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In this article, we study the behaviour of the Abels–Garcke–Grün Navier–Stokes–Cahn–
Hilliard diffuse-interface model for binary-fluid flows, as the diffuse-interface thickness
passes to zero. For the diffuse-interface model to approach a classical sharp-interface
model in the limit ε → +0, the so-called mobility parameter m in the diffuse-interface
model must scale appropriately with the interface-thickness parameter ε. In the literature
various scaling relations in the range o(1) to O(ε3) have been proposed, but the optimal
order to pass to the limit has not been explored previously. Our primary objective is to
elucidate this optimal order of the m–ε scaling relation in terms of the rate of convergence
of the diffuse-interface solution to the sharp-interface solution. Additionally, we examine
how the convergence rate is affected by a sub-optimal parameter scaling. We centre our
investigation around the case of an oscillating droplet. To provide reference limit solutions,
we derive new analytical expressions for small-amplitude oscillations of a viscous droplet
in a viscous ambient fluid in two dimensions. For two distinct modes of oscillation, we
probe the sharp-interface limit of the Navier–Stokes–Cahn–Hilliard equations by means
of an adaptive finite-element method. The adaptive-refinement procedure enables us to
consider diffuse-interface thicknesses that are significantly smaller than other relevant
length scales in the droplet-oscillation problem, allowing an exploration of the asymptotic
regime.

Key words: drops, Navier–Stokes equations, computational methods

† Email address for correspondence: t.h.b.demont@tue.nl

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 970 A24-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:t.h.b.demont@tue.nl
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.611&domain=pdf
https://doi.org/10.1017/jfm.2023.611


T.H.B. Demont, S.K.F. Stoter and E.H. van Brummelen

1. Introduction

Binary-fluid flows in which the two fluid components are separated by a molecular
transition layer are omnipresent in science and engineering. Examples are inkjet
printing and additive manufacturing. Mathematical–physical models for binary-fluid flows
generally fall under one of two categories, namely sharp-interface or diffuse-interface
models. In sharp-interface models, the surface that separates the two fluid components
is represented explicitly by a manifold of co-dimension one. This manifold carries
kinematic and dynamic interface conditions, which act as boundary conditions on
the initial boundary-value problems of the two contiguous fluid components and, in
addition, determine the evolution of the manifold. Sharp-interface models are therefore
of free-boundary type. In diffuse-interface models, the interface between the two
fluid components is represented as a thin-but-finite transition layer, in which the two
components are mixed in a proportion that varies continuously and monotonically between
the two pure species across the layer. The strength of diffuse-interface models lies in
their intrinsic ability to account for topological changes of the fluid–fluid interface due
to coalescence or break-up of droplets or wetting, i.e. the propagation of the fluid–fluid
front along a (possibly elastic) solid substrate (Seppecher 1996; Jacqmin 2000; Yue &
Feng 2011; van Brummelen, Demont & van Zwieten 2021).

Diffuse-interface models for two immiscible incompressible fluid species are generally
described by the Navier–Stokes–Cahn–Hilliard (NSCH) equations. The NSCH equations
represent a class of models, of which various renditions have been proposed over the
last half-century: by Hohenberg and Halperin in the late 1970s (Hohenberg & Halperin
1977), by Lowengrub and Truskinovsky in the late 1990s (Lowengrub & Truskinovsky
1998), by Shokrpour Roudbari et al. (2018) and by Abels, Garcke & Grün (2012). In this
article, we focus on the latter model, in view of its thermodynamic consistency and its
consistent reduction to the underlying single-fluid Navier–Stokes equations in the pure
species setting.

NSCH models invariably contain three parameters related to the diffuse interface,
viz. an interface-thickness parameter, ε, a mobility parameter, m, and a surface-tension
parameter, σ . The interface-thickness parameter represents the transverse length scale
of the transition layer between the two fluid components, and the transition layer
collapses (specifically, is supposed to collapse) onto a manifold of co-dimension one
in the so-called sharp-interface limit ε → +0. The mobility parameter is responsible
for the rate at which phase diffusion occurs in the vicinity of the diffuse interface. In
the phase-separated regime in which the NSCH equations are typically applied as a
binary-fluid model, the mobility parameter is responsible for the rate at which the interface
equilibrates. In the mixture regime, it governs the dynamics of the Ostwald-ripening
effect. The surface-tension parameter controls the excess free energy σDA of the diffuse
interface according to 2

√
2σ = 3σDA. It is to be noted that for the NSCH equations

this proportionality holds independent of ε, as opposed to the Navier–Stokes–Korteweg
equations.

Contemporary understanding of the sharp-interface limit of the NSCH equations is
incomplete. An overview of known results and open questions is provided in Abels
& Garcke (2018, § 4.3). One prominent open question pertains to the appropriate
scaling of the mobility parameter in relation to the interface-thickness parameter,
in the sharp-interface limit. The limit solution of the NSCH equations depends
on the scaling m := mε. Abels & Garcke (2018, § 4.1) establish that, if mε =
O(1) as ε → +0, their NSCH model converges to the non-classical sharp-interface
Navier–Stokes/Mullins–Sekerka model; see also Jacqmin (1999, § 4). If, on the other
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hand, mε vanishes suitably as ε → +0, the classical sharp-interface binary-fluid model
is obtained, where the interface is transported by the fluid velocity (Lowengrub &
Truskinovsky 1998; Yue, Zhou & Feng 2010; Abels & Garcke 2018). However, the decay
of the mobility cannot be too fast: if mε = o(ε3) as ε → +0, the resulting limit solution
of the NSCH model generally violates the Young–Laplace condition on the pressure jump
across the interface (Abels & Lengeler 2014). These results suggest that mε ∝ εa with
0 < a � 3 as ε → +0 represents a necessary and sufficient condition to achieve a classical
sharp-interface solution. Still, the details of the approach of the diffuse-interface solution
to the sharp-interface limit solution for these various admissible scalings of the mobility
are not currently known, and different scalings have been proposed in the literature, in
particular in the context of numerical simulation approaches. In Demont et al. (2022),
the scaling mε ∝ ε3 is considered, based on the argument that this proportionality fixes
the diffusive time scale and, thus, the equilibration rate of the diffuse interface. This
cubic scaling of the mobility with respect to the interface thickness (in terms of their
usual dimensional forms) is also propounded in Khatavkar, Anderson & Meijer (2006),
supported by numerical investigations. Based on partial matched-asymptotic-analysis
arguments, Magaletti et al. (2013) concludes that m ∝ ε2 is the appropriate scaling.
However, because the matching procedure in this reference is incomplete, it is unclear
whether this scaling relation in fact represents a necessary or sufficient condition. On the
basis of a consideration of curvature-induced expansion/contraction modes at the diffuse
interface, it is argued in Jacqmin (1999) that mε ∝ εa with 1 � a < 2. It is to be noted that
the aforementioned scalings of the mobility pertain to situations without moving contact
lines and topological changes; see, e.g. Yue et al. (2010).

In this article, we address the open question of the optimal scaling of the mobility
parameter in terms of the convergence rate of the diffuse-interface solution to the
sharp-interface solution. Specifically, if one considers a strictly decreasing sequence of
interface-thickness parameters {εk} (with only accumulation point zero) and for each
εk determines the mobility mk such that the deviation between the diffuse-interface
solution corresponding to the parameters εk, mk and the sharp-interface solution (in some
appropriate norm) is minimal, is there a proportionality mk ∝ ε

aopt
k as k → ∞? Assuming

the answer is affirmative, at which rate does the diffuse-interface solution approach
the sharp-interface solution? Additionally, how does the convergence rate deteriorate
for sub-optimal scaling relations? We consider these questions based on computational
investigation of the Abels–Garcke–Grün NSCH model for different interface dynamics and
different mobility parameters as the model limits toward a sharp-interface description of
a two-dimensional oscillating droplet. To enable an exploration of the asymptotic regime,
we apply an adaptive finite-element method, in which the adaptivity is guided by an a
posteriori error estimate; see van Brummelen et al. (2021) and Demont et al. (2022) for
details.

We conduct our analysis of the sharp-interface limit of the NSCH equations in the
context of the prototypical oscillating-droplet problem, in two dimensions. Despite the fact
that the oscillating-droplet problem is classical, it appears that the two-dimensional setting
has not been extensively investigated, and that solutions of the two-dimensional problem
have not been reported in the literature. The investigation of the oscillating-droplet
problem dates back to Rayleigh, who presented the well-known frequency of oscillation
of an inviscid droplet in vacuo in 1879 (Strutt 1879). This result was extended by Lamb
in the 1930s to include the effect of an inviscid ambient fluid (Lamb 1932). In 1960, Reid
generalized the theory of oscillating droplets in vacuo by including the effect of viscosity
(Reid 1960). A complete theory, comprising solutions for small oscillations of a viscous
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Sharp interface representation
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Figure 1. Schematic of the physical setting of a submerged immiscible fluid, modelled with either a
diffuse-interface representation or a sharp-interface representation.

droplet in a viscous ambient fluid, was then finally presented by Miller and Scriven in 1968
(Miller & Scriven 1968). The aforementioned references, however, exclusively consider
the three-dimensional case and the results, especially those for the viscous solutions, do
not trivially extend to the two-dimensional case. Clearly, the three-dimensional case is the
practically relevant one, but the two-dimensional case has raison d’être independently as
a means of verification for mathematical models and numerical methods. Our analysis of
the sharp-interface limit of the NSCH equations requires access to closed-form solutions
of the sharp-interface model, on the one hand to provide initial and boundary data for
the NSCH equations, and on the other hand to systematically determine the deviation
of the diffuse-interface solution relative to the sharp-interface solution. A secondary
objective of this work is therefore to establish closed-form expressions for small-amplitude
oscillations of a viscous droplet in a viscous ambient fluid. Our derivation follows that of
Miller and Scriven, but we deviate from their derivation by a more complete elaboration
of intermediate steps and assumptions and, in particular, an explicit accounting of the
complex-valued nature of the different fields, and by presenting closed-form expressions
of the final results.

The remainder of this article is structured as follows. In § 2, we lay out
the Abels–Garcke–Grün NSCH model equations, and the coupled Navier–Stokes
free-boundary problem that they should reduce to in the sharp-interface limit. In § 3,
we derive a closed-form expression for the sharp-interface model corresponding to
small-amplitude oscillations of a viscous droplet in a viscous ambient fluid in two
dimensions. We make use of these expressions in § 4, where we study the approach of the
NSCH solution to the sharp-interface solution in the limit ε → +0, by means of systematic
numerical experiments.

2. Governing equations

We consider a binary-fluid system, where both fluids are modelled as being
incompressible, isothermal, immiscible and Newtonian with finite viscosity. In accordance
with the later focus on a submerged droplet, we denote one of the fluids by D, for
droplet, and the other by A, for ambient. Various modelling frameworks for describing
the fluid motion exist. These make use of either a diffuse-interface representation
or a sharp-interface representation. Figure 1 illustrates the different relevant domains
and material parameters. We consider in this work the incompressible NSCH model
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– specifically, the model developed by Abels et al. (2012) – in order to describe
the binary-fluid dynamics. Motivation for this choice lies in its thermodynamic
consistency, incompressibility and consistent reduction to the underlying single-fluid
Navier–Stokes equations in the pure species setting. Recently, the well posedness of the
Abels–Garcke-Grün model in various settings has been shown (Abels, Depner & Garcke
2013a,b; Giorgini 2021).

2.1. Diffuse-interface representation
In diffuse-interface models, the two immiscible fluids are separated by a layer of finite
thickness constituted by a mixture of both fluids, reflecting a gradual transition between
fluid D and fluid A. We consider an open time interval (0, tfin) ⊆ R>0 and a spatial domain
corresponding to a simply connected time-independent subset Ω ⊆ Rd (d = 2, 3). We
make use of a NSCH type model that describes the evolution of a so-called order parameter
ϕ ∈ [−1, 1] representing pure species D and A when ϕ = 1 and ϕ = −1, respectively, and
a mixture of both when ϕ ∈ (−1, 1), in addition to the velocity and pressure of the mixture.
The NSCH model as presented by Abels, Garcke and Grün is given by (Abels et al. 2012)

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇ · (u ⊗ J ) + ∇p − ∇ · τ − ∇ · ζ = 0,

∇ · u = 0,

∂tϕ + ∇ · (ϕu) − ∇ · (m∇μ) = 0,

μ + σε�ϕ − σ

ε
Ψ ′ = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

in Ω

(2.1a)

(2.1b)

(2.1c)

(2.1d)

where the volume-averaged velocity u, the pressure p, the order parameter ϕ and the
chemical potential μ are the unknown fields. The closure relations for the relative mass
flux J , the viscous stress τ , the capillary stress ζ and the mixture energy density Ψ are
given as

J := m
ρA − ρD

2
∇μ, (2.2a)

τ := η(∇u + (∇u)T), (2.2b)

ζ := −σε∇ϕ ⊗ ∇ϕ + I
(σε

2
|∇ϕ|2 + σ

ε
Ψ

)
, (2.2c)

Ψ (ϕ) := 1
4(ϕ2 − 1)2. (2.2d)

The remaining parameters are material and model parameters. The model parameters are
the mobility parameter m > 0 and the interface-thickness parameter ε > 0, which affect
the time and length scale of the diffuse interface, respectively. The material parameters are
σ , a rescaling of the droplet-ambient surface tension σDA according to 2

√
2σ = 3σDA, the

mixture density ρ and the mixture viscosity η. The mixture density and viscosity generally
depend on ϕ. To ensure existence of a solution to the system of equations, we must allow ϕ

to take on values outside of [−1, 1] (Grün, Guillén-González & Metzger 2016). We include
a density extension that ensures positive densities even for the non-physical scenario ϕ /∈
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[−1, 1] (Bonart, Kahle & Repke 2019)

ρ(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4ρA, ϕ � −1 − 2λ,
1
4ρA + 1

4ρAλ
−2(1 + 2λ+ ϕ)2, ϕ ∈ (−1 − 2λ, −1 − λ),

1 + ϕ

2
ρD + 1 − ϕ

2
ρA, ϕ ∈ [−1 − λ, 1 + λ],

ρD + 3
4ρA − 1

4ρAλ
−2(1 + 2λ− ϕ)2, ϕ ∈ (1 + λ, 1 + 2λ),

ρD + 3
4ρA, ϕ � 1 + 2λ,

(2.3)

where λ = ρA/(ρD − ρA). For the viscosity interpolation, we apply the Arrhenius
mixture-viscosity model (Arrhenius 1887)

log η(ϕ) = (1 + ϕ) Λ log ηD + (1 − ϕ) log ηA

(1 + ϕ) Λ + (1 − ϕ)
, (2.4)

where Λ = ρDMA/ρAMD is the intrinsic volume ratio between the two fluids (with MA and
MD their respective molar masses).

Remark 2.1. To eliminate the Ostwald-ripening effect in the pure species, a degenerate
dependence of the mobility on the phase field can be introduced, according to m(ϕ) � 0
with inequality if and only if |ϕ| < 1. However, as a degenerate mobility introduces
complications with regard to numerical-approximation procedures (Barrett, Blowey &
Garcke 1999), we opt for a constant mobility parameter.

Remark 2.2. In this work, we use a volume-fraction-based Arrhenius relation, i.e. Λ =
1. Because the denominator in (2.4) then reduces to a non-zero constant, this choice
eliminates singularities, and the mixture viscosity is bounded away from zero in a finite
interval including [−1, 1]. See Remark 2 in van Brummelen et al. (2021) for further
details.

2.2. Sharp-interface limit
As ε → +0, the width of the diffuse interface in the NSCH model reduces to zero. As
pointed out in the introduction, the particular model that arises in this limit depends on the
scaling relation of the mobility m. If the mobility also tends to zero appropriately, then the
following classical sharp-interface model is obtained:

ρi∂tui + ρi (ui · ∇) ui − ηi�ui + ∇pi = 0 in Ωi = Ωi(t), (2.5a)

∇ · ui = 0 in Ωi, (2.5b)

ui · n = V on Γ = Γ (t), (2.5c)

[[u · tj]] = 0 on Γ , for j = 1, . . . , d − 1, (2.5d)

[[−(∇u + (∇u)T)n + pn]] = σDAκn on Γ, (2.5e)

for i ∈ {D, A}, and with n the unit normal vector on Γ external to ΩD, V the interface
normal velocity, κ the (additive) curvature of the interface and [[·]] the interface jump
operator [[g]] = g|D − g|A. We adhere to the convention that curvature is negative if the
centre of the osculating circle in the normal plane is located in the droplet domain.

As opposed to the NSCH model, the sharp-interface model (2.5) represents a set
of equations for each fluid species separately, complemented by appropriate coupling
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conditions at the interface. The sharp-interface model represents a free-boundary problem.
The domains on which the various fields are defined evolve in time, as reflected by the time
dependence of Ωi(t) and Γ (t). There is an intrinsic coupling between the velocity field and
the evolution of Ωi and Γ , according to (2.5c). Because this equation holds on both sides
of the interface and V is single valued, (2.5c) implies [[u · n]] = 0.

3. Response of an oscillating droplet

To provide a reference solution for the sharp-interface limit of the NSCH equations,
we now consider solutions of the free-boundary problem (2.5) corresponding to small
perturbations of a circular droplet set in an ambient fluid, in two dimensions. Readers
mainly interested in the asymptotic results of the NSCH model may wish to proceed
directly to § 4.

Denoting by R0 the radius of the droplet, one can verify that

ΩD,0 = {x ∈ R
2 : |x| < R0}, ΩA,0 = R

2 \ ΩD,0, (3.1a)

uD,0 = 0, uA,0 = 0, (3.1b)

pD,0 = σDA/R0, pA,0 = 0, (3.1c)

represents a stationary solution to (2.5). We will use (3.1) as a generating solution. We
consider perturbations of the solution (3.1) that are suitably bounded and vanish toward
infinity. The latter condition can be expressed as

lim
|x|→∞

(u, p) (x, t) = 0. (3.2)

Our derivation of the natural response of such a droplet follows that of Miller & Scriven
(1968), except that we provide a more complete elaboration of intermediate steps and
assumptions and, in particular, an explicit accounting of the complex-valued nature of
the different fields. The approach essentially comprises four steps. First, we linearize the
governing equations around the generating solution (3.1), perturbed by a small deformation
of the interface. Second, we derive the general solutions corresponding to the natural
response in both domains separately. In the third step, we incorporate the interface
coupling conditions by constraining the free parameters in the general solutions. Finally,
the characteristic temporal response (frequency of oscillation and rate of damping) of
the assumed interface displacement, as well as the corresponding shapes, follow from a
solution-existence condition.

3.1. Formal linearization
We consider small-amplitude perturbations of the interface that are sinusoidal along the
circumference of the droplet. To facilitate the presentation, we introduce polar coordinates
r ∈ R�0 and θ ∈ [0, 2π) and the coordinate transformation x = (x1, x2) = r(cos θ, sin θ).
We regard perturbations of the interface Γ0 = ∂ΩD,0 corresponding to the following
parametrization:

Γδ(t) = {x ∈ R
2 : x = Rδ(θ, t) (cos(θ), sin(θ)), θ ∈ [0, 2π)}, (3.3)

where

Rδ(θ, t) = R0 + R0 δ(β cos(kθ) +
√

1 − β2 sin(kθ)) cos(νt)e−αt

= Re(R0 + R0 δ(β cos(kθ) +
√

1 − β2 sin(kθ))e−γ t). (3.4)
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The interface configuration (3.3)–(3.4) represents a damped oscillation of the droplet with
a mode shape described by the mode number k ∈ N, with angular orientation dependent
on 0 � β � 1 and with an amplitude described by δ 
 1 as the fraction of the droplet
radius R0. Our interest is restricted to droplet configurations for which meas(ΩD) =
meas(ΩD,0) + O(δ2) and the barycentre of ΩD is located at the origin. This implies that
k ∈ N�2. The damping rate α � 0 and the frequency of oscillation ν > 0 implicitly depend
on the mode number and will follow from the subsequent analysis. The second expression
in (3.4) provides a representation of Rδ as the real part of a complex-valued function, with
γ := α − iν. This form enables us to condense some of the expressions that appear in the
sequel.

In conjunction with the interface configuration (3.3)–(3.4), we consider linear
asymptotic solutions of the sharp-interface problem of the form

(ui, pi, n, t, κ,V) = (ui, pi, n, t, κ,V)0 + δ (ui, pi, n, t, κ,V)1 , (3.5)

i.e. functions conforming to (3.5) that satisfy (2.5) modulo terms of o(δ) as δ → 0.
Substituting (3.5) into the sharp-interface equations (2.5), collecting terms of distinct
orders in δ and noting that all terms of O(1) vanish on account of the fact that the first term
in (3.5) represents a solution to (2.5), we obtain the following infinitesimal conditions on
the second term in (3.5):

ρ∂tui,1 − η�ui,1 + ∇pi,1 = 0 in Ωi,0, (3.6a)

∇ · ui,1 = 0 in Ωi,0, (3.6b)

ui,1 · n0 = V1 on Γ0, (3.6c)

[[u1 · t0]] = 0 on Γ0, (3.6d)

[[−η
(∇u1 + (∇u1)

T)
n0 + p1n0]] = σDAκ1n0 on Γ0, (3.6e)

for i ∈ {D, A}. The nonlinear advective term has dropped since the only nonlinear
first-order perturbation terms are cross-terms between ui,1 and ui,0 = 0. Similarly, only
n0 appears in the first-order conditions (3.6), because its multiplication with ui,1 is a
second-order term, its dot product with ui,0 vanishes and [[p0n1]] = σDAR−1

0 n1 cancels
with the right-hand side σDAκ0n1.

Remark 3.1. The first-order conditions are set on the stationary generating domains, Ωi,0,
and the generating interface, Γ0. This is a universal characteristic of linearizations of
free-boundary problems. The perturbation of the interface according to (3.4) appears
implicitly in (3.6) in the interface-velocity perturbation, V1, and the curvature perturbation,
κ1.

The remainder of this section is devoted to finding general solutions to (3.6) for different
perturbation wavenumbers k. For purposes of readability, henceforth we suppress the
subscripts corresponding to the order of perturbation.

3.2. First-order solutions in the droplet and ambient domain
Next, we derive the general first-order solutions (u, p)i,1 in accordance with the differential
equations (3.6a)–(3.6b) for both the droplet D and ambient A domains. We proceed by
deriving the vorticity equation corresponding to (3.6a), which we solve by means of
separation of variables. The first-order velocity field is subsequently retrieved from the
vorticity solutions. The corresponding first-order pressure fields are derived as those that
yield balance of linear momentum.
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Numerical investigation of the limit of the NSCH equations

3.2.1. Vorticity solution
The pressure may be eliminated from the governing equations by taking the curl of (3.6a)
and by using the identity ∇ × ∇(·) = 0. Introducing the vorticity ω = ∇ × u, we infer
from (3.6a) that

ρ∂t (∇ × u) − ηΔ (∇ × u) + ∇ × ∇p = ρ∂tω − η�ω = 0. (3.7)

Let us note that in a two-dimensional setting, vorticity can be represented as a scalar-valued
field. The evolution equation for this scalar vorticity field can be recognized as a diffusion
equation.

To determine the general solution to (3.7), we assume the following separation of
variables form:

ω(r, θ, t) := P(r)Θ(θ)T(t). (3.8)

Substitution in the polar coordinate representation of the diffusion equation gives

P(r)Θ(θ)T ′(t) = η

ρr2 P(r)Θ ′′(θ)T(t) + η

ρr
P′(r)Θ(θ)T(t) + η

ρ
P′′(r)Θ(θ)T(t), (3.9)

where primes denote differentiation. The usual separation of variables argument leads to

T ′(t) = −η

ρ
m2T(t) m ∈ C, (3.10a)

Θ ′′(θ) = −n2Θ(θ) n ∈ C, (3.10b)

r2P′′(r) + rP′(r) + (m2r2 − n2)P(r) = 0, (3.10c)

with C the set of complex numbers.
The general solutions of (3.10a) and (3.10b) consist of complex-valued exponential

functions, according to

T(t) = c e−(η/ρ)m2t, (3.11a)

Θ(θ) = c1 eint + c2e−int. (3.11b)

From the periodicity of the droplet perturbations in the angular dependence, conforming
to (3.3), we infer that n ∈ Z�0. The arbitrary constants c1 and c2 can then be selected such
that (3.11b) reduces to the sum of two real-valued trigonometric functions

Θ(θ) = C cos(nθ) + D sin(nθ) (n ∈ Z�0), (3.12)

where C, D ∈ R are coefficients that determine the angular orientation of the solution.
Regarding (3.10c), we note that this equation corresponds to Bessel’s equation with a
complex-valued scaling m ∈ C. Solutions of (3.10c) therefore consist of extensions of
Bessel functions to the complex plane. Such extensions of Bessel functions are well
defined, by virtue of the fact that Bessel functions are analytic functions on R and can
hence be extended to analytic functions on C via their power-series expansion. The
general solution of (3.10c) consists of a linear combination of two Bessel functions
of order n ∈ Z�0. For reasons that will become clear once we consider the boundary
conditions, we choose to work with a Bessel function of the first kind, Jn, and a Hankel
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function of the second kind, H(2)
n ,

P(r) = Am2Jn(mr) + Bm2H(2)
n (mr), (3.13)

with A, B ∈ C. Substitution of (3.11a), (3.12) and (3.13) into (3.8) gives the general
rotationally periodic solution of the vorticity equation (3.7)

ω(r, θ, t) = [Am2Jn(mr) + Bm2H(2)
n (mr)] [C cos(nθ) + D sin(nθ)] e−(η/ρ)m2t, (3.14)

for arbitrary A, B ∈ C, C, D ∈ R and m ∈ C.

3.2.2. Velocity solutions
To obtain the velocity fields from the general vorticity solution (3.14), we introduce a
streamfunction χ according to

�χ = −ω. (3.15)

The velocity can be retrieved from this streamfunction as

u = 1
r

∂

∂θ
χ er − ∂

∂r
χ eθ . (3.16)

Based on the expression for ω in (3.14), we anticipate that a particular solution to (3.15) is
of the form

χ(r, θ, t) = Υ (r) [C cos(nθ) + D sin(nθ)] e−(η/ρ)m2t. (3.17)

Substitution of (3.17) into (3.15) leads to the following ordinary differential equation for Υ :

Υ ′′(r) + 1
r
Υ ′(r) − n2

r2 Υ (r) = −Am2Jn(mr) − Bm2H(2)
n (mr). (3.18)

The general solution to the non-homogeneous ordinary differential equation (3.18) is given
by

Υ (r) = Ern + Fr−n + AJn(mr) + BH(2)
n (mr). (3.19)

The first and second terms in (3.19) constitute the homogeneous part of the solution. The
third and fourth terms represent the particular part. From (3.16) it then follows that the r
and θ components of the velocity field are given by

ur = 1
r

∂

∂θ
χ = n

r
Υ (r) [D cos(nθ) − C sin(nθ)] e−(η/ρ)m2t , (3.20a)

uθ = − ∂

∂r
χ = −Υ ′(r) [C cos(nθ) + D sin(nθ)] e−(η/ρ)m2t. (3.20b)

The velocity solutions (3.20) are not generally bounded in the limits r → 0, r → ∞
and t → ∞. Auxiliary conditions must be imposed on the coefficients in (3.20) to extract
general solutions that are bounded in the droplet domain ΩD,0 (respectively ambient
domain R2 \ ΩD,0) as r → 0 (respectively r → ∞) and as t → ∞. To ensure boundedness
of the solutions in the limit t → ∞, we insist that Re(m2) � 0. To assess the boundedness
of the solutions (3.20) in the spatial dependence, we note that the Bessel function Jn(mr)
is singular at r → ∞ for all m ∈ C such that |Im(m)| > 0, and the Hankel function
H(2)

n (mr) is singular at the origin and at r → ∞ for all m ∈ C with Im(m) > 0. In addition,
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Numerical investigation of the limit of the NSCH equations

in relation to (3.2), we note that H(2)
n (mr) vanishes in the limit r → ∞ if Im(m) � 0.

Moreover, rn (respectively r−n) is singular in the limit r → ∞ (respectively r → 0). On
account of their singularity at the origin, H(2)

n and r−n are inadmissible in the droplet
domain ΩD,0 ⊃ {0}. Hence, in the droplet domain, it must hold that B = 0 and F = 0.
Conversely, Jn(mr) and rn are inadmissible in the ambient domain, in view of their
singularity at r → ∞. Hence, in the ambient domain, it must hold that A = 0 and E = 0.

Summarizing, we obtain the following general bounded complex-valued velocity
solutions in the droplet and ambient domains:

uD,r = exp
(

−ηD

ρD
m2

Dt
)

[DD cos(nDθ) − CD sin(nDθ)]

× nD

r
[AJnD(mDr) + ErnD ], (3.21a)

uD,θ = exp
(

−ηD

ρD
m2

Dt
)

[CD cos(nDθ) + DD sin(nDθ)]

×
[
−A

(
mDJnD−1(mDr) − nD

r
JnD(mDr)

)
− EnDrnD−1

]
, (3.21b)

uA,r = exp
(

−ηA

ρA
m2

At
)

[DA cos(nAθ) − CA sin(nAθ)]

× nA

r
[BH(2)

nA
(mAr) + Fr−nA ], (3.21c)

uA,θ = exp
(

−ηA

ρA
m2

At
)

[CA cos(nAθ) + DA sin(nAθ)]

×
[
−B

(
mAH(2)

nA−1(mAr) − nA

r
H(2)

nA
(mAr)

)
+ FnAr−nA−1

]
, (3.21d)

subject to Re(m2
i ) � 0 (i ∈ {D, A}) and Im(mA) < 0.

3.2.3. Pressure solutions
To facilitate the derivation of the infinitesimal pressure solutions associated with (3.21), we
first note that, by virtue of (3.6a) and (3.6b), the pressure solutions are harmonic functions.
Considering functions that are sinusoidal and periodic in the angular dependence, that
conform to (3.21) in the temporal dependence, and that are appropriately bounded, we find
the following general expression for pD:

pD(r, θ, t) = exp
(

−ηD

ρD
m2

Dt
)

rñD(D̃D cos(ñDθ) + C̃D sin(ñDθ)), (3.22)

with ñD ∈ Z�0 and C̃D, D̃D ∈ C arbitrary constants. By substituting (3.21) and (3.22) into
(3.6a), we deduce that compatibility between (3.22) and (3.21) imposes that the index
ñD ∈ Z�0 and coefficients C̃D, D̃D ∈ C satisfy

D̃D = DDEηDm2
D, C̃D = −CDEηDm2

D, ñD = nD. (3.23a–c)
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The infinitesimal pressure solution in the ambient domain can be determined similarly. In
summary, we obtain

pD = EηDm2
D exp

(
−ηD

ρD
m2

Dt
)

rnD [DD cos(nDθ) − CD sin(nDθ)] , (3.24a)

pA = −FηAm2
A exp

(
−ηA

ρA
m2

At
)

r−nA [DA cos(nAθ) − CA sin(nAθ)] . (3.24b)

Remark 3.2. It is noteworthy that the Bessel and Hankel functions that appear in the
velocity solutions (3.21) are absent from the pressure solutions (3.24). This can be
rationalized by noting that these special functions originated directly from the (pressure
free) vorticity equation and thus satisfy the momentum equation for a uniform pressure
field.

3.3. Interface conditions
The general solutions for the pressure and velocity fields in the droplet and ambient
domains according to (3.21) and (3.24), involve twelve unknown coefficients: A, B, CD,
CA, DD, DA, E, F, mD, mA, nD and nA. We next extract from the general solutions the
subspace that complies with the kinematic interface conditions (3.6c) and (3.6d), and the
dynamic condition (3.6e), by introducing auxiliary conditions on the coefficients.

3.3.1. Kinematic compatibility conditions
The kinematic conditions (3.6c)–(3.6d) can be equivalently reformulated as

uD · n0 = uA · n0 = V1 on Γ0, (3.25a)

uD · t0 = uA · t0 on Γ0. (3.25b)

The generating solutions of the interface normal and tangent vectors corresponding
to the circular droplet, n0 and t0, simply coincide with the radial and angular basis
vectors, respectively. The kinematic condition (3.25a) (respectively (3.25b)) thus pertains
to the radial (respectively angular) components of u in (3.21a) and (3.21c) (respectively
(3.21b) and (3.21d)). To impose (3.25a), we require the infinitesimal interface velocity V1
corresponding to (3.4)

V(θ, t) = ∂tRδ(θ, t) = −δR0γ e−γ t(β cos(kθ) +
√

1 − β2 sin(kθ)), (3.26)

where we retain the entire complex form, to facilitate the exposition. Noting that V0
vanishes and, hence, V = δV1, we infer from (3.25a) that

exp
(

−ηD

ρD
m2

Dt
)

[DD cos(nDθ) − CD sin(nDθ)] [R−1
0 AnDJnD(mDR0) + EnDRnD−1

0 ]

= exp
(

−ηA

ρA
m2

At
)

[DA cos(nAθ) − CA sin(nAθ)]

× [R−1
0 BnAH(2)

nA
(mAR0) + FnAR−nA−1

0 ]

= −R0γ e−γ t(β cos(kθ) +
√

1 − β2 sin(kθ)). (3.27)

The equalities in (3.27) must hold for all θ ∈ [0, 2π) and all t ∈ R>0. Keeping θ fixed
and varying t, one can infer that the temporal exponents must coincide. Subsequently, by
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Numerical investigation of the limit of the NSCH equations

fixing t and varying θ , it follows that all parameters that characterize the trigonometric
terms must be the same. Hence,

ηD

ρD
m2

D = ηA

ρA
m2

A = γ, (3.28a)

nD = nA = k, (3.28b)

DD = DA = β, (3.28c)

CD = CA = −
√

1 − β2. (3.28d)

In the sequel, we continue to use mD and mA in the arguments of the Bessel and Hankel
functions, but we tacitly suppose the relation to γ per (3.28a). Substitution of (3.28) in
(3.25) yields the following three conditions on A, B, E and F:

AkR−1
0 Jk(mDR0) + EkRk−1

0 = −γ R0, (3.29a)

BkR−1
0 H(2)

k (mAR0) + FkR−k−1
0 = −γ R0, (3.29b)

− A(mDJk−1(mDR0) − kR−1
0 Jk(mDR0)) − EkRk−1

0

+ B(mAH(2)
k−1(mAR0) − kR−1

0 H(2)
k (mAR0)) − FkR−k−1

0 = 0. (3.29c)

3.3.2. Dynamic compatibility conditions
The dynamic condition (3.6e) can be separated into radial and angular components to form
the following two conditions:

− ηDn0(∇uD + (∇uD)T)n0 + pD

+ ηAn0(∇uA + (∇uA)T)n0 − pA = σDAκ1 on Γ, (3.30a)

− ηDt0(∇uD + (∇uD)T)n0 + ηAt0(∇uA + (∇uA)T)n0 = 0 on Γ. (3.30b)

To elaborate on the dynamic interface condition (3.30a), we require the first-order
perturbation of the interface curvature. From the postulated interface displacement (3.4),
the complex-valued form of the curvature can be derived up to second-order terms

κ(θ, t) = κ0 + δκ1(θ, t) + O(δ2)

= R−1
0 + δR−1

0 e−γ t(k2 − 1)(β cos(kθ) −
√

1 − β2 sin(kθ)) + O(δ2). (3.31)

From the expressions for the velocity (3.21) and pressure (3.24), the relation between the
coefficients in (3.28), and the dynamic conditions (3.30), it then follows that

− AηD[2mDkR0
−1Jk−1(mDR0) − 2(k + 1)kR0

−2Jk(mDR0)]

+ BηA[2mAkR0
−1H(2)

k−1(mAR0) − 2(k + 1)kR0
−2H(2)

k (mAR0)]

+ EηD[m2
DR0

k − 2(k − 1)kR0
k−2] + FηA[m2

AR0
−k − 2(k + 1)kR0

−k−2]

= σDAR0
−1(k2 − 1), (3.32a)
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− AηD[2mDR0
−1Jk−1(mDR0) + (m2

D − 2(k + 1)kR0
−2)Jk(mDR0)]

+ BηA[2mAR0
−1H(2)

k−1(mAR0) + (m2
A − 2(k + 1)kR0

−2)H(2)
k (mAR0)]

+ 2EηD(k − 1)kR0
k−2 + 2FηA(k + 1)kR0

−k−2

= 0. (3.32b)

3.4. Dispersion relation
For each wavenumber k ∈ N�2, the corresponding characteristic temporal response
coefficient of the solution, γ ∈ C, as well as the mode shapes, encoded in the remaining
free parameters, follow from a solution-existence condition. To elucidate this condition, we
first recall that the general bounded complex-valued velocity and pressure solutions of the
partial-differential equations (3.6a)–(3.6b), subject to the limit condition (3.2), are given
by (3.21) and (3.24). These general solutions contain twelve coefficients. Eight of these
coefficients are determined by the kinematic interface condition (3.6c), in accordance
with (3.28). The kinematic conditions (3.6c) and (3.6d) imply that the remaining four
coefficients, A, B, E and F must satisfy the three identities in (3.29). The dynamic
condition (3.6e) demands that, in addition, these four coefficients satisfy the two identities
in (3.32). The remaining five conditions on the coefficients can be cast in the form⎛

⎜⎜⎜⎝
a11 0 a13 0
0 a22 0 a24

a31 a32 a33 a34
a41 a42 a43 a44
a51 a52 a53 a54

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
A(k,γ )

⎛
⎜⎝

A
B
E
F

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

−γ R0
−γ R0

0
σDAR−1

0 (k2 − 1)

0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
b(k,γ )

, (3.33)

in such a manner that the first three equations in (3.33) represent (3.29) and the latter
two represent (3.32). Noting the dependence of (3.29) and (3.32) on the wavenumber k,
and recalling the dependence of mD and mA in these equation on the temporal response
coefficient γ via (3.28a), we infer that the entries of A depend on k and γ . With five
constraints and four unknowns, the system of equations (3.33) is formally over-constrained,
and a solution is non-existent unless the right-hand side vector b(k, γ ) is in the column
space of A(k, γ ). The relation between the existence of a solution and the condition

b(k, γ ) ∈ span(col(A(k, γ ))), (3.34)

is indicative of the fact that only specific combinations of the wavenumber k ∈ N�2 and
the temporal response coefficient γ ∈ C in the postulated interface configuration (3.3)
correspond to a natural response of the droplet.

To determine the combinations (k, γ ) for which the existence condition (3.34) is
fulfilled, we note that (3.34) is equivalent to

det ((A | b)(k, γ )) = 0, (3.35)

where (A | b) corresponds to A augmented by b. The equivalence between (3.34) and
(3.35) follows from the fact that the column vectors of A are linearly independent for all
(k, γ ) and, hence, the augmented matrix is singular if and only if the vector b resides in
the column space of A. Moreover, by virtue of the linear independence of the columns
of A, if (3.35) holds, then (3.33) has a unique solution. This solution corresponds to the
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Numerical investigation of the limit of the NSCH equations

coefficients (A, B, E, F) that, in combination with (3.28), define the droplet and ambient
velocity-pressure pairs corresponding to (k, γ ) according to (3.21) and (3.24).

To facilitate and generalize the root finding of the determinant in (3.35), we
non-dimensionalize the matrix entries of the augmented matrix based on the droplet
density, ρD, droplet viscosity, ηD, and droplet radius R0. The non-dimensionalized
parameters are indicated with a tilde diacritic. Additionally, we introduce the following
condensed notation:

J = Jk(m̃D(γ̃ )), H = H(2)
k (m̃A(γ̃ )), ζ = 2(k − 1)k,

Ĵ = m̃D(γ̃ )Jk−1(m̃D(γ̃ )), Ĥ = m̃A(γ̃ )H(2)
k−1(m̃A(γ̃ )), ξ = 2(k + 1)k.

⎫⎬
⎭ (3.36)

The non-dimensionalized augmented matrix can then be expressed as

(Ã|b̃)(k, γ̃ )

=

⎛
⎜⎜⎜⎜⎝

kJ 0 k 0 −γ̃

0 kH 0 k −γ̃

−Ĵ + kJ Ĥ − kH −k −k 0
−2kĴ + ξJ η̃A

[
2kĤ − ξH]

m̃2
D − ζ η̃A

[
m̃2

A − ξ
]

σ̃DA

(
k2 − 1

)
−2Ĵ − (

m̃2
D − ξ

)J η̃A

[
2Ĥ + (

m̃2
A − ξ

)H]
ζ −η̃Aξ 0

⎞
⎟⎟⎟⎟⎠ .

(3.37)

It is not generally feasible to determine the roots of det((Ã|b̃)(k, γ̃ )) with respect to γ̃ in
closed form and, in practice, it is necessary to revert to a numerical root-finding algorithm.
Once a root has been determined, one can extract the kernel of the augmented matrix
(3.37) and scale the corresponding vector such that its fifth entry is minus one, to obtain
the coefficients Ã, B̃, Ẽ, F̃.

Remark 3.3. The roots of det((Ã|b̃)(k, γ̃ )) are not unique: one can infer that

[(Ã|b̃)(k, γ̃ ∗)] = [(Ã|b̃)(k, γ̃ )]∗, (3.38)

where (·)∗ denotes complex conjugation. Because the eigenvalues of the complex
conjugate of a matrix are the complex conjugates of the original eigenvalues, it follows
that if γ̃ is a root of det((Ã|b̃)(k, γ̃ )), then so is γ̃ ∗. Since, in addition, it must hold that
Re(γ̃ ) > 0, it suffices to consider roots in the fourth quadrant of the complex plane. Noting
that the entries of the augmented matrix are analytic functions, one can infer that so is its
determinant. This implies that the roots of det((Ã|b̃)(k, γ̃ )) form a totally disconnected set
and, accordingly, for each root there exists a neighbourhood in which that root is unique.
A detailed investigation of the uniqueness of the roots of det((Ã|b̃)(k, γ̃ )) in the fourth
quadrant is beyond the scope of this work. In our numerical root-finding procedure, we
have verified that there are no other roots in a region around the found root.

By virtue of the complex representation of the interface parametrization (3.4),
we obtain the real-valued velocity and pressure fields by taking the real parts of
(3.21) and (3.24) after substitution of the relations (3.28), and the temporal response
coefficient γ and the corresponding coefficients A, B, E and F. Table 1 provides
computed parameter values for the physical setting outlined in table 2, representing a
water-in-air picolitre-sized droplet. For completeness, we mention that we have applied
Mathematica’s root-finder to determine γ̃ := γ̃k in the fourth quadrant of the complex
plane such that det((Ã|b̃)(k, γ̃k)) = 0. The dimensions of parameters E and F depend
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k γ (s−1) A (10−11 m2 s−1) B (10−4 m2 s−1) E (105k−7 m2−k s−1) F (10−5k−4 m2+ks−1)

2 18788.18393 4664.160935 1.142101737 2.618366811 1.904600443
−390396.1271 i +137.5420287 i +4.485396518 i +194.0864949 i +1.883632636 i

3 53722.95262 376.1242266 7.390256000 3.392996002 4.168582183
−777097.6733 i −953.0487542 i +6.296111161 i +182.1390754 i +3.618449771 i

4 104333.5005 −123.9009766 14.90136892 3.548390076 7.942104534
−1223261.977 i −195.0741019 i +1.040690443 i +152.0972759 i +6.209497220 i

5 170139.1932 −53.99114858 16.35189970 3.366783037 14.10551086
−1722774.521 i −11.92064586 i −10.42851063 i +121.2100680 i +10.15645338 i

6 250754.7829 −12.54654878 8.074025870 3.017014114 23.99270873
−2270070.007 i +6.299980519 i −20.94948730 i +94.14089637 i +16.16915562 i

Table 1. Modal solution parameter values for a water droplet of radius R = √
2 × 101 μm suspended in air.

Droplet Ambient Interface Numerical approximation

ρD ηD ρA ηA σDA ε m τ h0 Lmax K

kg
md

kg m2−d

s
kg
md

kg m2−d

s
kg m3−d

s2 m
md s
kg

10 μs μm — —

103 10−3 1 1.813 × 10−5 7.28 × 10−2 ∗ ∗ 2−7 5 ∗ ∗
Table 2. Physical and numerical parameter values of the considered numerical experiments. Entries marked

with the symbol ∗ indicate a range of values, which will be specified in the text.

on the mode number k. As a result, as k increases, the values of E and F grow rapidly,
conveying that these parameters are ill conditioned in terms of k. Furthermore, as the mode
number k increases, the frequency and damping rate of the corresponding oscillation,
both encoded in γ , increase. This implies that if a droplet sustains an initial perturbation
that is characterized by multiple modes, the higher wavenumber modes decay quickly,
and low-order modes dominate the long-term dynamics of viscous-in-viscous oscillating
droplets.

4. Numerical experiments

The free-boundary problem (2.5) formally represents the sharp-interface limit of the
Abels–Garcke–Grün NSCH model (2.1), provided that the mobility is appropriately scaled
in the limit ε → + 0. For sufficiently small δ, the oscillating-droplet solutions derived
in § 3 can therefore serve to investigate the approach of the diffuse-interface solution to
the sharp-interface limit solution. In this section, we investigate this sharp-interface limit
numerically, by means of an adaptive finite-element method. Specifically, we focus on
the scaling of the mobility parameter m := mε in the limit ε → + 0, and investigate the
deviation of the diffuse-interface solution from the sharp-interface solution in relation
to m. As reference solutions, we consider the lowest mode of oscillation (k = 2), as well as
the next higher doubly symmetric mode (k = 4), for a viscous droplet in a viscous ambient
with parameter values according to table 2. The corresponding coefficients of the velocity
solution (3.21) and pressure solution (3.24) fields are presented in table 1.
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Numerical investigation of the limit of the NSCH equations

4.1. Set-up and discretization
The oscillating-droplet test cases that we consider pertain to doubly symmetric modes.
The set-up of the test cases is similar to that in Demont et al. (2022, § 5). To reduce
computational expense, we exploit the symmetry of the configurations and consider only
one quarter of the droplet-ambient domain. We regard a domain Ω = (0, 50)2 μm2

and prescribe symmetry conditions on Γsym := {(x1, x2) ∈ ∂Ω : {x1 = 0} ∪ {x2 = 0}}.
Because the linear sharp-interface solution is in fact defined on the generating circular
droplet domain and the corresponding ambient domain according to (3.1a), while the
diffuse-interface model exhibits a moving interface, we prescribe auxiliary conditions
in accordance with an initially circular droplet. Specifically, with reference to (3.4), we
select t0 such that −Im(γ )t0 = π/2 and, hence, Rδ(θ, t0) = R0, and prescribe initial data
corresponding to the reference solution at t0 and boundary data corresponding to t + t0.
The complementary part of the boundary, Γext := ∂Ω \ Γsym, is furnished with Dirichlet
conditions for velocity and homogeneous Neumann conditions for the order parameter and
the chemical potential

u(·, t) = δuA(·, t0 + t)
∂nϕ = 0
∂nμ = 0

⎫⎬
⎭ on Γext, for t ∈ [0, T), (4.1)

where δuA corresponds to the ambient velocity solution (3.21) with appropriate
coefficients and scaling δ, and [0, T) denotes the time interval under consideration. For
the aforementioned combination of boundary conditions, the pressure variable p is only
determined up to a constant. We impose the auxiliary condition that p vanishes on average.

We impose an initial condition for the order parameter corresponding to a circular
interface, in accordance with the initial configuration of the sharp-interface reference
solution, viz.

ϕ(x, 0) = ϕ0(x) := tanh
(

d±(x, Γ0)√
2ε

)
, (4.2)

where d±(x, Γ0) represents the signed distance from x to Γ0. The function s �→
tanh(s/

√
2ε) corresponds to an equilibrium solution of the Cahn–Hilliard equations for the

phase field in one spatial dimension and, accordingly, the phase field (4.2) is meta-stable
if ε is sufficiently small compared with the radius of curvature of Γ0. In conjunction with
(4.2), we impose the following initial condition for velocity:

u(x, 0) =
{

δuD(x, t0) if x ∈ ΩD,0,

δuA(x, t0) if x ∈ ΩA,0,
(4.3)

where the data in the right member of (4.3) correspond to the velocity solutions according
to (3.21) in the droplet and ambient domains. We select the perturbation magnitude δ =
10−2, after verifying that this choice renders the linearization error negligible in
comparison with the deviation between the diffuse-interface and the sharp-interface
solutions, for the ε considered below. Hence, the selected value of δ is suitable for our
investigation of the sharp-interface limit. The characteristic parameters pertaining to the
droplet and ambient fluids, and to the interface are reported in table 2.

To perform the numerical simulations, we make use of the adaptive finite-element
approximation method presented in Demont et al. (2022). For coherence, we present a
concise overview of the numerical methodology. The weak form of the NSCH equations
(2.1) is discretized with respect to the spatial dependence with P3 − P2 (Taylor–Hood) C0
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truncated hierarchical B-splines (see Hughes, Cottrell & Bazilevs 2005; Cottrell, Hughes
& Bazilevs 2009; Giannelli, Jüttler & Speleers 2012) for the velocity and pressure fields,
and P3 C0 truncated hierarchical B-splines for the order parameter and chemical potential;
see van Brummelen et al. (2021, § 3.1) for further details. The adaptive-refinement
procedure is guided by a two-level hierarchical a posteriori error estimate, and follows the
standard SEMR (Solve → Estimate → Mark → Refine) process (Dörfler 1996; Bertoluzza
et al. 2012). To improve the robustness of the solution procedure on the coarse meshes that
occur in the sequence of adaptive refinements within each time step, an ε-continuation
process is introduced, in which the thickness parameter ε (and, in conjunction, the
mobility m ∝ ε3) is enlarged for the first K iterations of the adaptive-refinement process;
see Demont et al. (2022) and van Brummelen et al. (2021) for details. In each time step,
the fluid domain is initially covered with a uniform mesh comprising 10 × 10 elements,
corresponding to an initial mesh width h0 = 5 μm, and we perform Lmax refinement steps.
Refinement steps L = 0, 1, . . . , K − 1 make use of the ε- and m-continuation process,
while in refinement steps L = K, . . . , Lmax the original parameter values for ε and m
are used. A skew-symmetric formulation according to Layton (2008) is used for the
convective term in the Navier–Stokes equations, enhancing the stability of the discrete
approximation by eliminating potential artificial energy production due to deviations from
solenoidality in pure-species regions. On the coarse meshes, a first-order backward Euler
scheme with second-order contractive–expansive splitting of the double-well potential
with stabilization (Wu, van Zwieten & van der Zee 2014) is employed. On the finest mesh, a
second-order Crank–Nicolson scheme is applied with implicit treatment of the double-well
potential. The second-order Crank–Nicolson scheme provides significant better accuracy
than the backward Euler scheme; cf. e.g. John, Matthies & Rang (2006). For the temporal
discretization, we employ a time-step size τ = 2−7 × 10 μs. The parameter setting of
the numerical procedure is also summarized in table 2. The nonlinear algebraic systems
corresponding to the discretized NSCH equations, are solved with a Newton procedure,
in which the linear tangent problems are solved with the generalized minimal residual
method (GMRES) with a preconditioner based on a partition of the NSCH system into NS
and CH subsystems; see Demont et al. (2022) for further details.

To illustrate the set-up of the numerical experiments, and the resemblance
between the analytic sharp-interface solution and the numerical approximation
of the diffuse-interface solution for sufficiently small ε, we conduct numerical
experiments with interface-thickness parameter ε = 2−10 × 102 μm, mobility m =
9.5272 × 10−13m2s kg−1, maximum number of refinement levels Lmax = 7 and number
of continuation levels K = 5. Figures 2 and 3 display snapshots of the velocity field and
pressure field at six time instants. The top (respectively bottom) half of each panel displays
the velocity (respectively pressure) field. The right (respectively left) half of each panel
depicts the diffuse-interface simulation (respectively sharp-interface solution). The figures
convey that the sharp-interface solutions and the diffuse-interface solutions are visually
indistinguishable.

4.2. Optimal mobility scaling
To elucidate the dependence of the diffuse-interface solution in the sharp-interface limit
ε → +0 on the scaling of the mobility m := mε, we conduct numerical experiments for
a range of combinations of ε and m. For each combination of ε and m, we determine the
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Numerical investigation of the limit of the NSCH equations

|u|(m s–1) p (kg m2–d s–2)

t = 0 s t = 3.0469 µs

t = 4.0625 µs t = 5 µs

t = 6.0156 µs t = 8.0469 µs

0 0.0100 0.0200 0.0300 0.0400 0.0525 4694 4750 4800 4850 4900 4954

Figure 2. Snapshots of the magnitude of the velocity field |u| (top) and pressure field p (bottom) throughout
half a droplet oscillation of mode k = 2. The left half of each panel displays the analytical sharp-interface
solution, while the right half displays the numerical diffuse-interface solution.

deviation relative to the sharp-interface solution according to

dev(ε, m) = |||uε,m − u|||Ω×(0,T)

|||u|||Ω×(0,T)

with |||u|||Ω×(0,T) = 1
T

∫ T

0
||u(·, t)||L2(Ω) dt, (4.4)
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t = 0 s t = 0.97239 µs

t = 1.2965 µs t = 1.5957 µs

t = 1.9198 µs t = 2.5681 µs

|u|(m s–1) p (kg m2–d s–2)

0 0.040 0.080 0.120 0.160 4255 4400 4600 4800 5000 5200 5393

Figure 3. Snapshots of the magnitude of the velocity field |u| (top) and pressure field p (bottom) throughout
half a droplet oscillation of mode k = 4. The left half of each panel displays the analytical sharp-interface
solution, while the right half displays the numerical diffuse-interface solution.

where the considered length of the time interval, T , corresponds to half a period
of oscillation. We regard a set of decreasing interface-thickness parameters ε ∈
E := {20, . . . , 2−3}εmax relative to the baseline interface thickness εmax = 2−7 ×
102 μm = 7.8125 × 10−1 μm. The baseline interface-thickness parameter corresponds to
approximately 5 % of the droplet radius. For each ε, we consider mobility parameters in (a
relevant subset of) the set m ∈ M := {20, 2−1, . . . , 2−12}mmax with mmax = 2.4389632 ×
970 A24-20
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m/mmax 2−3 εmax 2−2 εmax 2−1 εmax εmax

2−12 6.8295 × 10−2 — — —
2−11 — — — —
2−10 — — — —
2−9 1.2634 × 10−2 7.3709 × 10−2 — —
2−8 8.3534 × 10−3 4.4566 × 10−2 — —
2−7 1.2941 × 10−2 2.1360 × 10−2 1.0190 × 10−1 1.3056 × 10−1

2−6 2.3777 × 10−2 1.8713 × 10−2 6.6942 × 10−2 1.2485 × 10−1

2−5 — 4.2245 × 10−2 3.5126 × 10−2 1.0979 × 10−1

2−4 — — 6.2628 × 10−2 7.9845 × 10−2

2−3 1.5565 × 10−1 1.6940 × 10−1 1.5228×10−1 6.1487 × 10−2

2−2 — — — 1.7640 × 10−1

2−1 — — — 4.2783 × 10−1

1 — — — 8.2210 × 10−1

Table 3. Deviation between the diffuse-interface solution and the sharp-interface solution according to (4.4),
for k = 2 for a half-period of oscillation.

10−10 mds kg−1. The range of mobility parameters has been determined empirically
such that [2−12, 1]mmax includes the optimal mobility, i.e. the one for which dev(ε, m)

is minimal, for all ε ∈ E . It is to be noted that E × M contains various monomial scalings
of the mobility with respect to the interface thickness, viz. m ∝ εl with l ∈ {0, 1, 2, 3}.

Tables 3 and 4 present the deviations dev(ε, m) for the two modes of oscillation, k = 2
and k = 4, respectively. For each ε ∈ E , the entry corresponding to the mobility m ∈ M
that yields the smallest deviation, is highlighted. One can observe that, indeed, the mobility
corresponding to the minimal deviation decreases as ε decreases. More precisely, for
both modes, the optimal scaling of the mobility parameter with the interface-thickness
parameter appears to lie between m ∝ ε and m ∝ ε2. One may moreover note that the
entries corresponding to the optimal mobility decrease by a factor of approximately
two if ε is halved, which indicates that for the considered droplet-oscillation case, the
diffuse-interface solution approaches the sharp-interface solution at rate O(ε), provided
that the mobility in the diffuse-interface model is appropriately scaled.

To provide a more precise assessment of the optimal scaling relation m := mε, we
determine for each ε the optimal value of m based on a quadratic log–log interpolation
around the minimal values in tables 3 and 4. Figure 4 plots the optimal value of m
vs ε. For both wavenumbers, we observe an optimal scaling m ∝ εaopt with aopt ≈ 1.7.
It is noteworthy that the constant of proportionality in the scaling relation is different
for the two modes, and that the graphs are offset in the ε-dependence by a factor of
approximately two, i.e. the optimal mobility for k = 4 is approximately 2aopt larger than
the optimal mobility for k = 2. This suggests that the optimal mobility in fact scales
with (ε/�)aopt , where � represents another characteristic length scale of the interface which,
for the considered droplet-oscillation test case, is proportional to the wavelength of the
perturbation. This observation calls for further investigation, but we consider a detailed
analysis of this aspect beyond the scope of the present work.

4.3. Sensitivity to the proportionality constant
In the previous section, we established optimal values of the mobility parameter and
inferred an optimal scaling m ∝ εaopt in the sharp-interface limit. The results in § 4.2 also
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m/mmax 2−3 εmax 2−2 εmax 2−1 εmax εmax

2−11 1.2922 × 10−1 — — —
2−10 — — — —
2−9 — — — —
2−8 2.7543 × 10−2 1.4419 × 10−1 — —
2−7 2.3628× 10−2 9.3099 × 10−2 — —
2−6 3.2089×10−2 5.5083 × 10−2 — —
2−5 5.2591 × 10−2 5.2646 × 10−2 1.5428 × 10−1 —
2−4 — 9.4735 × 10−2 1.0710 × 10−1 2.9576 × 10−1

2−3 — — 1.2054×10−1 2.7358 × 10−1

2−2 3.3162 × 10−1 3.5898 × 10−1 2.7331 × 10−1 2.0927 × 10−1

2−1 — — — 2.5501 × 10−1

1 — — — 6.2529 × 10−1

Table 4. Deviation between the diffuse-interface solution and the sharp-interface solution according to (4.4),
for k = 4 for a half-period of oscillation.

2–10 2–9 2–8 2–7

10–12

10–11

10–10

∝ ε1.67

∝ ε1.39

∝ ε1.65

∝ ε1.82

∝ ε1.68

∝ ε1.74

ε (×102 µm)

Log-log quadratically interpolated m for which error is smallest.

k = 2
k = 4

m
m

d 
s

k
g

(
)

Figure 4. Optimal mobility m obtained from quadratic interpolation around the minima in tables 3 and 4.

convey that the constant of proportionality in the scaling relation mε = C εaopt depends on
the configuration and dynamics of the interface. This raises the question how sensitive the
solution is to suboptimality of the proportionality constant in the scaling relation.

To elucidate the sensitivity of the deviation of the diffuse-interface solution to the
sharp-interface solution with respect to the mobility in the limit ε → + 0, figure 5
(respectively figure 6) plots for each ε ∈ E the ratio of the deviation dev(ε, m) in the
columns of able 3 (respectively table 4) to the minimal deviation dev(ε, mopt,ε) vs the
ratio m/mopt,ε. Noting that the curves in figures 5 and 6 exhibit a vanishing slope near
m/mopt,ε = 1, one can conclude that in the vicinity of the optimal mobility, the relative
deviation is essentially independent of the mobility. However, for larger departures from
the optimal mobility and sufficiently small ε, the relative deviation increases almost
linearly in max(m/mopt,ε, mopt,ε/m). For the largest ε ∈ E , the relative deviation appears
to be less sensitive to underestimation than to overestimation of the mobility. However, the
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Figure 5. Normalized deviation dev(ε, m)/ dev(ε, mopt,ε) vs normalized mobility m/mopt,ε for k = 2.
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ε = 2–1 εmax ε = εmax

Figure 6. Normalized deviation dev(ε, m)/ dev(ε, mopt,ε) vs normalized mobility m/mopt,ε for k = 4.

results plotted with solid markers in figures 5 and 6 indicate that in the sharp-interface
limit, the relative deviation is equally sensitive to under- and overestimation of the
mobility.

4.4. Suboptimal mobility scaling and convergence in the sharp-interface limit
To illustrate the effect of the scaling of the mobility on the approach to the sharp-interface
limit solution, figures 7 and 8 plot the deviation dev(ε, (ε/εmax)

a m0) vs ε for a ∈
{0, . . . , 3}. Herein, m0 corresponds to the optimal sampled mobility for εmax, viz. m0 =
2−3mmax for k = 2 and m0 = 2−2mmax for k = 4; cf. tables 3 and 4. For reference, the
figures also contain the estimated minimal deviation obtained by minimization of the
quadratic interpolation, dev(ε, mopt,ε). The figures convey that, for the optimal scaling
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2–10 2–9 2–8 2–7

10–2

10–1

∝ ε0.722

∝ ε0.996

∝ ε1.08

d
ev

(ε
, 
m

)
mopt,ε
Constant
Linear
Quadratic
Cubic

ε (×102 µm)

Figure 7. Error convergence rates for optimal and suboptimal scalings of mobility m, for mode of oscillation
k = 2.

ε (×102 µm)

2–10 2–82–9 2–7

10–1.5

10–1
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∝ ε0.987

∝ ε1.09
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mopt,ε
Constant
Linear
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Cubic

Figure 8. Error convergence rates for optimal and suboptimal scalings of mobility m, for mode of oscillation
k = 4.

of the mobility, the diffuse-interface solution approaches the sharp-interface solution
essentially at order ε, i.e. dev(ε, mopt,ε) = O(ε) as ε → + 0. For the linear and quadratic
scaling of the mobility with the interface thickness, m ∝ εa with a ∈ {1, 2}, i.e. the
integer scalings of the mobility closest to the optimum, we observe convergence to
the sharp-interface solution, but at a suboptimal (sublinear) rate. For the constant and
cubic scalings of the mobility, m ∝ εa with a ∈ {0, 3}, the deviation dev(ε, m0(ε/εmax)

a)
does not vanish as ε → + 0, i.e. the diffuse-interface solution does not convergence
to the sharp-interface solution. For m ∝ ε0, this confirms the known result that for
constant mobility, the Abels–Garcke–Grün NSCH model converges to the non-classical
sharp-interface Navier–Stokes/Mullins–Sekerka model; see Abels & Garcke (2018).
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Remark 4.1. It is noteworthy that the subcubic scaling of the mobility, m ∝ εa with 0 <

a < 3, which is necessary to converge to the classical sharp-interface solution in the limit
ε → + 0, implies that the characteristic diffusive time scale Tdiff := ε3/σm associated
with the diffuse interface, approaches zero in the sharp-interface limit. Consequently, for
any ε-independent characteristic time scale T∗ in the problem under consideration, e.g. the
period of oscillation of a droplet, it holds that the ratio Tdiff /T∗ → + 0 as ε → + 0. For
numerical time-integration methods for the NSCH equations, it is therefore essential that
such methods are robust in the limit Tdiff /τ → +0 (with τ denoting the time-step size), to
avoid excessive computational complexity in the sharp-interface limit.

5. Conclusions

Diffuse-interface binary-fluid models bear significant potential for describing complex
phenomena in fluid mechanics, such as topological changes of the fluid–fluid interface
and dynamic wetting, by virtue of their implicit representation of the interface. In the
absence of topological changes of the interface, diffuse-interface models should reduce
to corresponding classical sharp-interface models in the so-called sharp-interface limit,
viz. if the interface-thickness parameter, ε, passes to zero. Contemporary understanding
of the sharp-interface limit is, however, incomplete and, in particular, the scaling of the
mobility parameter, m, with ε as ε → + 0 is incompletely understood. In this article, we
investigated the limit behaviour of the Abels–Garcke–Grün NSCH model for the classical
case of an oscillating droplet in two dimensions, by means of an adaptive finite-element
methodology.

To provide reference sharp-interface solutions, we derived new two-dimensional
analytical expressions for the velocity and pressure fields for small-amplitude oscillations
of a viscous droplet in a viscous ambient fluid with different densities and viscosities.

For mode numbers k = 2, 4 of the droplet oscillation, we compared the solutions of the
NSCH model with the corresponding analytical solutions for a decreasing sequence of
interface-thickness parameters and a suitably chosen sequence of mobility parameters.
Based on an analysis of the deviation between the diffuse-interface solution and the
sharp-interface solution, we inferred that mopt,ε ∝ εaopt with aopt ≈ 1.7 corresponds to
the optimal scaling of the mobility in the sharp-interface limit. We found that this optimal
scaling is universal for k = 2 and k = 4. However, we also observed that for k = 4 the
factor of proportionality is approximately 2aopt larger than for k = 2, suggesting that the
optimal mobility in fact scales with the ratio of ε to another characteristic length scale,
proportional to the wavelength of the perturbation. However, as the wavelength is specific
to the droplet-oscillation case, the question is what the underlying generic length scale is.
The intrinsic dependence of the optimal mobility on the configuration and motion of the
interface is non-trivial and warrants further investigation.

For the optimal scaling of the mobility parameter, we observed that the deviation
between the diffuse-interface solution and its sharp-interface limit decreases according
to O(ε) in the limit ε → + 0. Our investigation of suboptimal integer scalings of the
mobility conveyed that the sharp-interface limit is also attained for a linear and quadratic
scaling of the mobility, but not for a constant or cubic scaling. For the linear and quadratic
scaling, the approach of the diffuse-interface solution to the sharp-interface solution
occurs at a suboptimal (sublinear) rate. The fact that the scaling of the mobility with ε

must be subcubic, implies that the characteristic diffusive time scale ε3/σm (with σ as
surface tension) passes to zero in the sharp-interface limit.

An important question pertains to generalization of the aforementioned results beyond
the oscillating-droplet scenario for which they have been determined. A main conclusion
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that we expect to hold universally, is that the sharp-interface limit is attained for
different scalings mε ∝ εa of the mobility, and that the value of a determines the rate
of convergence to the sharp-interface solution. Based on the presented results for the
oscillating-droplet case and consistent with other results in the literature, we conjecture
that 0 < a < 3 is necessary and sufficient. Whether the observed optimal scaling rate
aopt ≈ 1.7 for the oscillating-droplet case extends to other scenarios including, specifically,
three-dimensional settings and problems involving contact lines, cannot be convincingly
asserted without further investigation.
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