RELATIVE COHOMOLOGY
D. G. HIGMAN

It is our purpose in this paper to present certain aspects of a cohomology
theory of a ring R relative to a subring S, basing the theory on the notions
of induced and produced pairs of our earlier paper (2), but making the paper
self-contained except for references to a few specific results of (2). The co-
homology groups introduced occur in dual pairs. Generic cocycles are defined,
and the groups are related to the protractions and retractions of R-modules.
Our cohomology groups are modules over the center of R, and in the final
section we record some facts concerning their annihilators. Attention is given
to the case in which R is a sell dual S-ring in the sense of (2). Applications of
the theory to the study of orders in algebras will be found in (4), where, in
particular, results of (3) are generalized.

Since this paper was first submitted, Professor Hochschild has kindly
given the author the opportunity of seeing the manuscript of his paper (8)
in which the methods of Cartan-Eilenberg (1) are generalized to give a theory
of relative homological algebra. The present paper (as well as (2)) has some
results in common with the book of Cartan-Eilenberg and overlaps to some
extent with the paper of Hochschild; we have indicated some of the relations
in footnotes. Our point of view and methods differ rather widely from
Hochschild’s.

We are indebted to the referee for suggestions simplifying the notation
and increasing the generality somewhat, and for the references to (1).

1. Induced and produced pairs. Let R be a ring with identity element.
We shall use the terms right, left and two-sided R-module in the customary
way, but always assuming that the identity element of R acts as the identity
operator. We shall abbreviate ‘“‘right R-module” to ‘‘R-module.”

Let S be a ring with identity element, x a homomorphism of S into R
mapping the identity element of S into that of R. Then every R-module is
also an S x-module and hence an S-module.

If M is an S-module, the product M ® 5 R becomes an R-module when one
defines (# ® r)x = u @ rx foru € M, and r, x € R. The ® notation is that
of (1), M ® s R denoting the tensor product over S of the S-module 3 with
the left S-module R. The pair consisting of this R-module and the natural
homomorphism «: M — M ® ¢ R, which is an S-homomorphism, we shall
refer to as the canonical (R, S, x)-produced pair determined by M. We shall
omit the (R, S, x) when no confusion can occur.

The term (R, S, x)-produced pair determined by M will be used to refer to
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those pairs consisting of an R-module P(M) and an S-homomorphism
kM — P (M) which satisfy the condition

(P) for each R-module N there exists a homomorphism a— o of Hom (M, N)
into Homg (P (M), N) such that for « € Homg(M, N), o* is the unique element
of Homgz(P (M), N) which makes the diagram

P(M)

*
M
M

5 N

commutative.'

The Hom notation is that of (1), Homg(M, N), for example, denoting the
module of S-homomorphisms of M into NV.

Taking * to be the natural homomorphism of Homg(M, N) into
Homgz(M ® s R, N), we find that the canonical-produced pair satisfies (I). It
follows that any produced pair (P (M), k5;) determined by M is isomorphic
with the canonical one, i.e., that there exists an R-isomorphism ¢ of (M)
onto M & s R such that the diagram

LM@SR

is commutative (2).

The canonical (R, S, x)-itnduced pair determined by M consists of the module
Hom g(R,M), made into an R-module by setting f*(r) =f(rx) {or f€ Hom s(R, M)
and 7, x € R, together with the natural homomorphism ¢: Hom g (R, M) — M,
which is an S-homomorphism. An (R, S, x)-induced pair determined by

IThe considerations in (2) were conceived of primarily as generalizations to rings and algebras
of certain parts of the theory of representations of finite groups. The term induced module
was used in connection with M & g R because of its relation to the classical construction for
the induced representation in that theory. This turns out to be unfortunate because produced
modules are then injective, induced modules projective, and because of the conflict with the
terminology of the representation theory of topological groups. We have therefore switched
notation and terminology in the present paper, interchanging ‘‘produced’” with “‘induced”
and “P”" with “‘I"” throughout.
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M consists of an R-module (M) and an S-homomorphism €,: [ (M) — M,
satisfying the dual of condition (P), namely

(I) for each R-module N there exists a homomorphism 8 — B+ of Hom (N, M)
into Homg (N, I(M)) such that for 8 € Homg(N, M), B* is the unique element
of Hom g (N, I(M)) making the diagram

LM

+
€ 8

commutative.
The canonical-produced pair satisfies (I) with the natural homomorphism

Hom (N, M) — Homg (N, Homg (R, M))

as 4. Every produced pair determined by M is isomorphic with the canonical
one (2).

Henceforth, (P(M), ky) and (I(M), e,) will denote respectively an
(R, S, x)-produced pair and induced pair determined by M. A subscript
(R, S) or (R, S, x) will be used to obtain a more explicit notation when desired;
thus Iz, sy (M) for I(M), and so on.

In case M is an S-module by virtue of being an R-module, there exist by
(P) and (I) unique R-homomorphisms

I‘MIP(]M) - ]W,jM3 M — I(M), «kutu =jM €y = 1.

Then «y and j, are 1 — 1 while {5 and e, are onto. For the canonical pairs,
t is the natural homomorphism M ® s R — M, j, the natural homomorphism
M — Homg(R, M). We shall denote by K(M) the kernel of ¢,, K(M) =
P(M)(1—tpky), and by L(M) the cokernel of ju, L(M)=I(M)/I(M)eru.
Thus K(M) and L(M) are R-modules determined up to R-isomorphisms
independently of the particular choice of induced and produced pairs. It will
be convenient to introduce the notation 7, for the injection K (M) — I(M)
and m, for the projection P(M) — L(M). Note that there exists a unique
S-homomorphism

)\ML(M) '—>P(]\/_/[), )\Mﬂ'ju = 1. 71'1;[)\4{ =1- eMjM-

2. The Zy-modules Hi{(M, N) and H*(M, N). Given a ring X, Zx will
denote the center of X. If M is an S-module and NV an R-module, the module
Homg(M, N) becomes a Zz-module when we define f*(u) = f(u)z for
f€Homg(M, N),u € Mand 2z ¢ Z. If M is an R-module, Homgz(M, N) is a
Z g-submodule of Hom (M, N). We can verify that the homomorphisms

https://doi.org/10.4153/CJM-1957-004-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1957-004-4

)
e

D. G. HIGMAN

*: Homg(M, N) > Homg(P (M), N), +: Homg(N, M) — Hompz(N,[(M))

of conditions (P) and (I) are Zgz-homomorphisms.

Suppose now that M and N are R-modules. We obtain a Zgz-homomorphism
8.y of Homg(M, N) into Homgz(K (M), N) by following * with the homo-
morphism of Homg (P (M), N) into Homg (K (M), N) induced by the injection
na of K(M) into P(M). Thus, for f ¢ Homg(M, N), ’

faM'N = naf*.

The kernel of 6, v is Homg(M, N). In fact, if f is in this kernel,
0= (1 — Lo Kar) 77Mf* = f* - fo~

Hence ¢, = [* is an R-homomorphism, and, since £, is an R-homomorphism
onto, / is an R-homomorphism. On the other hand, if f/ € Homg(d, V),
J* = tyf and

) .
PN =y taf = 0.

Dually, we may define a Zgz-homomorphism 6, v of Homg(N, M) into
Hompg (N, L(J)), namely, the product of + with the homomorphism of
Homg (N, I(M)) into Homg(N, L(M)) induced by m,,;

0
g M,N — g+7rM
for ¢ « Homg(N, M). The kernel of 8,y is Homg (N, M).

The R-module M determines R-modules K{(M) and Pi(M) (i = 0, 1,...),

defined by the recursive formulas

KO(M) = PY(M) = M, KH(M) = K(K(M)), PT(M)=PE(M)).

Dually, M determines R-modules Li(A) and TH(M), (i = 0, 1,...), according
to*

LO(M) = [9(M) = M, L*+(M) = L(LAM)), I'*'(M) = [(L{(M)).

We shall now define a Zg-complex (C(M, N), §), determined by the ordered
pair 1/, N of R-modules, by letting

CY(M, N) = Hom (K (M), N), 8 = bxicanr.n for 7> 0,
and

C(M,N) = (0), & =0fori<0.

We have 61 §° = 0 for all 7, since, for i > 0, the image B‘(M, N) of !
is contained in Homgx(K*(M), N), which is the kernel of §’. The cohomology
groups of this complex, which are Zg-modules, and which are determined
up to Zg-isomorphism independently of the particular choice of induced
pair determined by 3/, we shall denote by (M, N). More explicit notation

?This amounts to constructing the standard (R, S)-projective and injective resolutions of
A asin (8).
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such as Hig g (M, N) will be used where desirable.? [t is immediate that
H'(M, N) = Homg(M, N), and, for ¢ > 0, a« > 0,
Hite (M, N) = H{(K*(M), N).
‘We may dualize the above construction to obtain a second Z g-complex
(C(M, N), §), taking
Ci(Mv ZV) = HomS([\Zy L1<]l/l))y Si = 5L‘(1M)yN’ 1’ > Ov
and C'(M, N) = (0), 6 = 0 for i < 0. We shall denote the image of §~!
by Bi(M, N), and the cohomology groups of this complex by H(M, N).

These are again Zz-modules, determined up to Zg-isomorphism independently
of the choice of produced pair determined by M. We have

HY(M, N) = Homgx(N, M), H* (M, N) = H(L*(M), N)
for all 2 > 0, a > 0.

3. The isomorphism ¢. Let M and N be S-modules. There is a ZzM S,-
isomorphism ¢ of Homg(P (M), N) onto Hom g(M, I(N)) mapping

€ Homg(P(M), N)

onto f* = k,f*. The inverse 7 of ¢ maps g ¢ Hom (M, [(N)) onto g7 = g¥ey.
In fact, (kpfH)* = f*+, and hence f*7 = (kpfH)*exy = ftey = f, so that o7 = 1.
Dually, 7¢ = 1. In the case of the canonical-induced and -produced pairs, o is
the natural homomorphism of Hom (M ® sR,N) onto Hom s(M,Hom (R, M)).

Now assume that M and N are R-modules so that K(M) and L(N) are
defined. We then have a ZpM S,-isomorphism ¢ of Homg(K (M), N) onto
Homg(M, L(N)), mapping f € Homg(K (M), N) onto

f(; = [(1 - tMKM)f]Uﬂ'N-

Inverse to ¢ is 7 defined by

e‘fT = ﬂM(g)\N)T
for g € Homg (M, L(N)). Indeed,
fg)w = kn[(1 = tamar) 1 mady = sar[ (1 — takar) 1T (1 — enjn)
= KM[(I - tMKM)f]+ - KM(I - tMKM)ij = [(1 - tMKM)fla~
Hence
P77 =m0 = el (1 = tasa)) = f,
whence 67 = 1. Dually, 76 = 1.

3]t can easily be proved that Hi(R,S)(11[, N) is isomorphic with Exti(R,SX)(M' N) as defined
by Hochschild (8). When this is taken into consideration, the connection between the results
of §§2-7 of the present paper and (8) will be seen,
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We shall show that the diagram

Hom (MNJ22 Homg (KIMIN)

wHi(M,L(N»

is anti-commutative. If f ¢ Homg(M, N),

(1 = tyrar)f = (1 — takar)mad/™ = f* — tu).

Hence

o7 . ” .

f 7= (fJL - th)U"rN = f+UTAV - (lM_/)Gﬂ'AN
But

f*UWN = KM(f*)+7rN = KMf*jN"rN =0,
and 5
(t‘uf)aﬂ'zv = KM(th)JrTN = KMth+7rN = _/‘+7|'N = / .
IHence
’.66 _ _f6

Moreover, the diagram

Hom KON

~ N, K(M)
a- l \

HomS(M,UN)) — HomS(K(M),L(N»

SM,LIN)
is commutative. For, if f € Homg(K (M), N),
fd = KK(M)[(I - tK(M>KK(M))f]+7"N:
hence
(fa)* = [(1 = txankean)f) Ty
Thus

GO K s
fa = Mk () (fa)* = nxon((1 — tkonkcan)f] +7f:v

. )
= nxanl(1 = txankgao)f oy = ffry = 1,

proving the desired result.
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Applying these results to the complexes (C(M, N),s) and (C(N, M), 8)
we obtain an anti-commutative diagram
! 57 8 iy e
oS> CT M, N) > C(M,N)>C'(M,N)>C(M,N)— ...
| I ls 1é

5~1 0 ’

et ew, S ew S ew .
Consequently

THEOREM 1. ¢ induces a ZrM\ Sy isomorphism of H (M, N) onto H*(N, M)
for i > 0.

CoROLLARY. He (M, N)~H(M,L*(N)) and H+«(M,N)~ H*(M,K*(N))
Jor © > 0, a > 0, the isomorphisms being Z g M S,-isomor phisms.

4. Some special induced and produced pairs. To give explicit con-
structions for the cohomology groups introduced above one need only supply
particular induced and produced pairs, the canonical ones not always being
the most suitable. Thus, for example, suppose that B and A4 are rings, and let
T be a subring of 4 containing the identity element thereof. Let M be a
B’ ®@ T-module. Here the ’ indicates mirror image, and ® the tensor product
over the ring of the rational integers. A B’ @ T-module may be considered
as a left B-, and a right T-module, and we shall use corresponding notation
where convenient. The module M ® ; 4 becomes a B’ ® A-module when
we let b(u ® a) = bu ® @ and (u ® a)x = ax for b € B, u € M and a,
x € A, while Hom (4, M) becomes a B’ @ A-module when we let ’f(a) =
blf(a)] and f*(a) = f(xa) for b € B, f € Homs(4, M) and x, a € A. As may
be seen by verifying (I) and (P), combining these modules with the natural
homomorphisms M —- M @ r A and Hom (4, M) — M vyields respectively
a (BB® A, B ® T, x)-induced and produced pair determined by M, where
x is the natural homomorphism B’ @ T'— B’ ® A. If M isa B’ ® A-module,
K(M) and L(M) are the respective kernels of the natural homomorphisms
M®r:A — M and M — Hom (4, M).

Now let M be a B’ ® T-module, N a B’ ® A-module. Further, let U be a
subring of 7'M Z,, containing the identity element of A. The module
HomB/® U(M, N) attains the status of a 77 ® y A-module when we define

f(u) = f(ut) and f* (u) = f(u)x
for

f € Hom (M, N), t€1,x €.1,u ¢ M;

_ B'QU
let us denote it by ®(M, N). If M is a B® ® A-module we may replace ¢

above by y € A4, turning (M, N) into an 4’ ® y A-module. We shall outline
how one may prove*

4Combining Theorems | and 2 gives Theorem 2 of (8).
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THEOREM 2. If M and N are B' @ A-modules, then there exists a natural
Z y-1somorphism of
H’(B’®A, B’®'1‘)(M’ N) onto H . D)((b(M, N), .,
where C=A4" QuA,D =T Qv 4.

The first of the cohomology groups mentioned is a ZB/®‘_1—m()(lulc, the
second a Z-module, so it makes sense to speak of a Z 4-isomorphism between
them. The natural homomorphism 5: D — C is understood.

The main step in the proof consists in the construction of a suitable (C, D, n)-
induced pair for ®(M, N). To this end, consider the diagram

I OORY)

| N

OMN) <——H

IS

where (a) e is the D-homomorphism induced by «a: M — P(M), (P (M), k)
being a (B’ ® 4, B’ ® T, x)-produced pair determined by A, and (b) g
is a D-homomorphism of the C-module . If now g+ is a C-homomorphism
such that the diagram is commutative, then for & € H, u ¢ M, (h3)(ux,y) =
(hB) (u), hence for a € A4,

(hB8") (ursr.a) = "(hB") (ursr) = [(ah)B](n),
e,
4.1 (hBJr)(Z‘KJ!-a) = [(ah)B)(u).

On the other hand, we may verify that the formula 4.1 does indeed define a
C-homomorphism making the diagram commutative. Consequently the pair
(®(P (M), N), e is a (C, D, g)-induced pair for ®(I, N).

If Misa B’ ® A-module, ®(M, N) is a C-module, and the homomorphism
ty: P(M)— M induces the unique 4’ ® y A-homomorphism j: &(M, N) —
®(P(M), N) such that je = 1, as is seen by taking 8 = | and I = ®&(3/, N)
in 4.1. Consequently the sequence

0) — &M, N) L P (), N) L BE (M), N) — (0)
is exact, where v is induced by the injection K (M) — P(M). In the complex
for constructing the groups HY(®(M, N), A) f{rom the produced pair
(®(I(M), N), €) we may therefore identify L(®(M, N)) with &(K (M), N) and
the projection of ®(I(M), N) onto L(®(M, N)) with v.
The modules HomBr® 7(M, N) and Homp (4, & (M, N)) are in particular
Z (-modules, the first being a ZB’®A' and the second a Zs-module. The

https://doi.org/10.4153/CJM-1957-004-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1957-004-4

13
~1

RELATIVE COHOMOLOGY

natural isomorphism between them is a Z,-isomorphism. One may now
verify the commutativity of the diagram
HomB,® T(M, N) — Hom

! !

HomD(A, d(M, N)) _)HomD("l’ ®(K (M), N))

B'® T(K(M), N)

where (1) the arrows pointing down represent the natural isomorphisms,
(2) the top arrow represents 8, y, and (3) the bottom arrow represents the
product of

+: HomD(A, ®(M, N)) —»HomD(‘l, ®(P(M), N))
with the homomorphism of the second of these modules into
Homp(4, (K (M), N))
induced by y. Application of this fact to the appropriate complexes gives
Theorem 2.
5. Generic cocycles. Let 1/, N and X be R-modules, and let
f € Homg(K (M), N).

Then u,ig —gf for ¢ € Homg(X, K(M)) defines a Zx M S,-homomorphism
wrof Homg (X, K(M)) into Homg(X, N). If

f € HOmR(K(J\/[), N)

we see that u, is a Zg-homomorphism, and moreover, that the diagram

Homs(X, K(M)) XXM Homg(K (X), K (M))

1#r M
Homg(X, V) 6)5‘—>N Hom (K (X), NV)
i1s commutative. For then
0 o « ou
& = ne(gh* = nxgf = .

Application of this to the complexes (C(X, K(M)),8) and (C(X, N),$d)
proves that u, induces a Zg-homomorphism of H*(X, K(AM)) into H*(X, N)
for all & > 0. In particular:

If f € Homg(K* (M), N), u, induces a Zg-homomorphism of H*(M, K'(M))
into H*(M, N) foralla > 0, and u,: I' — f,where I'is the identity automorphism
of Ki(M).

We shall refer to the element I' ¢ Bi(M, Ki(M)) as the first generic i-cocycle
determined by M.

Dually, if

I € Homg(N, L(M)), N;g—J¢

defines a ZgrM Sy-homomorphism X\, of Homg(L (M), X) into Hom g(V, X),
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which is a Zg-homomorphism if f € Homg (N, L(M)). In the latter case, the
diagram

Hom s (L(M), X) X280 Hom o(L(M), L(X))
)\fl ] )"l
Homs(V,X) % Homg(V, L(X))
is commutative. Hence \; induces a Zz-homomorphism of H*(X, L(M)) into
H*(X, N), « > 0. In particular:

If f € Hom (N, L*(M)), \;induces a Z g-homomor phism of H*(N, L*(M)) into
(M, N) for all « > 0, and \;: J* — [, where J¢ is the identity automorphism
of L'(M).

We shall refer to the element J* € B*(), K'(M)) as the second generic
i-cocycle determined by M.

As a consequence of the above considerations we obtain

THEOREM 3. Ifiis a positive integer, and M is an R-module, then the following
conditrons imply each other.

(a) H'(M, N) = (0) for all R-modules N.

(b) HY(M, K{(M)) = (0).

(¢) I' € Bi(M, N).

(d) HH*(M, N) = (0) for all R-modules N and all a > 0.
The dual Theorem 3’ is obtained by replacing I with H, K with L, B with
B, and I with J.

6. Protractions and retractions.® Let A/ be an R-module. If I is an
R-module and ¢: M — I is an R-homomorphism, we shall call the pair
(I, ¢) and (R, .S)-protraction of M provided that there exists an S-homo-
morphism A: M — H such that A\¢ = 1. The kernel N = H(l — ¢\) of ¢
will be called the kernel of (H, ¢). Two (R, S)-protractions (Hi, ¢1) and
(Hs,, ¢2) of M with kernel N will be called R-isomorphic if there exists an
R-isomorphism u of H; onto H, such that ¢; = ugs.

Corresponding to an (R, S)-protraction of M with kernel N there is an
element fi € Homg(K (M), N) defined by

o= maN (1 — ¢N).

It can be seen that the correspondence (H, ¢) — fr induces a 1-1 mapping
of the set of classes of R-isomorphic (R, .S)-protractions of M with kernel
N onto II'(M, N), which becomes a group isomorphism when the Baer
composition is introduced into the set of classes of protractions.

The (R, S)-protraction (F, ¢) of M with kernel N is said to split if there
exists an R-homomorphism «: M — H such that a¢ = 1. Two R-isomorphic
protractions split, or do not, together. Let fA € Homgz(K (M), N) correspond

#The material of this section overlaps considerably with Cartan and Eilenberg (1, §6, Ch. 11),
as well as with Hochschild (8).
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to (H, ¢) as above. Then it is easy to see that each of the following conditions
is necessary and sufficient for (H, ¢) to split:

(a) there exists an R-submodule N* of H such that I = N @ N¥*,

(b) H~ N @ M as an R-module,

(c) fix € B(M, N).

The pair (I(M), ty) is an (R, .S)-protraction of M with kernel K (M), and
corresponds to the class of the first generic 1-cocycle

I'=7
Kar

An R-module M will be called (R, S)-projective if, whenever (H', ¢) is an
(R, S)-protraction of an R-module H and a: M — H is an R-homomorphism,
there exists an R-homomorphism &: M — H such that a« = a¢. From (2,
Theorem 6) Theorem 3, and the above remarks we conclude

THEOREM 4. Each of the following conditions is necessary and sufficient for
an R-module M to be (R, S)-projective.

(a) The (R, S)-protraction (P(M); ty) splits.

(b) Every (R, S)-protraction of M splits.

(¢c) H'(M, N) = (0) for all R-modules N.

If U is an S-module, the R-module P(U) is (R, S)-projective according to
(2, Theorem 3). Hence we have

CoroLLARY. If U is an S-module, H'(P(U), N) = (0) for all R-modules N
and all 1 > 0.

A pair (H,y) consisting of an R-module H and an R-homomorphism
v: M — H will be called an (R, S)-retraction of M with kernel N if there
exists an S-homomorphism u: H — M such that yu = 1, and if N is the
cokernel of ¢, N = H/My. This is the dual of the concept of (R, S)-protraction.
We define R-isomorphism between retractions by dualizing the corresponding
concept for protractions, and obtain a 1-1 correspondence between the set
of classes of isomorphic (R,.S)-retractions of M with cokernel N and the
elements of H'(M, N) (and hence of H'(N, M) by Theorem 1). The definition
of splitting for (R, S)-retractions is dual to that for protractions. Of course
there is a 1-1 correspondence between the set of (R, .S)-protractions of M
with kernel IV and the (R, .S)-retractions of N with cokernel N, such that a
protraction splits if and only if the corresponding retraction splits.

(P(M), 7)) is an (R, S)-retraction of M with cokernel L(M), and corre-
sponds to the class of the second generic 1-cocycle J'.

Dual to (R,.S)-projective modules we have (R, S)-injective modules, and
dual to Theorem 4 we have

THEOREM 4'. The following conditions
(a) The (R, S)-retraction (I(M), jy) of M splits.
(b) Ewery (R, S)-retraction of M splits.
(¢) HY (M, N) = (0) for all R-modules N.
are each necessary and sufficient for an R-module M to be (R, S)-injective.
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If U is an S-module, 7(U) is (R, S)-injective according to (2, Theorem 3’).
Consequently

COROLLARY. For every S-module U and every R-module N, H*(I (1)), N) = (0)
Jor all 1 > 0.

7. Cohomology dimension. If an R-module 3 is (R, S)-projective
linjective], then according to (2, Theorem 6) so is K(AM) [L(M)]. Under
certain circumstances the converse is true. We shall consider the hypothesis

(R, S; M) There exists an R-isomorphism wy of I(M) onto P(M).

If (R,S; M) holds, then M is (R, S)-projective if and only if it is (R, S)-
injective, as follows from (2, Theorems 6, 6').

THEOREM 5. Suppose that the hypothesis (R, S; K(M)) holds. Then K(M)
(R, S)-projective implies that M is (R, S)-projective.

Proof. 1f (R,S; K(M)) holds and K (M) is (R, .S)-projective then K (M)
is (R, S)-injective. Hence the (R, S)-retraction (P (M), 5,) of K(M) splits
by (2, Theorem 6’). Hence P(M)~ M ® K(M) as an R-module, so that M
is (R, S)-projective by (2, Theorem 6).

The dual Theorem 5’ is obtained by replacing K with L and projective
with injective.

It will be convenient to denote by d (.5 M the smallest integer ¢ > 0 such
that H*(M, N) = (0) for all R-modules N, if such an 7 exists, setting d. g
M = o otherwise. The dual dz s, M is defined by replacing I7 by H. By
Theorems 4, 4, d(z.sy M < 1 if and only if Ki=1(M) is (R, S)-projective, while
dig.sy M < if and only if L™=' (M) is (R, S)-injective. By Theorem 5, if
(R, S; K¥(M)) holds, then dr sy M <1+ 1 implies dz, sy M < i, while if
(R, S; L'(M)) holds, then dir.5y M < 7+ 1 implies dr s M < i.

The two conditions

(c.1) dr,sy M < 1 for all R-modules 1.

(¢".1) d.sy M < i for all R-modules M.
imply each other as we deduce at once from Theorem 1. We define class (R, S)
to be the minimum integer 7« > 0 such that (c.7) and (c’.7) hold if such
an 1 exists, letting class (R,S) = o otherwise. From the above we have

THEOREM 6. If the hypothesis (R, S; M) holds for every R-module M, (hen
class (R, S) < o« implies class (R, S) = 1.

The hypotheses of this theorem are satisfied if R is a self dual S-ring in the
sense of (2).

Now let us suppose that B, 4, T"and U are rings as in §4, and let 77 and N
be B’ ® A-modules. If

Yo B =<
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then I'(M)~ K'(M) @ K™*'(M) as a B ® A-module, according to Theorem
6 of (2). Consequently

®(['(M), N)~ &(K'(M), N) @@(K™*' (M), N)
as an 4’ ® y A-module, whence one concludes by the construction of §4 that
d
(

‘4I®U‘4’ TI®UA)(M7 ‘\’) < 1.

In particular, if M is (B’ ® A, B ® T)-projective then ®(M, N) is (4’ ®v4,
T’ ® y A)-injective (8, Lemma 2). Moreover, we conclude that

class(A'QuA, T'®uAd) = d 1

, A=d,, Y.
(A'®uvd, T'®uA) (A'®ud, T'QuA)
> class(B'® 4,B' ® T),
considering A in the natural way as an A’ @y A-module.
8. The ideals 3'(4/) and §i(M). The results of §5 can be refined as
follows. We shall denote by (M, N) [or S%r.sy (M, N)] the annihilator

of the Zg-module H!(M, N). Letting §*(M) denote the intersection over all
R-modules N of the ideals 3*(A, N) we have by §5 that

J'(M)

(M, K'(M))
{w € Zgltw € BY(M,K'(M))}.

It

Here {w denotes right operation by w; {w:u —uw for u € K{(M), w € Zg,
so that {w = I'*, Condition (a) of Theorem 3 is equivalent to the condition
that Y4 (M) = Zg. _

Dually, we define §*(M, N) to be the annihilator of the Zz-module
Hi(M, N), and /(M) to be the intersection over all R-modules N of these
ideals. Then _ _

JIUM) = J(M, LY(M))
= {w € Zgltw € BY(M, LI (M))}.
The condition dual to condition (a) of Theorem 3 is equivalent to the condition
that §¢(M) = Zp.

We have at once that for 7 > 0, « > 0,

(M, N) = FUKA(M), N), 3%, N) = TI(LI(M), V).
Moreover, by Theorem 1,
MM NS = F W, M) NS,

while the Corollary to Theorem 1 implies that

M) N S, S I, UMY NS, S TN

for i >0, a > 0. :
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Let (I, ¢) be an (R, .S)-protraction of the R-module M with kernel N
(§6). Then there exists an S-homomorphism \: M — H such that \¢ = 1,
and N = H(1 — ¢)\). The corresponding element fy € Homg(M, N) is defined

by fx = mA* (1 — o)),

PROPOSITION. If w € Zg, then fr* € B' (M, N) if and only if there exists
an R-homomorphism B: M — H such that B¢ = {w, where {w denotes right
operation on M by w.

Proof. Suppose that
N = g € Homg(M, N).
This means that 7, A*(1 — ¢N)¢w = nyg*. Then, if 5 is the injection N — [,
0 =[N0 — oN)fw — g In = nu[Nfw — g¥n)

Oar.v

= nu[No — gn]* = [\Nw — gn]
Consequently 8 = A\w — g is an element of Homg(M, H). Further, B¢ =

ANwp — gnd = {w.
Suppose on the other hand that there exists an R-homomorphism 8: M — I

such that 8¢ = {w. Since
7]Ml8* = nuB ity =0,
if welet y = \fw — B, we have
. )
(M) = mr (Ve — B%) = may™* = ¢V,
where ¢ = v({w — ¢v) is an element of Homg(M, N). Hence
f)\w _ gaﬂl,N.
There is the dual result for (R, S)-retractions of .

Application of this proposition to the (R, S)-protraction (P(M), t,) of M
gives (a) of the following theorem, (a’) being its dual.

THEOREM 7. If w € Zg, then
(a) w € IUM) if and only if there exists 3 ¢ Homg(M, P(M)) such that

Bty = (.

(@) w € SUM) if and only if there exists 8 € Homg(I(M), M) such that
jMB = {o.
Jr

M = pM
) o
] > |t

P
M o M
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Assuming hypothesis (R, S; M) of §7, namely, the existence of an R-iso-
morphism uy of I(M) onto P(M), we may construct the Casimir operators
as in (2). Thus, if o € Homg(M, M), c(a) = atuyty and ¢(a) = jyupa®
are elements of Hompg(M, M). We may call ¢ and ¢ the first and second
Casimir operators associated with M. They are of course dependent on u,,.

TuEOREM 8. If (R, S; M) holds, then an element w € Zy is contained in
' (M) if and only if there exists an S-endomorphism o of M such that c(a) = {w.

Proof. Suppose a is an S-endomorphism of M such that c(a) = ¢w. Then
B = atu, is an R-homomorphism of M into (M), and

Bty = atpsty = c(a) = (.

Hence w € 3'(M) by Theorem 7.

On the other hand, w € (M) implies by Theorem 7 the existence of an
R-homomorphism B: M — I(M) such that Bty = {w. Now a = Bu,le, is
an S-endomorphism of M such that

c(a) = o« par by = (Bl-‘l—lll eM)+l-¢M ty = Bt = {o.
The dual of Theorem 8 is obtained by replacing & by § and ¢ by é.
The condition (R, S; M) may be strengthened by demanding that ¢ = é.
Let us denote the resulting condition by (R, S; M)*. If R is a self-dual S-ring

in the sense of (2), (R,S; M)* holds for all R-modules M (2). Comparing
Theorem 8 and its dual we have

COROLLARY 1. If (R, S; M)* holds then (M) = S'(M).
We can also prove

COROLLARY 2. If (R, S; K(M))* holds then J*(M) NS, = JUMYN S,
while dually, if (R, S; L(M))* holds then J*(M) N S, = (M) N S,.

Proof. By Corollary 1, 3*(M) = (K (M)) = §'(K(M)). By Theorem
1 there exists a ZgM\ Sy-isomorphism of H!(K (M), M) onto H'(M, K (M)).
It follows that SUK(M)) NS, C UM, K(M)) = J'(M). Since
JUM) NSy, C I2(M), the corollary is proved.

The above results may b_f_: extended by using the recursion relations
JHte(M) = J'(K=(M)) and J*=(M) = F(L*(M)). Thus, for example, we
have by Corollary 2 that if (R, S; M)* holds for all R-modules M, then for
i>0,

M) N S, = F(M) N S,
and
) N S = )N S,

The methods of §4 mav be used to give further information concerning these

https://doi.org/10.4153/CJM-1957-004-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1957-004-4

34 D. G. HIGMAN

ideals in the case considered there. For example, if A/ is an 4’ ® y A-module
we find that

A)yNDycC g

3¢ ) ¢, )™

where the notation is that of §4.
To see how ideals of the kind considered here occur in the studv ol orders
in algebras, see (3) and (4).
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