THE HADAMARD THREE-CIRCLES THEOREMS FOR NONLINEAR EQUATIONS

R. VÝBORNÝ
(Received 11 September 1989)
Communicated by Brailey Sims

Abstract

The aim of this paper is is to establish Hadamard's type three-circles theorems for fully nonlinear elliptic and parabolic inequalities.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 35 B 50.

1. Introduction

The famous Hadamard three-circles theorem of function theory has been generalized to solutions of elliptic and parabolic equations and these generalizations have various applications; see [4] and [2], where further references can be found. The following sharpened version of the boundary point lemma was established in [6] as a consequence of the Hadamard three-circles theorem for subharmonic functions.

If u is a continuous subharmonic function which attains its maximum in a ball $B=\{x ;|x|<a\}$ at y with $|y|=a$ and if $M(r)=\sup \{u(x) ;|x|=r\}$ then $M_{-}^{\prime}(a)>0$ and

$$
\begin{equation*}
\lim \sup \frac{u(x)-u(y)}{|x-y|} \leq-M_{-}^{\prime}(a)<0, \tag{1}
\end{equation*}
$$

where x approaches y along the normal at y.
The author gratefully acknowledges support for this research from Istituto di Analisi Globale e Applicazioni and from Istituto Matematico "Ulisse Dini", Università degli Studi di Firenze. (C) 1990 Australian Mathematical Society 0263-6115/90\$A2.00 +0.00

As soon as Hadamard's three-circles theorem is established for a class of functions, then a maximum principle like (1) follows.

In this paper we prove Hadamard type theorems for the difference of two solutions to parabolic equations of the form

$$
\begin{equation*}
u_{t}=f\left(t, x, u, D u, D^{2} u\right) \tag{2}
\end{equation*}
$$

and for the corresponding elliptic equation, where $D u$ and $D^{2} u$ denote the gradient and the Hessian matrix of u, respectively. The boundary point lemma (1) can then be used in the usual way [4] to prove uniqueness of the second and third boundary value problem under very mild assumptions.

2. The theorems

The function f in (2) is said to be uniformly elliptic with respect to u with the constant κ (or just uniformly elliptic) if there exists a positive κ such that

$$
\begin{equation*}
f\left(t, x, u, D u, Q_{1}\right)-f\left(t, x, u, D u, Q_{2}\right) \geq \kappa \operatorname{Tr}\left(Q_{1}-Q_{2}\right) \tag{1}
\end{equation*}
$$

whenever $Q_{1}-Q_{2} \geq 0$ (that is, whenever $Q_{1}-Q_{2}$ is positive semidefinitive).
This definition of ellipticity has the advantage that it does not require any smoothness of f.

A function M is said to be a strictly convex function of z on $[a, b]$ if for all $r_{1}<r<r_{2},\left[r_{1}, r_{2}\right] \subset[a, b]$,

$$
M(r)<M\left(r_{1}\right) \frac{z\left(r_{2}\right)-z(r)}{z\left(r_{2}\right)-z\left(r_{1}\right)}+M\left(r_{2}\right) \frac{z(r)-z\left(r_{1}\right)}{z\left(r_{2}\right)-z\left(r_{1}\right)}
$$

In what follows $|\mid$ denotes the Euclidean norm of a vector or a matrix and

$$
A=\left\{x ; 0<R_{1}<|x|<R_{2}\right\}
$$

Theorem 1 (elliptic case). Given L, κ, n there exists a function $z:\left[R_{1}\right.$, $\left.R_{2}\right] \rightarrow \mathbb{R}$ such that if
(i) u and v belong to $C^{2}(A) \cap C(\bar{A})$,
(ii) $u \geq v$ in A,
(iii) $f\left(x, u(x), D u(x), D^{2} u(x)\right) \geq f\left(x, v(x), D v(x), D^{2} v(x)\right)$ for $x \in$ A,
(iv) $f(x, \cdot, p, Q)$ is decreasing for $x \in A, p \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n^{2}}$,
(v) $M(r)=\operatorname{Max}\{u(x)-v(x) ;|x|=r\}, M$ is strictly increasing in [R_{1}, R_{2}],
(vi) $|f(x, y, p, Q)-f(x, y, \bar{p}, \bar{Q})| \leq L(|p-\bar{p}|+|Q-\bar{Q}|)$ for $x \in A$, $y \in \mathbb{R}^{n}, p \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n^{2}}, \bar{p} \in \mathbb{R}^{n}, \bar{Q} \in \mathbb{R}^{n^{2}}$,
(vii) f is uniformly elliptic with respect to u with the constant κ, then M is a strictly convex function of z.

Remark 1. If inequality (iii) is satisfied in B rather than in A and if the strong maximum applies then M is strictly increasing. Strong maximum principles for nonlinear elliptic and parabolic equations and inequalities were established in [1], [3], [5] and [7]. Generally, (v) is an extra assumption; however this assumption is also needed in the linear case. A similar theorem holds if M is strictly decreasing. If (v) does not hold, one must consider intervals where M decreases or increases separately.

Remark 2. If f is independent of u then (ii) is superfluous.
Remark 3. If one considers a linear differential operator

$$
L u=\sum_{i, j=1}^{n} a_{i j} D_{i j} u+b_{i} D_{i} u+c u
$$

instead of f, the assumption (iv) corresponds to $c \leq 0$.
Remark 4. If f does not contain the mixed second order derivatives of u then the assumption $u \in C^{2}(A)$ can be weakened to the mere existence of the pure second order derivatives.

For the proof we shall use the following.

Lemma. Let M and z be strictly increasing on $[a, b]$. Then M is a strictly convex function of z if and only if the following condition is satisfied:
for every $\gamma>0$ and every interval $[\alpha, \beta] \subset[a, b]$ the function $r \rightarrow M(r)-\gamma z(r)$ attains its maximum either at α or at β.

We omit the fairly straightforward proof of the lemma.
Proof of Theorem 1. We choose z such that

$$
z^{\prime \prime}(t)+\frac{L}{\kappa}\left(1+\frac{2 n}{t}\right) z^{\prime}(t)=0
$$

and $z^{\prime}(t)$ positive for positive t. Let us now assume, contrary to what we want to prove, that $M-\gamma z$ attains its maximum over $[\alpha, \beta] \subset\left[R_{1}, R_{2}\right]$ in (α, β) for some positive γ. Then the function $w: x \rightarrow u(x)-v(x)-\gamma z(|x|)$ attains its maximum over $\{x ; \alpha \leq|x| \leq \beta\}$ at an interior point \bar{x}. At \bar{x}
we have $D w=0$, that is, $D u-D v=\gamma D z$, and $D^{2} w \leq 0$. Further

$$
\begin{aligned}
& 0 \leq f\left(\bar{x}, u(\bar{x}), D u(\bar{x}), D^{2} u(\bar{x})\right)-f\left(\bar{x}, v(\bar{x}), D v(\bar{x}), D^{2} v(\bar{x})\right) \\
& \leq f\left(\bar{x}, u(\bar{x}), D u(\bar{x}), D^{2} w(\bar{x})+\gamma z^{\prime \prime}(|\bar{x}|) \frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{2}}\right. \\
& \left.+D^{2} v(\bar{x})+\gamma z^{\prime}(|\bar{x}|)\left(\frac{\delta_{i j}}{|\bar{x}|}-\frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{3}}\right)\right)
\end{aligned}
$$

$$
-f\left(x, v(\bar{x}), D v(\bar{x}), D^{2} v(\bar{x})\right)
$$

$$
\leq f\left(\bar{x}, u(\bar{x}), D u(\bar{x}), D^{2} w(\bar{x})+\gamma z^{\prime \prime}(|\bar{x}|) \frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{2}}\right.
$$

$$
\left.+D^{2} v(\bar{x})+\gamma z^{\prime}(|\bar{x}|)\left(\frac{\delta_{i j}}{|\bar{x}|}-\frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{3}}\right)\right)
$$

$$
-f\left(\bar{x}, u(\bar{x}), D u(\bar{x}), D^{2} v(\bar{x})+\gamma z^{\prime}(|\bar{x}|)\left(\frac{\delta_{i j}}{|\bar{x}|}-\frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{3}}\right)\right)
$$

$$
+f\left(\bar{x}, u(\bar{x}), D u(\bar{x}), D^{2} v(\bar{x})+\gamma z^{\prime}(\bar{x})\left(\frac{\delta_{i j}}{|\bar{x}|}-\frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{3}}\right)\right)
$$

$$
-f\left(\bar{x}, v(\bar{x}), D v(\bar{x}), D^{2} v(\bar{x})\right)
$$

$$
\leq \kappa \sum_{i=1}^{n}\left(D_{i i} w(\bar{x})+\gamma z^{\prime \prime}(|\bar{x}|) \frac{\bar{x}_{i} \bar{x}_{j}}{|\bar{x}|^{2}}\right)
$$

$$
+L\left\{|D u(\bar{x})-D v(\bar{x})|+\gamma z^{\prime}(|\bar{x}|)\left(\frac{\sqrt{n}}{|\bar{x}|}+\frac{n}{|\bar{x}|}\right)\right\}
$$

$$
<\gamma\left\{\kappa z^{\prime \prime}(|\bar{x}|)+L z^{\prime}(|\bar{x}|)+\frac{2 n L}{|\bar{x}|} z^{\prime}(|\bar{x}|)\right\}=0 .
$$

This contradiction completes the proof.
A similar theorem holds for parabolic inequalities; however the function M must be modified. For u, v defined on \bar{S} with $S=A \times(0, T]$ let

$$
\begin{align*}
& M_{1}=\operatorname{Max}\{u(x, 0)-v(x, 0), x \in \bar{A}\}, \\
& M_{2}(r)=\operatorname{Max}\{u(x, t)-v(x, t) ;|x|=r, 0 \leq t \leq T\}, \quad \text { and } \tag{4}\\
& M(r)=\operatorname{Max}\left(M_{1}, M_{2}(r)\right) .
\end{align*}
$$

Theorem 2 (parabolic case). Given L, κ, n there exists a function z such that if
(i) u and v have continuous second order partial derivatives with respect to the variables x_{i}, continuous derivative with respect to t in S and are continuous in \bar{S},
(ii) $u \geq v$ in S,
(iii)

$$
\begin{aligned}
& f\left(t, x, u(t, x), D u(t, x), D^{2} u(t, x)\right)-u_{t} \\
& \quad \geq f\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x)\right)-v_{t} \\
&
\end{aligned}
$$

(iv) $f(t, x, \cdot, p, Q)$ is decreasing for $(t, x) \in S, p \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n^{2}}$,
(v) M defined in (4) is strictly increasing,
(vi) $|f(t, x, y, p, Q)-f(t, x, y, \bar{p}, \bar{Q})| \leq L(|p-\bar{p}|+\mid Q-\bar{Q})$ for $(t, x) \in S, y \in \mathbb{R}, p \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n^{2}}, \bar{p} \in \mathbb{R}^{n}, \bar{Q} \in \mathbb{R}^{n^{2}}$,
(vii) f is uniformly elliptic with respect to u with the constant κ,
then M is a strictly convex function of z.
We sketch the proof insofar as it differs from the proof of Theorem 1. We proceed again indirectly and assume that $M-\gamma z$ attains its maximum over $[\alpha, \beta]$ at some interior point (\bar{t}, \bar{x}) and that this maximum is larger than the values at the end-points. First we rule out the possibility $\bar{t}=0$ indirectly. Clearly $u(\bar{t}, \bar{x})-v(\bar{t}, \bar{x})=u(0, \bar{x})-v(0, \bar{x}) \leq M_{1}$ and also $u(0, \bar{x})-v(0, \bar{x})=M(\bar{r}) \geq M_{1}$, and consequently $u(0, \bar{x})-v(0, \bar{x})=M_{1}$.

Now we have

$$
\begin{aligned}
M(\bar{r})-\gamma z(\bar{r}) & =u(0, \bar{r})-v(0, \bar{r})-\gamma z(\bar{r}) \\
& =M_{1}-\gamma z(\bar{r})<M_{1}-\gamma z(\alpha) \leq M(\alpha)-\gamma z(\alpha),
\end{aligned}
$$

a contradiction. Hence $\bar{t}>0$. We now follow the pattern of the proof of Theorem 1.

$$
\begin{align*}
0 \leq & f\left(\bar{t}, \bar{x}, u(\bar{t}, \bar{x}), D u(\bar{t}, \bar{x}), D^{2} u(\bar{t}, \bar{x})\right)-u_{t}(\bar{t}, \bar{x}) \tag{5}\\
& \left.-f(\bar{t}, \bar{x}, v(\bar{t}, \bar{x}), \operatorname{Dv(} \bar{t}, \bar{x}), D^{2} v(\bar{t}, \bar{x})\right)+v_{t}(\bar{t}, \bar{x}) .
\end{align*}
$$

The term $v_{t}(\bar{t}, \bar{x})-u_{t}(\bar{t}, \bar{x}) \leq 0$ (because $u-v-\gamma z$ has a maximum at (\bar{t}, \bar{x})) and consequently $v_{t}-u_{t}$ can be omitted in (5) and the rest is similar to the proof of Theorem 1 .

References

[1] P. Besala, 'An extension of the strong maximum principle for parabolic equations,' Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1003-1006.
[2] M. A. Dow, 'Three-curves theorems for quasilinear inequalities', Duke Math. J. 41 (1974), 473-482.
[3] N. V. Krylov, 'On the maximum principle for nonlinear parabolic and elliptic equations', Math. USSR-Izv. 13 (1979), 335-347.
[4] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, (Prentice-Hall, Englewood Cliffs, New Jersey, 1967).
[5] J. Szarski, 'Strong maximum principle for nonlinear parabolic differential-functional inequalities', Ann. Polon. Math. 29 (1974), 207-214.
[6] R. Výborný, 'Hadamard's three-circles theorems for a quasilinear elliptic equation’, Bull. Amer. Math. Soc. 80 (1974), 81-84.
[7] W. Walter, Differential and integral inequalities, (Springer-Verlag, Berlin, Heidelberg, New York, 1970).

15 Rialanna
Kenmore
Queensland 4069
Australia

