*(M). The results of §5 can be refined as 
follows. We shall denote by 3*(M, N) [or 3\R,S) (M, N)] the annihilator 
of the Z/g-module Hl(M, N). Letting 3>*(M) denote the intersection over all 
/^-modules N of the ideals 3*(Af, iV) we have by §5 that 

3<(j|f) = 3*'(M,iT'(M)) 

= {co € Zs\?» £Ë\MtK\M))\. 

Here fw denotes right operation by to; fw: « •—» wto for w G Kl{M), co Ç Z/j., 
so that fw = /*". Condition (a) of Theorem 3 is equivalent to the condition 
that 3<(M) = Z*. 

Dually, we define 3*(M, iV) to be the annihilator of the Z^-module 
H*(M, N), and 3*'(M) to be the intersection over all /^-modules N of these 
ideals. Then 

3l(M) = 3 (M, L\M)) 

= {co(EZfl|fcoC B'(M, L ' (M)) | . 

The condition dual to condition (a) of Theorem 3 is equivalent to the condition 
that3 '(JI/) = ZR. 

We have at once that for i > 0, a > 0, 

$t+a(M, N) = 9'(JT*(M), A0, 3i+"(M, N) = 3'(La(M), N). 

Moreover, by Theorem 1, 

T(M,N)DSX= S\N,M)nSx 

while the Corollary to Theorem 1 implies that 

S\M) nSxQ 3i+a(M), 3'(Af) C)SXQ W+"(M) 

lor / > 0, a > 0. 
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Let (71, </>) be an (R, S)-protract ion of the /^-module M with kernel TV 

(§6). Then there exists an 5-homomorphism X: 717 —> 77 such t ha t X</> = 1, 

and TV = 77(1 — </>X). T h e corresponding e lement /x Ç Hom/j(il7, TV) is defined 

by/x = 9?MX*(1 - 0X). 

PROPOSITION. 7f co £ Z^, /Aew /x
w G 7^(717, TV) if awd only if there exists 

an R-homomorphism (3: M —> 77 such that /3<t> = fco, where fo> denotes right 
operation on M by co. 

Proof. Suppose tha t 

/Aw = / " • " , g e H o m s ( M , A 0 . 

This means tha t ?7MX*(1 — 0X)fw = 7?Mg*- Then , if 77 is the injection TV —» 77, 

0 = ^ V [X*(1 - c/>X)fco - i7Mg*]i7 = riM[\*Çw ~ gS\ 

= W X f c o - ^ ] * = [ X f c o - ^ ] ^ 

Consequently /5 = Xfco — grj is an element of Hom#(Tl7, 77). Fur ther , /?<£ = 
Xf«0 - £?/</> = fw. 

Suppose on the other hand tha t there exists an 7^-homomorphism fi: M —> 77 
such tha t /3<£ = fco. Since 

VMP* = *?AW3 /M = 0, 

if we let 7 = Xfco — 0, we have 

C A % = i?Af(x*r« - is*) = w * = RM-\ 

where g = 7(fco — #7) is an element of Horns(717, TV). Hence 

, co 5 
A = g 

There is the dual result for (R, S)-retractions of 717. 
Application of this proposition to the (R, S)-protraction (P(M)} tM) of 717 

gives (a) of the following theorem, (a') being its dual . 

T H E O R E M 7. If w £ ZR, then 

(a) co É Sl(M) if and only if there exists (3 Ç H o m B ( M , P ( M ) ) such that 
P tM = fco. _ 

(a') co Ç ^ W if «wrf only if there exists f3 Ç Hom^.(7(717), 717) swcA / t e / 
jM/3 = fco. 

KM) - ^ r » RM) 
A a* 

(X+ t M 

M ^ r - M 
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Assuming hypothesis (R, S; M) of §7, namely, the existence of an ^- iso­
morphism fiM of I(M) onto P(M), we may construct the Casimir operators 
as in (2). Thus , if a G H o m 5 ( M , M), c(a) = a+ixMtM and c(a) = JMVM<X* 
are elements of HomR(M, M). We may call c and c the first and second 
Casimir operators associated with M. They are of course dependent on \iM. 

T H E O R E M 8. If (R, S; M) holds, then an element a> £ ZR is contained in 
31 ' (M) if and only if there exists an S-endomorphism a of M such that c(a) = fco. 

Proof. Suppose a is an 5-endomorphism of M such t ha t c(a) = fo>. Then 
0 = a+juM is an i^homomorphism of M into I(M), and 

^ M = a+fxMtM = c(a) = fw. 

Hence œ G 3 1 W by Theorem 7. 
On the other hand, co 6 3 ' ( M ) implies by Theorem 7 the existence of an 

jR-homomorphism @: M —> I(M) such tha t $tM = fw. Now a = ^nM~leM is 
an 5-endomorphism of M such t h a t 

c(a) = a+fxMtM = ( f e eM) fiM tM = @t = fco. 

The dual of Theorem 8 is obtained by replacing 3 by 3 and c by c. 
The condition (i?, 5 ; M) may be strengthened by demanding tha t c = c. 

Let us denote the resulting condition by (i?, 5 ; M)+. If 7x! is a self-dual S-ring 
in the sense of (2), (R, S; M)+ holds for all i^-modules M (2). Comparing 
Theorem 8 and its dual we have 

COROLLARY 1. If (R, 5 ; M)+ holds then ^(M) = ^(M). 

We can also prove 

COROLLARY 2. If (R,S;K(M))+ holds then 32(M)nSx = 31(M)r\Sx1 

while dually, if (R, S\ L(M))+ holds then 3 2 ( M ) H 5 , = ^(M) H Sx. 

Proof. By Corollary 1, &(M) = 3l(K_(M)) = I W W ) . By Theorem 
1 there exists a ZR C\ Sx-isomorphism of Hl(K{M), M) onto Hl(M, K{M)) 
I t follows tha t ^{K{M))C\SX C 3fi(M, X ( M ) ) = VT(M).' Since 
^(M) r\Sx C 3 2 ( M ) , the corollary is proved. 

T h e above results may be extended by using the recursion relations 
3**"(M) = ^(K-iM)) and 3 * * ( M ) = 3<(Z,«(M)). Thus , for example, we 
have by Corollary 2 t ha t if (R, S; ilf )+ holds for all i?-modules M, then for 
i > 0, 

3 ' ( M ) DSX= S\M) O S, 

and 

3 j ( M ) n 5 , = âf^Ao n 5 , . 

T h e methods of §4 may be used to give further information concerning these 
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ideals in the case considered there. For example, if M is an A' ®v A -module 
we find that 

^iCtD)(A)nDVQ3\CtD)(M) 

where the notation is that of §4. 
To see how ideals of the kind considered here occur in the study of orders 

in algebras, see (3) and (4). 
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