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A DETERMINANT FOR RECTANGULAR MATRICES

V.N. JOSHI

The familiar notion of the determinant is generalised to include

rectangular matrices. An expression for a normalised generalised

inverse of a matrix is given in terms of its determinant and a

possible generalisation of the Schur complement is discussed as a

simple application.

1. Introduction

The well known concept of the determinant has been defined to cover

square matrices alone. This concept is very intimately related to the

concept of inversion of square nonsingular matrices in the sense that

square matrices which have nonvanishing determinant can be inverted. In

extending the idea of inversion to cover rectangular matrices [6], the need

to generalise the concept of the determinant was not felt as a number of

methods devised to compute the inverse did not use any determinants

whatsoever. It is felt by the author that many of the identities from

Linear Algebra can be generalised and be used in, say, the theory of

permanants and its evaluation [4], Certain results in respect of this will

be communicated for publication elsewhere.

It is shown [6] that for an m * n real matrix A , there exists a

unique n x m matrix X = A which satisfies the following conditions:

(1.1) AXA = A ,

(1.2) MX = X ,

(1.3) UX)T = AX ,
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(1.10 (XA)T = XA .

The matrix A is known as the Moore-Penrose generalised inverse of A .

For some purposes, however, matrices which satisfy fewer than all of the

above conditions are of interest. A matrix which satisfies the condition

(l.l) is called a generalised inverse A *' of A . A matrix satisfying

conditions (l.l)-(l.2) is called a reflexive generalised inverse A of

A . A matrix which satisfies the conditions (l.l)-(l.2) and (l.3)/(l.10 is

known as a right/left normalised generalised inverse A of A . Each

class of inverses mentioned above is nonempty; in fact

A+ € {AM}d {AM}<z

The Moore-Penrose generalised inverse A of A is primarily important

because of its uniqueness [6]. The other types of inverses are, however,

required in many applications [?, 7, S, 9].

2. A determinant \A \

Let J be the set of integers {l , 2, . . . , n} . Let the integers

m, K , ..., K be such tha t

( i ) m 5 n ,

( i i ) K . € J for a l l i i J and p = 1, 2, . . . ,
"pi* Yl TTl

( i i i ) KpX<K
P2< ••• <Kpm-

For an integer d , 1 2 d 5 (n-m+l) , define a set S, such that

If N, = n~C , , then the cardinal number of 5, is tf, . The sets
a m-1 a a

S, , 1 £ <i 5 «-m+l , will be ordered as follows. A set S < S whenever

u < v . Moreover, the elements e and e will be placed in the order

e < e whenever K < K for all s = 2, 3, ..., m . All the
p q ps qs

m-tuples, therefore, admit of the following order; namely,
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Consider a r ea l matrix A = [a. .) of order m x n , m £ n . Let A

be a submatrix of order m * m of /4 whose columns conform to the

ordering of integers in e , 1 £ d £ (n-m+l) , 1 £ p £ tf, .

DEFINITION 2 .1 . For an m * n , m £ n , matrix A with rea l

elements, l e t A be defined as above, then the number

Nn-m+l d ,
(2.1) I I det/

d=l p=i p

will be defined as the determinant of A , and will be denoted by \A\ .

DEFINITION 2.2. For an m x n , m > n , matrix A with real
11 1 T\ T

elements, \A\ will be defined as |A | , where A denotes the
transposed matrix of A .

LEMMA. (1) jf m = x , then \A\ = a + a + ... + a .

(2) If m = n , then \A\ = det i4 = det A^ .

(3) If any rou of A is multiplied by c , then \A\ is multiplied

by 0 .

(k) If any two rows of A are identical, then \A\ = 0 .

(5) If any row of A is a linear combination of the remaining vows

of A •, -then \A\ = 0 .

(6) If any two rows of A are interchanged, then \A\ is multiplied

by -1 .

Proof. For m = 1 , N, = 1 and 1 £ d £ n . In view of Definition

2.1, (1) now follows. If m = n , then d = 1 = N, and A = A ; from

this it follows that \A\ = det A . If the ith row of A is multiplied

by c , then the tth row of the submatrix A for every value of d and

p will be multiplied by O , in which case det A will be multiplied by

https://doi.org/10.1017/S0004972700011369 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011369


140 V.N. Josh i

c . From this (3) follows. The proof of (k), (5), (6) follows on the same

lines by noting the corresponding properties of A for every value of p

and d .

The det A contains m\ terms each of which corresponds to a

permutation of e . More precisely, each term of det A is a product of

m elements of A taken from its each row and column once only with

positive or negative sign attached to it according as the permutation of

, n-m+1
e is even or odd. Since UI contains m\ x nc = m\ x T N, = np
P m J?2_ m

terms in all with each one containing the entries from different rows and

different columns of A , we can define \A\ equivalently as follows:

DEFINITION 2.3. Let A be a real matrix of order m x n , m 5 n ;

then

I* I = £ ( - l } a i t ± ••• a m t m

where £ ranges over all the permutations of integers t., , t taken

m at a time from J and h is defined as the number of inversions
n

required to bring t, ..., t to its natural order.

EXAMPLE 2.1. Find the determinant of A , where

A =

1 2 - 1 1

2 1 1 0

1 3 2 1

Solution. Since m = 3 and n = k , d = 1 or 2 and N = 3 and

N = 1 . The sets 5 and S contain the following elements, namely,

S± = {(1, 2, 3), (1, 2, k), (1, 3, 1*)} , S2 = {(2, 3, k)} . In view of

Definition 2.1, therefore,
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\A\ =

1 2 - 1

2 1 1

1 3 2

+

1

2

1

2

1

3

1

0

1

+

1

2

1

- 1

1

2

1

0

1

+

2 - 1

1 1

3 2

= - 1 2 + 2 + 6 + 2 = - 2

3. Cofactors and expansion of \A\

In view of Definition 2.3 of j ̂4 j , it is clear that \A\ is a linear

and homogeneous function of the entries in the ith row of A . If C..
•z-J

denotes the coefficient of a. . , j = 1, ..., n , then we get the

expression

(3.1) \A\ = a. C. + ... + a. C. .

The coefficient C.. of a., in (3.1) is called the cofactor of a.. .
**3 1*3 1*3

Let E, F, G and E be the submatrices of A of the order

(i-l) x (j-i), (i-l) x (n-j), {m-i) x (n-j) and (m-i) x (j-i)

respectively such that

E I F

A = a ith row;

E I G

jth column

then the determinant of the submatrix

E -F

-E G

of the order (w-l) x (n-l) corresponds to the cofactor of a.. .

Alternately we have

(3.3) Ci;j = \Mid\ .

Using (3.l)-(3.3) we can evaluate \A\ in terms of the determinants of

lower order. This is illustrated in the following example.

EXAMPLE 3.1. For the matrix A of Example 2.1, find \A\ using the

cofactors of the second row.

(3.2) M. . =
1-3
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Solution. We have \A\ = 2C2± + 1C^ + 1C23 + OC1^ , where C^ ,C2± + 1C^ + 1C23

j = 1 , . . . , h are the following determinants:

^

21

"22

-2 1 -1

1 1 - 1
- 1 2 1

= -2 | (2 1 ) | + l | ( - 3 1 ) | - l | ( - 3 - 2 ) |

= -2(2+1) + l ( -3+l) - l ( -3-2) = -3 ,

= l | ( 2 1 ) | + l | ( l 1 ) | - l | ( l - 2 ) |

= 1(2+1) + 1(1+1) - 1(1-2) = 6 .

Similarly C = -2 and C ̂  = -11 , which yields \A\ = -2 . Note that

we have used the cofactors of the first row of M. . to evaluate C. . in
13 13

terms of the determinant of row vectors according to (l) of the lemma.

4. Normalised generalised inverse of A

We recall that for an m x n matrix A , the class of m x n

matrices B satisfying the conditions

ABA = A , BAB = B and AB or BA symmetric,

is not empty. In spite of the fact that such a matrix B is not unique,

it is required in statistics for many estimation purposes [/, 7, 8, 9]. In

what follows, we shall present a realisation of such a B in terms of the

cofactors of elements of A whenever \A | ?t 0 . In view of (3.1) and (h)

of the lemma, it is easy to see that

n
Y, a. .C-, . = & . \A\
3=1

Let C = (C. .) , be the m x n matrix whose elements, C. . , are thec
13

cofactors of

13

a. . . If C = R = [r. .) , then r . . = C. . .
13 13 13 13a. .
13

. .)
13

AR = [a. .) [r. .) =
*• 1 ->> V 1 . 1 '13'v 13' k=l

13

n

C. .
13

Now,

= \A\I
mxm

From this i t follows that for \A\ # 0 , the matrix

(U.2) B = R/\A\
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is a normalised generalised inverse of A . For the matrix A of
Example 2.1, we find that the B , as defined above, is given by

( l -3 l\
-1* ° -2
2 -2 0
7 -11 3 .

The expression (U.2) breaks down when \A| = 0 . In the next theorem

we give a necessary and sufficient condition for matrix A to be rank

deficient in which case \A\ = 0 .

THEOREM 4.1. A necessary and sufficient condition for an m x n ,

m S n , matrix A to be rank deficient is that for all

d = 1, ..., (n-m+l) and p = 1, ..., N-, , det A = 0 .

Proof. Let r < m £ n be the rank of A . This implies that r

rows of A are linearly independent and form a basis for the row-space of

A . The remaining (m-r) rows can be expressed as linear combinations of

r rows. For every value of d = 1, ..., (n-m+l) and p = 1, ..., N, ,

therefore, A contains at least (m-r) rows as linear combinations of

r rows. Since r < m , it follows that det A = 0 . Conversely, if

det A = 0 for every value of d and p , the column rank of A will be
P F P

smaller than m . This implies that the column space of il is spanned by

a basis containing less than m columns of A . In other words, A is

column rank deficient matrix. Since the column rank of a matrix is the

same as its row rank, the result now follows.

COROLLARY 4.1.1. A necessary and sufficient condition for an

m x n , m 5 n , matrix A to be of full row rank is that det A is not

zero for at least one value of p and d .

COROLLARY 4.1.2. A necessary and sufficient condition for a square

matrix A to be of full rank is that det A t 0 .

5. Schur complement

Let A be an m x n , m S n , matrix partitioned as
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A =
11

22.

where A is an v x v nonsingular principal submatrix of A . The

Schur complement of A in A , denoted by [A/A ) , is defined as the

matrix

A - A A A
22 ^21 11 12 '

D e f i n e t = ~ C and fo r I S p < i , c o n s t r u c t 1 x t m a t r i x
v m—v T v

B = [b ) , where b = d e t A . We s h a l l show t h a t

(5.D \B\ = det A
11

The matrix A can be written as

A =
A A~ T

21 11 1m-r

11

0

12

—A
2 A

A A
1

say, where the matrices P and are of order m x m and m x n

respectively. Let 5 c S which contains the elements e for

1 - p - t . In view of the order relation introduced amongst the elements

e in Section 2, we now note that the first r entries in e belonging

to S are the integers 1, 2, ..., r in that order. If the last {m-r)

entries of such e are denoted by e , then we can write

e~ = 1, ..., r, e\\ , 1 2 p < t Now we have
P I P°> r

= det A1 = det
P

= det P det Q1
Pi P

= det Q = det Jpe

Hence
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\B\ = iet A,. &et[A/A.,)l = det A £ &et[A/A )X

1 1 <•' I V p c

= det A.,\[A/A.A\ .

11 L* *• ' 1 1 >pc
p=l F

11 11

The l a s t step has followed from Definition 2 .3 .

If m = n , then £ = 1 and, in view of (2) of the lemma, equation

(5.1) reduces to det A = det A det[A/A ) . This r e su l t has been proved

in [2, 3] .
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