
Introduction 1
1.1 What Is Machine Learning? . . 1
1.2 Basic Concepts in Machine Learn-
ing 4

1.3 General Principles in Machine
Learning 11

1.4 Advanced Topics in Machine
Learning 15

Exercises 18

This first chapter briefly reviews how the field of machine learning has
evolved into a major discipline in computer science and engineering in
the past decades. Afterward, it takes a descriptive approach and provides
some simple examples to introduce basic concepts and general principles
in machine learning to give readers a big picture of machine learning, as
well as some general expectations on the topics that will be covered in this
book. Finally, this introductory chapter concludes with a list of advanced
topics in machine learning, which are currently pursued as active research
topics in the machine learning community.

1.1 What Is Machine Learning?

The term artificial intelligence (AI) was coined
at a workshop at Dartmouth College in
1956 by John McCarthy, who was an MIT
computer scientist and a founder of the
AI field.

Since its inception several decades ago, the digital computer has constantly
amazed us with its unprecedented capability for computation and data
storage. On the other hand, people are also extremely interested in investi-
gating the limits on what a computer is able to do beyond the basic skills
of computing and storing. The most interesting question along this line is
whether the human-made machinery of digital computers can perform
complex tasks that normally require human intelligence. For example,
can computers be taught to play complex board games like chess and Go,
transcribe and understand human speech, translate text documents from
one language to another, and autonomously operate cars? These research
pursuits have been normally categorized as a broad discipline in com-
puter science and engineering under the umbrella of artificial intelligence
(AI). However, artificial intelligence is a loosely defined term and is used
colloquially to describe computers that mimic cognitive functions associ-
ated with the human mind, such as learning, perception, reasoning, and
problem solving [207]. Traditionally, we tended to follow the same idea of
computer programming to tackle an AI task because it was believed that
we could write a large program to teach a computer to accomplish any
complex task. Roughly speaking, such a program is essentially composed
of a large number of "if-then" statements that are used to instruct the
computer to take certain actions under certain conditions. These if-then
statements are often called rules. All rules in an AI system are collectively
called a knowledge base because they are often handcrafted based on the
knowledge of human experts. Furthermore, some mathematical tools,
such as logic and graphs, can also be adopted into some AI systems as

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

2 1 Introduction

more advanced methods for knowledge representation. Once the knowl-
edge base is established, some well-known search strategies can be used
to explore all available rules in the knowledge base to make decisions
for each observation. These methods are often called symbolic approaches
[207]. Symbolic approaches were dominant in the early stage of AI because
mathematically sound inference algorithms can be used to derive some
highly explainable results through a transparent decision process, such as
the expert systems popular in the 1970s and 1980s [110].

The key to the success of these knowledge-based (or rule-based) symbolic
approaches lies in how to construct all necessary rules in the knowledge
base. Unfortunately, this has turned out to be an insurmountable obstacle
for any realistic task. First of all, the process of explicitly articulating hu-
man knowledge using some well-formulated rules is not straightforward.
For example, when you see a picture of a cat, you can immediately rec-
ognize a cat, but it is difficult to express what rules you might have used
to make your judgment. Second, the real world is often so complicated
that it requires using an endless number of rules to cover all the different
conditions in any realistic scenario. Constructing these rules manually is
a tedious and daunting task. Third, even worse, as the number of rules
increases in the knowledge base, it becomes impossible to maintain them.
For example, some rules may contradict each other under some conditions,
and we often have no good ways to detect these contradictions in a large
knowledge base. Moreover, whenever we need to make an adjustment to a
particular rule, this change may affect many other rules, which are not easy
to identify as well. Fourth, rule-based symbolic systems do not know how
to make decisions based on partial information and often fail to handle
uncertainty in the decision-making process. As we know, neither partial
information nor uncertainty is a major hurdle in human intelligence.

The term machine learning was first coined
in a 1959 paper [212] by Arthur Samuel,
who was an IBM researcher and pioneer
in the field of AI.

On the other hand, an alternative approach toward AI is to design learning
algorithms by which computers can automatically improve their capabil-
ity on any particular AI task through experience [165]. The past experience
is fed to a learning algorithm as the so-called "training data" for the al-
gorithm to learn from. The design of these learning algorithms has been
motivated by different strategies, from biologically inspired learning ma-
chines [200, 206, 205] to probability-based statistical learning methods
[56, 9, 112, 38]. Since the 1980s, the study of these automatic learning
algorithms has quickly emerged as a prominent subfield in AI, under the
name machine learning. The nature of automatic learning prevents machine
learning from suffering the aforementioned drawbacks of the symbolic
approaches. As opposed to the knowledge-based symbolic approaches,
data-driven machine learning algorithms focus more on how to automat-
ically exploit the training data to build some mathematical models in
order to make decisions without having explicit programming to do so
[212]. With the help of machine learning algorithms, the major burden in

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.1 Machine Learning 3

building an AI system has moved from the extremely challenging task
of manual knowledge representation to a relatively feasible procedure of
data collection. After initial success in some real-world AI applications
during the 1970s and 1980s (e.g., speech recognition [9, 112] and machine
translation [38]), a major paradigm shift occurred in the field of artificial
intelligence—namely, the data-driven machine learning methods have
replaced the traditional rule-based symbolic approaches to become the
mainstream methodology for AI. As the computation power of modern
computers constantly improves, machine learning has found a plethora of
relevant applications in almost all engineering domains and has made a
huge impact on our society.

Figure 1.1: An illustration of the pipeline
of building a machine learning system,
consisting of three major steps of data
collection, feature generation, and model
training.

A recent trend in machine learning is to re-
place the handcrafted features with some
automatic feature extraction algorithms.
The recent end-to-end learning tends to com-
bine the last two steps of feature extrac-
tion and modeling into a single uniform
module that can be jointly learned from
the training data. We will discuss the end-
to-end learning in Section 8.5.

As shown in Figure 1.1, the pipeline of building a successful machine
learning system normally consists of three key steps. In the first stage, we
need to collect a sufficient amount of training data to represent the previ-
ous experience from which computers can learn. Ideally, the training data
should be collected under the same conditions in which the system will
be eventually deployed. The data collected in this way are often called in-
domain data. Many learning algorithms also require human annotators to
manually label the data in such a way to facilitate the learning algorithms.
As a result, it is a fairly costly process to collect in-domain training data
in practice. However, the final performance of a machine learning system
in any practical task is largely determined by the amount of available in-
domain training data. In most cases, accessing more in-domain data is the
most effective way to boost performance for any real-world application.
In the second stage, we usually need to apply some domain-specific pro-
cedures to extract the so-called features out of the raw data. The features
should be compact but also retain the most important information in the
raw data. The feature-extraction procedures need to be manually designed
based on the nature of the data and the domain knowledge, and they often
vary from one domain to another. For example, a good feature to represent
speech signals should be derived based on our understanding of speech
itself, and it should drastically differ from a good feature to represent an
image. In the final stage, we choose a learning algorithm to build some
mathematical models from the extracted feature representations of the
training data. The machine learning research in the past few decades has
provided us with a wide range of choices in terms of which learning algo-
rithms to use and which models to build. The main purpose of this book is
to introduce different choices of machine learning methods in a systematic
way. Most of these learning methods are generic enough for a variety of

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

4 1 Introduction

machine learning
input output

Figure 1.2: A system view of any machine
learning problem.

problems and applications, and they are usually independent of domain
knowledge. Therefore, most learning methods and their corresponding
models can be introduced in a general manner without restricting their
use to any particular application.

1.2 Basic Concepts in Machine Learning

In this section, we will use some simple examples to explain some common
terminology, as well as several basic concepts widely used in machine
learning.

Generally speaking, it is useful to take the system view of input and out-
put to examine any machine learning problem, as shown in Figure 1.2. For
any machine learning problem at hand, it is important to understand what
its input and output are, respectively. For example, in a speech-recognition
problem, the system’s input is speech signals captured by a microphone,
and the output is the words/sentences embedded in the signals. In an
English-to-French machine translation problem, the input is a text docu-
ment in English, and the output is the corresponding French translation.
In a self-driving problem, the input is the videos and signals of the sur-
rounding scenes of the car, captured by cameras and various sensors, and
the output is the control signals generated to guide the steering wheel and
brakes.

The system view in Figure 1.2 can also help us explain several popular
machine learning terminologies.

1.2.1 Classification versus Regression

Depending on the type of the system outputs, machine learning prob-
lems can be broken down into two major categories. If the output is
continuous—namely, it can take any real value within an interval—it is a
regression problem. On the other hand, if the output is discrete—namely,
it can only take a value out of a finite number of predefined choices—it
is said to be a classification problem. For instance, speech recognition is
a classification problem because the output must be constructed using a
finite number of words allowed in the language. On the other hand, image
generation is a regression problem because the pixels of an output image
can take any arbitrary values. It is fundamentally similar in principle to
solve classification and regression problems, but they often need slightly
different treatments in problem formulation.

In some machine learning problems, the
outputs are structured objects. These prob-
lems are referred to as structured learning
(a.k.a. structured prediction) [10]. Some ex-
amples are when the output is a binary
tree or a sentence following certain gram-
mar rules.

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.2 Basic Concepts 5

1.2.2 Supervised versus Unsupervised Learning

As we know, all machine learning methods require collecting training
data in the first place. Supervised learning deals with those problems where
both the input and output shown in Figure 1.2 can be accessed in data
collection. In other words, the training data in supervised learning consist
of input–output pairs. For each input in the training data, we know its
corresponding output, which can be used to guide learning algorithms
as a supervision signal. Supervised learning methods are well studied in
machine learning and usually guarantee good performance, as long as
sufficient numbers of input–output pairs are available. However, collecting
the input–output pairs for supervised learning often requires human
annotation, which may be expensive in practice.

In contrast, unsupervised learning methods deal with the problems where
we can only access the input shown in Figure 1.2 when collecting the
training data. A good unsupervised learning algorithm should be able to
figure out some criteria to group similar inputs together using only the
information of all possible inputs, where two inputs are said to be similar
only when they are expected to yield the same output label. The funda-
mental difficulty in unsupervised learning lies in how to know which
inputs are similar when their output labels are unavailable. Unsupervised
learning is a much harder problem because of the lack of supervision infor-
mation. In unsupervised learning, it is usually cheaper to collect training
data because it does not require extra human efforts to label each input
with the corresponding output. However, unsupervised learning largely
remains an open problem in machine learning. We desperately need good
unsupervised learning strategies that can effectively learn from unlabeled
data.

In many circumstances, unsupervised learn-
ing is also called clustering [66].

In between these two extremes, we can combine a small amount of labeled
data with a large amount of unlabeled data during training. These learning
methods are often called semisupervised learning. In other cases, if the true
outputs shown in Figure 1.2 are too difficult or expensive to obtain, we can
use other readily available information, which is only partially relevant
to the true outputs, as some weak supervision signals in learning. These
methods are called weakly supervised learning.

We know that it is difficult and costly
to annotate the precise meaning of each
word in text documents. However, due to
the distribution hypothesis [91] in linguis-
tics (i.e., "words that are close in meaning
will occur in similar pieces of text"), the
surrounding words can be used as weak
supervision signals to learn the meanings
of words. See Example 7.3.2.

1.2.3 Simple versus Complex Models

In machine learning, we run learning algorithms over training data to
build some mathematical models for decision making. In terms of choos-
ing the specific model to be used in learning, we usually have to make a
sensible choice between simple models and complex models. The com-
plexity of a model depends on the functional form of the model as well

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

6 1 Introduction

Figure 1.3: An illustration of a curve-
fitting problem, which can be viewed as a
regression problem in machine learning.

Figure 1.4: An illustration of using a lin-
ear model for the curve-fitting problem
shown in Figure 1.3.

as the number of free parameters. In general, linear models are treated as
simple models, whereas nonlinear models are viewed as complex models
because nonlinear models can capture much more complicated patterns
in data distributions than linear ones. A simple model requires much less
computing resources and can be reliably learned from a much smaller
training set. In many cases, we can derive a full theoretical analysis for
simple models, which gives us a better understanding of the underlying
learning process. However, the performance of simple models often satu-
rates quickly as more training data become available. In many practical
cases, simple models can only yield mediocre performance because they
fail to handle complicated patterns, which are the norm in almost all real-
world applications. On the other hand, complex models require much
more computing resources in learning, and we need to prepare much more
training data to reliably learn them. Due to their complex functional forms,
there does not exist any theoretical analysis for many complex models.
Hence, learning complex models is often a very awkward black-box pro-
cess and usually requires many inexplicable tricks to yield optimal results.

We will introduce linear models in Chap-
ter 6 and more complex models in Chap-
ter 8.

Example 1.2.1 Curve Fitting

There exists an unknown function y = f (x). Assume we can only ob-
serve its function values at several isolated points, indicated by blue
circles in Figure 1.3. Show how to determine its values for all other
points in the interval.

This is a standard curve-fitting problem in mathematics, which requires
constructing a curve, or mathematical function, to best fit these observed
points. From the perspective of machine learning, this curve-fitting prob-
lem is a regression problem because it requires us to estimate the function
value y, which is continuous, for any x in the interval. The observed points
serve as the training data for this regression problem. Because we can
access both input x and output y in the training data, it is a supervised
learning problem.

First of all, assume we construct a linear function for this problem:

f (x) = a0 + a1 x.

Through a learning process that determines the two unknown coefficients
(to be introduced in the later chapters), we can construct the best-fit linear
function in Figure 1.4. We can see that this best-fit linear function yields
values quite different from most of the observed points and has failed to
capture the "up-and-down wiggly pattern" shown in the training data.
This indicates that linear models may be too simple for this task. In fact,
this problem can be easily solved by choosing a more complex model. A

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.2 Basic Concepts 7

Figure 1.5: An illustration of using a
fourth-order polynomial function for the
curve-fitting problem.

Figure 1.6: An illustration of using a deci-
sion tree to recognize various fruits based
on some measured features. (Source:
[57].)

natural choice here is to use a higher-order polynomial function. We can
choose a fourth-order polynomial function, as follows:

f (x) = a0 + a1 x + a2 x2 + a3 x3 + a4 x4.

After we determine all five unknown coefficients, we can find the best-fit
fourth-order polynomial function, as shown in Figure 1.5. From that, we
can see that this model captures the pattern in the data much better despite
still yielding slightly different values at the observed points. �

Example 1.2.2 Fruits Recognition

Assume we want to teach a computer to recognize different fruits based
on some observed characteristics, such as size, color, shape, and taste.
Consider a suitable model that can be used for this purpose.

This is a typical classification problem because the output is discrete: it
must be a known fruit (e.g., apple, grape). Among many choices, we can
implement the tree-structured model shown in Figure 1.6 for this clas-
sification problem. In this model, each internal node is associated with
a binary question regarding one aspect of the characteristics, and each
leaf node corresponds to one class of fruits. For each unknown object, the
decision process is simple: We start from the root node and ask the associ-
ated question for the unknown object. We then move down to a different
child node based on the answer to this question. This process is repeated
until a leaf node is reached. The class label of the reached leaf node is the
classification result for the unknown object. This model is normally called
a decision tree in the literature [34]. If this tree is manually constructed
according to human knowledge, it is just a convenient way to represent
various rules in a knowledge base. However, if we can automatically learn
such a tree model from training data, it is considered to be an interesting
method in machine learning, known as decision trees. � We will introduce various learning meth-

ods for decision trees in Chapter 9.

1.2.4 Parametric versus Nonparametric Models

When we choose a model for a machine learning problem, there are two
different types. The so-called parametric models (a.k.a. finite-dimensional mod-
els) are models that take a presumed functional form and are completely
determined by a fixed set of model parameters. In the previous curve-
fitting example, once we choose to use a linear model (or a fourth-order
polynomial model), it can be fully specified by two (or five) coefficients.
By definition, both linear and polynomial models are parametric models.
In contrast, the so-called nonparametric models (a.k.a. distribution-free models)
do not assume the functional form of the underlying model, and more
importantly, the complexity of such a model is not fixed and may depend

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

8 1 Introduction

on the available data. In other words, a nonparametric model cannot be
fully specified by a fixed number of parameters. For example, the decision
tree is a typical nonparametric model. When we use a decision tree, we
do not presume the functional form of the model, and the tree size is
usually not fixed as well. If we have more training data, it may allow us to
build a larger decision tree. Another well-known nonparametric model is
the histogram. When we use a histogram to estimate a data distribution,
we do not constrain the shape of the distribution, and the histogram can
dramatically change as more and more samples become available.

Generally speaking, it is easier to handle parametric models than non-
parametric models because we can always focus on estimating a fixed
set of parameters for any parametric model. Parameter estimation is al-
ways a much simpler problem than estimating an arbitrary model without
knowing of its form.

1.2.5 Overfitting versus Underfitting

Figure 1.7: An illustration of how data
can be conceptually viewed as being com-
posed of signal and noise components.

All machine learning methods rely on training data. Intuitively speaking,
training data contain the important information on certain regularities we
want to learn with a model, which we informally call the signal component.
On the other hand, training data also inevitably include some irrelevant
or even distracting information, called the noise component. A major
source of noise is the sampling variations exhibited in any finite set of
random samples. If we randomly draw some samples, even from the same
distribution, twice, we will not obtain identical samples. This variation
can be conceptually viewed as a noise component in the collected data.
Of course, noise may also come from measurement or recording errors.
In general, we can conceptually represent any collected training data as a
combination of two components:

data = signal + noise.

This decomposition concept is also illustrated in Figure 1.7, where we
can see that the signal component represents some regularities in the
data, whereas the noise component represents some unpredictable, highly
fluctuating residuals. Once we have this conceptual view in mind, we can
easily understand two important concepts in machine learning, namely,
underfitting and overfitting.

We will formally introduce the theory be-
hind overfitting in Chapter 5.

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.2 Basic Concepts 9

Figure 1.8: An illustration of using a 10th-
order polynomial function for the pre-
vious curve-fitting problem. The best-fit
model behaves wildly because the over-
fitting happened in the learning process.

Assume we learn a simple model from a set of training data. If the used
model is too simple to capture all regularities in the signal component, the
learned model will yield very poor results even in the training data, not to
mention any unseen data, which is normally called underfitting. Figure 1.4
clearly shows an underfitting case, where a linear function is too simple
to capture the "up-and-down wiggly pattern" evident in the given data
points. On the other hand, if the used model is too complex, the learning
process may force a powerful model to perfectly fit the random noise
component while trying to catch the regularities in the signal component.
Moreover, perfectly fitting the noise component may obstruct the model
from capturing all regularities in the signal component because the highly
fluctuating noise can distract the learning outcome more when a complex
model is used. Even worse, it is useless to perfectly fit the noise component
because we will face a completely different noise component in another set
of data samples. This will lead to the notorious phenomenon of overfitting
in machine learning. Continuing with the curve fitting as an example,
assume that we use a 10th-order polynomial to fit the given data points
in Figure 1.3. After we learn all 11 coefficients, we can create the best-fit
10th-order polynomial model shown in Figure 1.8. As we can see, this
model perfectly fits all given training samples but behaves wildly. Our
intuition tells us that it yields a much poorer explanation of the data than
the model in Figure 1.5.

Figure 1.9: An illustration of underfitting
and overfitting in a binary classification
problem of two classes; the colors indicate
class labels.

Not limited to regression, underfitting and overfitting can also occur
in classification problems. In the simple classification problem of two
classes shown in Figure 1.9, if a simple model is used for learning, it
leads to a straight separation boundary between the two classes in the left
figure, indicating an underfitting case because many training samples are
located on the wrong side of the boundary. On the other hand, if we use a
complex model in learning, it may end up with the complicated separation
boundary shown in the middle figure. This implies an overfitting case
because this boundary perfectly separates all training samples but is not
a natural explanation of the data. Finally, among these three cases, the
model on the right seems to provide the best explanation of the data set.

We should avoid underfitting and overfitting as much as possible in any

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

10 1 Introduction

Figure 1.10: An illustration of high bias
errors versus high variances in machine
learning, where each square represents a
learned model from a random training
set, and the center of the circles indicates
the true regularities to be learned. (Im-
age credit: Sebastian Raschka/CC-BY-SA-
4.0.)

machine learning problem because they both hurt the learning perfor-
mance in one way or another. Underfitting occurs when the learning
performance is not satisfactory even in the training set. We can easily
get rid of the underfitting problem by increasing the model complexity
(i.e., either increasing the number of free parameters or changing to a
more complex model). On the other hand, we can identify the overfitting
problem if we notice a nearly perfect performance in the training set but a
fairly poor performance in another unseen evaluation set.We will formally discuss regularization in

Chapter 7.
Similarly, we

can mitigate overfitting in machine learning either by augmenting more
training data, or by reducing the model complexity, or by using so-called
regularization techniques during the learning process.

1.2.6 Bias–Variance Trade-Off

Generally speaking, the total expected error of a machine learning algo-
rithm on an unseen data set can be decomposed into the following two
sources:

I Bias due to underfitting:
The bias error quantifies the inability of a learned model to capture all
regularities in the signal component due to erroneous assumptions
in the used model. High biases indicate that the learned model
consistently misses some important regularities in the data because
of inherent weaknesses of the underlying method. As shown in
Figure 1.10, each red square conceptually indicates a learned model
obtained by running the same learning method on a random training
set of equal size. A high bias error implies that the learned model
yields a poor match with the regularities in the signal component
that are truly relevant to the learning goal.

I Variance due to overfitting:
Variance is the error arising from the learning sensitivity to small
fluctuations in the training data. In other words, variance quantifies
the overfitting error of a learning method when the learned model is
forced to mistakenly capture the randomness in the noise component.
As shown in Figure 1.10, when variance is high, all learning results
randomly deviate from the true target in a different way because
each training set contains a different noise component. High vari-
ance indicates that the learned model gives a weak match with the
regularities in the signal component as it randomly deviates from
the true learning target from one case to another.

In precise terms, we can show that the average error of a learning algo-
rithm can be mathematically decomposed as follows:

We will formally prove the bias and vari-
ance decomposition

error = bias2 + variance.

in Example 2.2.2. learning error = bias2 + variance

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.3 General Principles 11

Figure 1.11: An illustration of how to
manage the bias–variance trade-off by
choosing the optimal model complexity
in machine learning.

As shown in Figure 1.11, when we have chosen a particular method to
learn for a given problem from a fixed amount of training data, we cannot
reduce the two sources of error at the same time. When we choose a simple
model, it usually yields a low variance but a high bias error as a result
of underfitting. On the other hand, when we choose a complex model,
it can reduce the bias error but leads to higher variance as a result of
overfitting. This phenomenon is often called the bias–variance trade-off in
machine learning. For any particular learning problem, we can usually
adjust the model complexity to find the optimal model choice that results
in the lowest total learning error.

1.3 General Principles in Machine Learning

In this section, we will cover several general principles in machine learn-
ing, providing important insights necessary for understanding some fun-
damental ideas in machine learning.

1.3.1 Occam’s Razor

Occam’s razor is a general problem-solving principle in philosophy and
science. It is sometimes paraphrased by a statement akin to "the simplest
solution is most likely the right one." In the context of machine learning,
Occam’s razor means a preference for simplicity in model selection. If two
different models are observed to yield similar performance on training
data, we should prefer the simpler model to the more complicated one.
Moreover, the principle of minimum description length (MDL) [198] is a
formalization of Occam’s razor in machine learning, which states that all
machine learning methods aim to find regularities in data, and the best
model (or hypothesis) to describe the regularities in data is also the one
that can compress the data the most.

1.3.2 No-Free-Lunch Theorem

In the context of machine learning, the no-free-lunch theorem [253, 57, 220]
states that no learning method is universally superior to other methods
for all possible learning problems. Given any two machine learning al-
gorithms, if we use them to learn all possible learning problems we can
imagine, the average performance of these two algorithms must be the
same. Or even worse, their average performance is no better than random
guessing.

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

12 1 Introduction

Figure 1.12: An illustration of the no-free-
lunch theorem in a simple curve-fitting
problem: when an estimated model (red
curve) is used to predict function values
at x1 and x2, it works well for some target
functions (green dots), but meanwhile, it
will work poorly for other functions (red
squares).

Figure 1.13: An illustration of why the
law of the smooth world can simplify a
machine learning problem.

We can use the earlier curve-fitting problem as an example to explain why
the no-free-lunch theorem makes sense. Given the training samples in
Figure 1.3, our goal is to create a model to predict function values for other
x points. No matter what learning method we use, we eventually end up
with an estimated model, such as the red curve in Figure 1.12. Because
we have no knowledge of the ground-truth function y = f (x) other than
the training samples, theoretically speaking, the ground-truth function
y = f (x) could take any arbitrary value for a new point, which is not in the
training set. When we use the estimated model to predict function values
at some new points, say, x1 and x2, it is easy to see that the estimated
model yields a good prediction if the ground-truth function y = f (x)
happens to yield "good" values (as indicated by green dots in Figure 1.12).
However, we can always imagine another scenario where the ground-
truth function yields "bad" values (as indicated by red squares in Figure
1.12), for which the estimated model will give a very poor prediction. This
is true no matter what learning algorithm we use to estimate the model. If
we average the prediction performance of any estimated model over all
possible scenarios for the ground-truth function, the average performance
is close to a random guess because for each good-prediction case, we can
also come up with any number of bad-prediction cases.

The no-free-lunch theorem simply says that no machine learning algorithm
can learn anything useful merely from the training data. If a machine
learning method works well for some problems, the method must have
explicitly or implicitly used other knowledge of the underlying problems
beyond the training data.

1.3.3 Law of the Smooth World

Despite the aforementioned no-free-lunch theorem, a fundamental reason
why many machine learning methods thrive in practice is that our physical
world is always smooth. Because of the hard constraints that exist in reality,
such as energy and power, any physical process in the macro world is
smooth in nature (e.g., audios, images, videos). Furthermore, our intuition
and perception are all built on top of the law of the smooth world. Therefore,
if we use machine learning to tackle any problems arising from the real
world, the law of the smooth world is always applicable, dramatically
simplifying many of our learning problems at hand.

For example, as shown in Figure 1.13, assume that a training set contains
some measurements of a physical process at three points in the space, that
is, x, y, and z, where x and y are located far apart, whereas x and z are
close by. If we need to learn a model to predict the process in the yellow
region between x and y, it is a hard problem because the training data
do not provide any information for this, and many unpredictable things

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.3 General Principles 13

Figure 1.14: An illustration of the deci-
sion boundary of the k-nearest neighbors
(k-NN) algorithm for classification:
Top panel: Three-class data (labeled by
color). Middle panel: Boundary of 1-NN
(k = 1). Bottom panel: Boundary of 5-NN
(k = 5). (Image credit: Agor153/CC-BY-
SA-3.0.)

could happen within such a wide range. On the other hand, if we need to
predict this process in the blue region between two nearby points, it should
be relatively simple because the law of the smooth world significantly
restricts the behavior of the process within such a narrow region given
the two observations at x and z. In fact, some machine learning models
can be built to give fairly accurate predictions in the blue region by simply
interpolating these two observations at x and z. The exact prediction
accuracy actually depends on the smoothness of the underlying process.
In machine learning, such smoothness is often mathematically quantified
using the concept of Lipschitz continuity (see margin note) or a more recent
notion of bandlimitedness [115].

A function f (x) is said to be Lipschitz con-
tinuous if there exists a real constant L > 0,
for any two x1 and x2, where�� f (x1) − f (x2)

�� ≤ L
��x1 − x2

��
always holds.

Moreover, let us go back to the no-free-lunch example in Figure 1.12. If
we have enough training samples to ensure that the gaps between all
samples are small enough, then many "bad" values as assumed by the
no-free-lunch theorem will not actually occur in practice because they
violate the law of the smooth world. As a result, when we only average all
plausible scenarios in practice, suitable machine learning methods achieve
much better prediction accuracy than random guessing.

Furthermore, the law of the smooth world immediately suggests a simple
strategy for machine learning. Given any unknown observation, if we
search over all known samples in the training set, the prediction for the
unknown can be made based on the nearest sample in the training set. This
leads to the famous nearest neighbors (NN) algorithm. In order to deal with
some possible outliers in the training set, this algorithm can be extended
to a more robust version, namely, the k-nearest neighbors (k-NN) algorithm.

Example 1.3.1 k-NN for Classification

For each unknown object, we search the whole training set to find
the top k nearest neighbors, where k is a small positive integer to be
manually specified beforehand. The class label of the unknown object is
determined by a majority vote of these k-NN. If we choose k = 1, the
object is simply assigned the class of the single nearest neighbor.

The k-NN method is conceptually simple and intuitive, and it can yield
the decision boundary in the entire space based on any given training set,
as shown in Figure 1.14. In many cases, the simple k-NN method can yield
satisfactory classification performance. In general, the success of the k-NN
method depends on two factors:

I Whether we have a good similarity measure to properly compute the
distance between any two objects in the space. This topic is usually
studied in a subfield of machine learning called metric learning [255,
136].

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

14 1 Introduction

I Whether we have enough samples in the training set to sufficiently
cover all regions in the space.

In terms of how many samples are needed to ensure good performance
for the k-NN method, some theoretical analysis [220] has shown that if we
want to achieve an error rate below ε (0 < ε < 1), the minimum number
of training samples N required by the k-NN algorithm increases expo-
nentially with the dimensionality of the space, denoted as d, as follows:

See Exercise Q1.1.

N ∝
(√d
ε

)d+1
.

Assume we need 100 samples to achieve an error rate ε = 0.01 for a prob-
lem in a low-dimension space (e.g., d = 3). But for some similar problems
in a higher-dimensional space, we need a huge number of training sam-
ples in order to achieve the same performance. For example, we may need
roughly 2 × 108 training samples for a similar problem in a 10-dimension
space and about 7 × 10123 training samples for a similar problem in a 100-
dimension space. Obviously, these numbers are prohibitively large for any
practical system. This result shows that the k-NN method can effectively
solve problems in a low-dimensional space but will encounter challenges
when the dimensionality of problems increases. In fact, this problem is not
just limited to the k-NN method but implies another general principle in
machine learning, known as the curse of dimensionality. �

1.3.4 Curse of Dimensionality

In machine learning, the curse of dimensionality refers to the dilemma of
learning in high-dimensional spaces. As shown in the previous k-NN
example, as the dimensionality of learning problems grows, the volume of
the underlying space increases exponentially. This typically requires an ex-
ponentially increasing amount of training data and computing resources to
ensure the effectiveness of any learning methods. Moreover, our intuition
of the three-dimensional physical world often fails in high dimensions
[54]. The similarity-based reasoning breaks down in high dimensions as
the distance measures become unreliable and counterintuitive. For exam-
ple, if many samples are uniformly placed inside a unit hypercube in a
high-dimensional space, it is proven that most of these samples are closer
to a face of the hypercube than to their nearest neighbors.

However, the worst-case scenarios predicted by the curse of dimension-
ality normally occur when the data are uniformly distributed in high-
dimensional spaces. Most real-world learning problems involve high-
dimensional data, but the good news is that real-world data never spread
evenly throughout the high-dimensional spaces. This observation is often

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.4 Advanced Topics 15

referred to as the blessing of nonuniformity [54]. The blessing of nonuni-
formity essentially allows us to be able to effectively learn these high-
dimensional problems using a reasonable amount of training data and
computing resources. A nonuniform data distribution suggests that all
dimensions of the data are not independent but highly correlated in such
a way that many dimensions are redundant. In other words, many dimen-
sions can be discarded without losing much information about the data
distribution. This idea motivates a group of machine learning methods
called dimensionality reduction. We will introduce various dimensionality-

reduction methods and manifold learning
in Chapter 4.

Alternatively, a nonuniform distribution
in a high-dimensional space also suggests that the real data are only con-
centrated in a linear subspace or a lower-dimensional nonlinear subspace,
which is often called a manifold. In machine learning, the so-called manifold
learning aims to identify such lower-dimensional topological spaces where
high-dimensional data are congregated.

1.4 Advanced Topics in Machine Learning

This book aims to introduce only the basic principles and methods of
machine learning, mainly focusing on the well-established supervised
learning methods. Chapter 3 further sketches out these topics. This section
briefly lists other advanced topics in machine learning that will not be
fully covered in this book. These short summaries serve as an entry point
for interested readers to further explore these topics in future study.

1.4.1 Reinforcement Learning

Reinforcement learning [234] is an area in machine learning that is concerned
with how to teach a computer agent to take the best possible actions in
a long interaction course with an unknown environment. Different from
the standard supervised learning, the learning agent in a reinforcement
learning setting does not receive any strong supervision from the envi-
ronment regarding what the best action is at each step. Instead, the agent
only occasionally receives some numerical rewards (positive or negative).
The goal in reinforcement learning is to learn what action should be taken
under each condition, often called policy, in order to maximize the notion
of a cumulative reward over the long term. Traditionally, some numerical
tables are used to represent the expected cumulative rewards of various
actions under each policy, leading to the so-called Q-learning [248]. More
recently, neural networks have been used as a function approximator to
compute the expected cumulative rewards. These methods are sometimes
called deep reinforcement learning (a.k.a. deep Q-learning) [166].

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

16 1 Introduction

Reinforcement learning represents a general learning framework, but it
is regarded as an extremely challenging task because a learning agent
must learn how to explore potentially huge search spaces only based
on weak reward signals. With the help of neural networks, the deep
reinforcement learning methods have recently achieved some notable
successes in several closed-ended gaming settings, such as Atari video
games [167] and the ancient board game Go [224], but it still remains
unclear how to extend these methods to cope with open-ended tasks in a
real-world environment.

1.4.2 Meta-Learning

The hyperparameters of a learning algo-
rithm are the parameters that must be
manually specified prior to automatic learn-
ing (e.g., the value of k in the k-NN algo-
rithm).

Meta-learning (a.k.a. learning to learn) is a subfield of machine learning
that studies how to design automatic learning algorithms to improve the
performance of existing learning algorithms or to learn the algorithm itself
based on some meta-data about previous learning experiments. The meta-
data may include hyperparameter settings, model structures (e.g., pipeline
compositions or network architectures), the learned model parameters,
accuracy, and training time, as well as other measurable properties of the
learning tasks [241]. Next, another optimizer, also called the meta-learner,
is used to learn from the meta-data in order to extract knowledge and
guide the search for optimal models for new tasks.

1.4.3 Causal Inference

As we know, humans often rationalize the world in terms of cause and
effect, that is, the so-called causal relations between variables or events.
On the other hand, typical machine learning methods can only examine
the statistical correlations in data. It is well known that correlation is not
equal to causation. Causal inference is an area of machine learning that
focuses on the process of drawing causal connections between variables
in order to gain a better understanding of the physical world [183, 184,
186].

1.4.4 Other Advanced Topics

Transfer learning [190] is another subfield in machine learning that focuses
on how to efficiently adapt an existing machine learning model, which has
learned to perform well in one domain, to a different but related domain.
Hence, it is also called domain adaption [143, 19], which was initially studied
extensively for speaker adaption in speech recognition in the 1980s [37, 77,
144].

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

1.4 Advanced Topics 17

Online learning methods [105] focus on scenarios where training data
become available in a sequential order. In this case, each data sample is
used to update the model as soon as it becomes available. Ideally, an online
learning method does not need to store all previous data after the model
has been updated so that it can also be used in some learning problems
where it is computationally infeasible to train over the entire data set.

Active learning methods [219, 58] study a special case of machine learning
in which a learning algorithm can interactively query a teacher to obtain
necessary supervision information for desired inputs. The goal in active
learning is to make the best use of proactive queries in order to learn
models in the most efficient way.

Imitation learning techniques [106] aim to mimic human behaviors for a
given task. A learning agent is trained to perform a task from some demon-
strations by learning a mapping between observations and actions. Like
reinforcement learning, imitation learning also aims to learn how to make
a sequence of decisions in an unknown environment. The difference is that
it is learned by observing some demonstrations rather than maximizing
a cumulative reward. Therefore, imitation learning is often used in cases
where the proper reward signals are difficult to specify.

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

18 1 Introduction

Exercises

Q1.1 Is the k-NN method parametric or nonparametric? Explain why.

Q1.2 A real-valued function f (x) (x ∈ R) is said to be Lipschitz continuous if there exists a real constant L > 0,
for any two points x1 ∈ R and x2 ∈ R, where�� f (x1) − f (x2)

�� ≤ L |x1 − x2 |

always holds. If f (x) is differentiable, prove that f (x) is Lipschitz continuous if and only if�� f ′(x)�� ≤ L

holds for all x ∈ R.

https://doi.org/10.1017/9781108938051.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.003

