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Theoretical investigation of the primary Mach reflection (MR) configuration on V-shaped
blunt leading edges (VBLEs) forms the focus of this study. By ignoring the secondary
interactions, a theoretical method based on a simplified form of the continuity relation is
developed to predict the shock configurations, including the detached shock, the Mach
stem, the transmitted shock and the triple point. The comparison of the theoretical
results with both numerical and previous experimental results shows the reliability of the
theoretical approach in predicting shock structures across a wide range of free stream and
geometric parameters. The theoretical model provides a detailed comprehension of the
occurrence mechanism of inverse MRs on VBLEs and the influence of the free stream
and geometric parameters on primary MR configurations. Along with the primary MR
configuration, the curved shock or compression waves generated by the crotch are solved
and offer insight into the transition from the MR to the regular reflection from the same
family (sRR). The increase of the ratio R/r and the free stream Mach number M0 appears
to facilitate the transition, while the effect of the half-span angle β is non-monotonic.
The predicted shock positions allow for the identification of the transition boundary
between the primary MR and sRR. It is found that R/r below a threshold (for a set M0
value) produces MR, irrespective of β. If this threshold is exceeded, the configuration can
transition from the primary MR to sRR and then back to the primary MR as β increases.

Key words: flow-structure interactions, shock waves

1. Introduction

Shock interactions are fundamental phenomena existing widely in supersonic flow fields.
Common examples of shock interactions can be found both in external flows, such as
hypersonic vehicle bodies (Grasso et al. 2003), and in internal flows, such as engine inlets
and nozzles (Matsuo, Miyazato & Kim 1999; Guan et al. 2020). Shock interactions pose
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Figure 1. The simplified model of the VBLEs proposed by Xiao et al. (2018).

serious concerns to aircraft design, as they are prone to trigger significant increases in
local pressure/heating loads on vehicle surfaces (Wieting & Holden 1989). Because of the
important physical mechanism and practical applications, shock interactions have been
extensively investigated since the pioneering research conducted by Edney (1968a,b). In
his study, shock interactions were classified into six types according to the shock strengths
and intersection positions. Based on this classification scheme, comprehensive research on
shock interactions regarding various canonical configurations, including an oblique shock
impinging on a bow shock (BS) (Grasso et al. 2003), a double wedge (Ben-dor et al.
2003; Durna, Barada & Celik 2016), a double cone (Druguet, Candler & Nompelts 2005;
Tumuklu, Levin & Theofilis 2018) and spiked blunt bodies (Panaras & Drikakis 2009)
have been performed. These investigations have focused on examining flow characteristics
(Olejniczak, Wright & Candler 1997), pressure/heating loads (Wieting & Holden 1989)
and unsteady oscillations (Zhong 1994) associated with shock interactions. Nevertheless,
although significant progress has been made in understanding two-dimensional shock
interactions, practical scenarios continue to present researchers with more intricate
three-dimensional configurations that pose new challenges.

Recently, there has been a growing interest in shock interactions occurring on a
V-shaped blunt leading edge (VBLE) (Xiao et al. 2018; Zhang et al. 2019; Zhang, Li
& Yang 2021), which is typically observed in a hypersonic inward-turning inlet (You
2011; Gollan & Smart 2013; Bisek 2016). It has been found that the detached shock
waves generated from the swept blunt leading edges tend to induce complicated shock
interactions. To reveal the complex flow mechanism, Xiao et al. (2018) first proposed a
simplified model of the VBLEs characterized by a crotch radius R, a leading-edge radius
r and a half-span angle β, as shown in figure 1. The linear section is referred to as
the straight branch, and the rounded portion is known as the crotch. It has been found
that the shock interaction patterns at the crotch are sensitive to the geometry parameters
and the free stream Mach number. Based on the flow structures in the x–z symmetry
plane, the interactions were categorized into three distinct types: regular reflection (RR);

975 A45-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

86
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.866


Mach reflection on VBLEs

DS1

DS1

DS1

T1

IP3

IP3

MS BS

T2
DS2

DS2

SS1

SL2

TS2

CS2 CS2

SL1

TS1

CS1
CS1

IP1 O

z

x O

z

x O

z

x

DS2

IP

SS2

(b)(a) (c)

Figure 2. Schematic illustration of the three interaction types at the crotch of VBLEs: (a) RR; (b) MR;
(c) sRR.

Mach reflection (MR); and regular reflection from the same family (sRR), as depicted in
figure 2. In the case of an RR structure (figure 2a), two detached shock waves (DS1 and
DS2) generated from the blunt leading edge intersect in the crotch region, producing two
transmitted shocks (TS1 and TS2). Downstream of the interaction point (IP), TS1 and TS2
collide with the wall, resulting in localized circumfluence and separation shocks (SS1 and
SS2). These separation shocks intersect at IP1, which lies downstream of the IP. In an MR
configuration (figure 2b), a Mach stem (MS) appears between DS1 and DS2. The resulting
triple points (T1 and T2) emit the transmitted shocks TS1 and TS2, as well as the shear
layers (or the slip lines) SL1 and SL2. At the junction of the straight branch and the crotch,
which is referred to as the elbow by Zhang et al. (2021), the curved shocks (CS1 and CS2)
or compression waves (CWs1 and CWs2) are generated along the converging wall and
form secondary interactions with the transmitted shocks. When the interaction is an RR,
the intersection point is labelled IP2. In some cases, the CS or CWs may reach the DS
before the MR occurs, leading to a transformation of the primary interaction structure into
an sRR, as shown in figure 2(c). The CS directly intersects with the DS from the same
branch at point IP3 and the previously existing MS in front of the crotch is replaced by a
concave BS.

Since complex shock interactions usually result in substantial heating loads, further
exploration of the pressure/heating loads associated with these interaction types on VBLEs
has been conducted by Xiao et al. (2018), Li et al. (2019) and Wang et al. (2020). It
has been pointed out that a considerable reduction in the pressure/heating peaks can be
achieved by changing the shock interaction pattern from an MR to an sRR. To guide the
design of the VBLEs, Zhang et al. (2021) thoroughly investigated the transitions of the
interaction configurations at a Mach number of 6. By analysing the relative geometric
positions of the shock structures near the crotch, they established the transition criteria
from RR to MR and from MR to sRR. It has been shown that the coalescence between
the IP and IP1 in RR is followed by a transition from RR to MR, whereas the coalescence
between the triple point T and the CS (or the CWs) in MR leads to the transition from MR
to sRR.

Generally, the transition criteria of Zhang et al. (2021) are established based on the
positions of the characteristic points. However, although the positions of DS and CS can
be solved theoretically, the triple point T in MR configurations is difficult to pinpoint due
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to the downstream accumulation effects of the crotch (Zhang et al. 2021). Although the
numerical results can be fitted to determine the position, this fitting is only applicable
to a specific set of free stream conditions and geometry. Given the variety of incoming
flow parameters and geometric configurations, it is imperative to develop a theoretical
approach for determining the location of the triple point. Indeed, although research on
MRs has a long history and increasingly accurate physical models have been developed
for predicting the position of the triple point (Li & Ben-Dor 1997; Gao & Wu 2010;
Zhang et al. 2023) in two-dimensional flows, theoretical research on three-dimensional
MRs remains challenging due to the complexity of the flow structure.

Considering the critical application, this paper concentrates on the shock structures of
the primary MR configuration on VBLEs and the transition from the primary MR to
sRR. To reveal the complex flow mechanism, a theoretical approach based on a simplified
continuity method is proposed to describe the flow behaviour and efficiently predict
the shock configurations. The theoretical model and numerical simulations are utilized
to investigate the influence of the R/r ratio, the half-span angle β and the free stream
Mach number M0 on the shock configurations and the MR to sRR transition. Finally, the
transition boundary between the primary MR and sRR is derived from the theoretically
predicted shock positions. Given the significant reduction in the pressure/heating loads
during the transition from the primary MR to sRR, the transition boundary can provide
essential guidance for the design of VBLEs.

2. Research methods

2.1. Theoretical methods
This section presents theoretical analyses of the primary MR configuration on VBLEs,
focusing on the shock waves generated by the straight branch and at the crotch,
respectively. Simplified models are established to predict the shock wave positions, and
to gain a deeper understanding of the nature and behaviour of the three-dimensional shock
interactions on VBLEs. For consistency of the analysis, VBLEs are set to be symmetrical
with respect of the x–y and x–z planes throughout this paper. As shown in figure 1, the
coordinates x, y, z and ϕ denote the streamwise, transverse, spanwise and circumferential
directions, respectively. The leading-edge bluntness r is fixed at 2 mm and the length of a
straight branch is L = 30r.

2.1.1. The straight branch
The straight branch is essentially a swept cylinder with a sweep angle equivalent to the
half-span angle β. When the half-span angle β is larger than the Mach angle, a DS
will be generated from the swept cylinder and gradually develop along the wall until it
reaches a fully developed state. The fully developed state results in a constant standoff
distance, which is denoted as l in this paper. Therefore, a fully developed DS is presented
as an oblique shock with a shock angle equal to β on the x–z symmetry plane and the
flow component perpendicular to it can be treated as a supersonic flow around a cylinder
with a radius r. Previous researchers have conducted extensive theoretical work on this
flow pattern (Moeckel 1949; Hida 1953; Lighthill 1957). To obtain the standoff distance,
Zhang et al. (2021) followed the inviscid theoretical approximation proposed by Sinclair
& Cui (2017). This theoretical approach demonstrates excellent and consistent agreement
with the computational solutions and experimental results across a wide range of Mach
numbers from 1.35 to 6. However, due to the complexity involved in the derivation, this
method faces difficulties in being extended to three-dimensional flows. In this paper,
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Figure 3. Schematic illustration of the simplified continuity method for predicting the detached shock waves
ahead of blunt bodies.

an approximate method proposed by Moeckel (1949) for predicting detached shock waves
ahead of blunt bodies is applied. This approach is based on a simplified form of the
continuity relation and can be easily developed into three-dimensional flows, which will
be discussed in § 2.1.2.

A schematic diagram of the simplified continuity method is depicted in figure 3. The
black solid line represents the surface of the blunt body and the red solid line is the
detached shock DS ahead of it. The vertex of the blunt body is located at the origin and is
denoted as O, while the foremost point of the DS is referred to as D. The distance between
two points is identified as the standoff distance l. Here, B and S represent the sonic points
on the body surface and on the shock wave, respectively; δB and δS are the flow deflection
angles at the two points. The blue dashed line connecting points B and S is assumed to be
the sonic line. The free stream is oriented parallel to the x-axis. The DS are normal to the
free stream at their foremost point D and tend to approach the free stream Mach waves at
large distances from the point. Hence, the DS in figure 3 is asymptotic to the free stream
Mach line, i.e. the red dashed line, which inclines at the Mach angle α and intersects
the x-axis at point A. Assuming that the shock wave is a simple curve that exhibits these
properties, i.e. a hyperbola, which can be expressed mathematically as

y = k
√
(x − xA)

2 − (xD − xA)
2, (2.1)

where k is the tangent of the free stream Mach angle α. Using this equation of DS, the
shock angle θ , which is the angle between the stream direction and the tangent to the
shock, can be determined at any point from

tan θ = k(x − xA)√
(x − xA)

2 − (xD − xA)
2

=
k
√

k2(xD − xA)
2 + y2

y
. (2.2)

To calculate the standoff distance l using the continuity method, the position of the
shock wave relative to the body surface should be determined by using the geometric
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relation between B and S. The coordinates of the point S are

xS = (xD − xA)√
1 − k2cot2θS

+ xA

yS = k2(xD − xA) cot θS√
1 − k2cot2θS

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.3)

where θS is the shock angle at point S and can be calculated from the oblique shock
relations. For bodies with sharp or clearly defined shoulders, research has found that
the sonic point B is located at the shoulder (Ladenburg, VanVoorhis & Winckler 1946).
For more gradually curved bodies, such as ogives, Busemann (1949) suggested that the
shoulder is located at the point where the contour of the body is inclined at the wedge
angle or cone angle corresponding to shock detachment. For the cylinder with a radius r,
by using δd to denote the shock wave detachment angle, the coordinates of the sonic point
B can be expressed as

xB = r(1 − sin δd)
yB = r cos δd

}
. (2.4)

From figure 3, the geometric relationship between sonic points S and B can be described
as follows:

xS = xB + (yB − yS) tan η, (2.5)

where η is the inclination of the sonic line and can be estimated by the arithmetic mean of
the inclinations at the two extremities,

η = δd + δs

2
. (2.6)

By substituting the coordinates (2.3) of point S into (2.5), we obtain

(xD − xA)√
1 − k2cot2θS

+ xA = xB +
[

yB − k2(xD − xA) cot θS√
1 − k2cot2θS

]
tan η. (2.7)

This equation establishes the relationship between xD and xA, from which we can solve
for xA:

xA = (1 + k2 cot θS tan η)xD −
√

1 − k2cot2θS(xB + yB tan η)

1 + k2 cot θS tan η −
√

1 − k2cot2θS
. (2.8)

Through the above derivation of the geometric relationship, only the quantity xD remains
to be determined for the prediction of the detached shock DS. To determine this value,
the continuity relation should be applied to the control volume surrounded by the body
contour, the detached shock, the sonic line and the symmetry plane (or the x-axis), i.e. the
subsonic flow through the shock segment SD is isentropically accelerated to the speed of
sound and across the sonic line. As the distribution of the flow variables along the sonic
line is unknown, the stagnation pressure immediately behind the shock is applied for the
calculation. For planar flow, the average value of this quantity can be approximated by
using the stagnation pressure PC behind the shock at the yC = yS/2. By denoting the
stagnation pressure of the free stream and the contraction ratio required to decelerate
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Figure 4. The non-dimensional shock standoff distance l/r for a cylinder as a function of the free stream
Mach number M0 obtained by different methods.

the free stream to sonic velocity isentropically as P0 and σ , respectively, the simplified
continuity equation may be expressed as

AS = σA0
P0

PC
, (2.9)

where A0 is the projected height of the shock segment SD on the free stream direction and
AS is the length of the sonic line BS, i.e.

A0 = yS, (2.10)

AS = yS − yB

cos η
. (2.11)

Figure 4 provides a comparison of the non-dimensional shock standoff distance l/r
estimated by the continuity method with the theoretical method of Sinclair & Cui (2017),
the experimental results of Alperin (1950), Kaattari (1961) and Kim (1956), as well as the
inviscid computational fluid dynamics (CFD) results of this work. While both theoretical
methods have been found to exhibit good agreement with the experimental and simulation
results for low free stream Mach numbers, it has been noted that the method of Sinclair &
Cui (2017) shows some deviation at higher Mach numbers. At the same time, the continuity
method can present excellent agreement across the entire range of Mach numbers from 1
to 10. This result indicates that the continuity method is a reliable and robust approach
for modelling the supersonic flow around a cylinder, especially at higher Mach numbers.
Moreover, this method also applies to bodies with a variety of contour shapes, such as
ellipses, wedges, etc., with minor modifications of the shoulder.

Figure 5 further compares the non-dimensional shock standoff distance l/r for swept
cylinders between the theoretical results and viscous CFD results. The sweep angle β is
fixed at 24◦ in figure 5(a) and the free stream Mach number M0 is fixed at 6 in figure 5(b).
It is observed that the theoretical estimations closely agree with the numerical results for
relatively large sweep angles (β > 24◦) and free stream Mach numbers (M0 > 6), although
viscosity effects have not been considered in theoretical prediction. This indicates that the
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Figure 5. The non-dimensional shock standoff distance l/r for swept cylinders obtained by theoretical method
and numerical simulations as the function of (a) the free stream Mach number at a fixed sweep angle of 24◦
and (b) the sweep angle at a fixed free stream Mach number of 6.

shock standoff distance is rarely affected by the boundary layer on the straight branch in
the present conditions. The difference between the theoretical and CFD results for small
values of β and M0 is mainly caused by the limited length of the straight branch (Zhang
et al. 2021). Generally, it is harder for a DS to achieve the fully developed state due to
the weaker vertical compression when the flow component M0 sinβ is small. Therefore,
this study focuses on cases in which the vertical Mach number component is relatively
large. Also, the method is not applicable when β is large enough to make the flow behind
the DS subsonic, where disturbances generated by the crotch of the VBLE may affect
the upstream flow and the shape of the DS. This limitation, however, does not impact the
current investigation, as the MR structure and the CS at the crotch cannot be generated
under such a condition.

2.1.2. The crotch
Apart from solving the DS of the straight branch, the continuity method can also be
utilized for the three-dimensional interaction structure of the primary MR at the crotch
with reasonable simplification and assumption of the flow behaviour. Figure 6 presents
the primary MR configuration and the secondary interactions of the TS at the crotch in
the x–z symmetry plane. In figure 6(a), it can be observed that a pair of DSs with standoff
distance l and shock angle β from opposite families meet in front of the crotch, producing
a Mach stem MS and two triple points T. The transmitted shock TS and the shear layer
SL emanate from point T. The vertical distance between two triple points is defined as
the MS height Hm. The horizontal distance between the triple point T and the stagnation
point of the crotch is denoted as the triple point position d. By positioning the origin at
the stagnation point O, the geometry equation of the shock waves and wall surfaces in the
plane can be easily established. To begin with, we can describe the contour of the wall by
employing the radius R of the crotch and the half-span angle β,

the crotch: z = ±[−
√

R2 − (x + R)2], (2.12)

the straight branch: z = ± tanβ
(

x + R − R
sinβ

)
, (2.13)
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Figure 6. The primary MR configuration at the crotch of VBLEs, (b) the secondary interaction between the
TS and the SS, (c) the secondary MR and (d) the secondary RR between the TS and the CS.

where the signs − and + represent the contour at the upper and lower branches,
respectively. According to the analysis in § 2.1.1, DS is an oblique shock parallel to the
straight branch with a standoff distance l. Thus, the geometry of DS can be expressed as
follows:

z = ± tanβ
(

x + R + l − R
sinβ

)
. (2.14)

With (2.14), it is possible to derive an expression that relates the coordinates of the point
T to the MS height Hm:

xT = − Hm

2 tanβ
− R − l − R

sinβ
,

zT = ±
(

−Hm

2

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.15)

Downstream of the triple point T, the TS will form a secondary RR or secondary
MR interaction with the separation shock SS or the curved shock CS generated on the
converging wall. The different secondary interaction types in the black box are enlarged in
figure 6(b–d). Behind the MS, the shear layer-bounded supersonic jets travel downstream
along the wall and collide near the stagnation point, forming a large counter-rotating vortex
pair (CVP). Due to the impact of the CVP, the MS sometimes appears as an arch shape with
a raised middle. Given the diversity and complexity of these secondary flow structures, this
study focuses only on the primary shock structures, and the interactions between the TS
and the SS or CS are ignored. To clarify the analysis, the MS and the TS are both assumed
to be straight and do not experience any deformation. The TS is extended linearly to point
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Figure 7. The simplified three-dimensional shock interaction configuration of the primary MR at the crotch.

O2 on the body contour. Then the geometric equation of the TS can be written as

z = ±[− tan θTS(x − xT)+ zT ], (2.16)

where θTS is the angle between the TS and the free stream direction, which can be
expressed as the function of the free stream Mach number M0 and the DS angle β through
the use of the shock relations and the three-shock theory (von Neumann 1943, 1945). At
the same time, the triple point T is projected to point O1 on the wall along the free stream
direction. The coordinates of the points O1 and O2 can be solved by using the geometric
equations (2.12)–(2.13) and (2.16).

With these simplifications, the shock structure of the primary MR configuration can
be described graphically in the three-dimensional space, as shown in figure 7. In the
illustration, the grey surface is the body contour (BC) of the VBLE. The green surface,
red surface and purple surface positioned around the BC represent the detached shock
wave DS, the Mach stem MS and the transmitted shock wave TS, respectively. The orange
surface, referred to as the side surface, is parallel to the x–y symmetry plane and the triple
point T is located on it. The line DT is the intersection of the MS and the x–z symmetry
plane and OO1 is the line where the BC intersects the plane. The SS1 and BB1 represent
sonic lines on the MS surface and the BC, respectively, and the blue area enclosed by
them is defined as the sonic throat (ST). The colour of the surfaces and the labels of the
points in the x–z symmetry plane are all consistent with those in figure 6. The origin of the
coordinate is still positioned at the stagnation point O.

Next, we will employ the simplified continuity method to the control volume encircled
by the Mach stem MS, the body contour BC, the side surface, the sound throat ST and the
two symmetry planes. It is assumed that the MS is hyperbolic both in the x–y symmetry
plane and the side surface. The geometrical equation of the MS in the x–y symmetry plane
follows (2.1), while the equation describing its geometry in the side surface is expressed
as

y = k
√

[(x − xO1)− (xA1 − xO1)]2 − (xT − xA1)
2. (2.17)
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In the equation, xO1, xA1 and xT are the x-coordinates of the points O1, A1 and the triple
point T, respectively (A1 is the intersection of the MS asymptote and the x–z symmetry
plane in the side surface and can be solved by applying the same method described in
§ 2.1.1). Based on the derivation presented above, one can determine the three-dimensional
geometry of the shock waves with the MS height Hm when the free stream parameters and
the VBLE geometry are fixed. Similarly, to determine the height, the continuity relation
is applied to the control volume. At this time, aside from the subsonic flow entering from
the MS, the control volume is also receiving a supersonic jet entering via the side surface.
It is assumed that both of these flows undergo isentropic acceleration or deceleration to
reach the speed of sound within the control volume before exiting through the sonic throat
ST. Given the unknown distributions of flow variables through both the ST and the side
surface, the stagnation pressure is still used for the calculation. The average stagnation
pressure of the flow through the MS is approximated by using the stagnation pressure PC
behind it at yC = yS/2. The flow parameters through the side surface are estimated by the
values in the x–z symmetry plane. By using PDS and PTS to denote the stagnation pressure
behind the DS and the TS, the contraction ratio required to decelerate the flow in front of
the side surface to sonic velocity can be approximated as follows:

σSide = σDS
PDS

PTS

dT1

l
, (2.18)

where σDS is the contraction ratio required to decelerate the flow behind the DS to sonic
velocity isentropically. When calculating PTS, the shock angle of the TS is averaged by the
value at the triple point T and the point O2. Then the simplified continuity equation can be
written as follows:

AST = σAMS
P0

PC
+ σsideASide, (2.19)

where AST , AMS and ASide represent the projected area of the ST, the MS and the side
surface on the flow direction through them, respectively. The above process establishes
the correlation between the MS height and specific free stream and geometric conditions.
In the calculation, an initial value for the MS height is first assumed. Using this initial
estimate, the three-dimensional interaction geometry can be calculated. Next, we assess
whether the simplified continuity equation (2.19) is met. If not, the MS height value is
adjusted, and the complete process outlined above is repeated until a converged value for
Hm is achieved.

The above process enables the determination of the triple point position. It is worth
noting that while the process ignores the secondary interactions between the TS and the
CS or CWs, solving for the CS is still essential when studying the transition between the
primary MR and sRR. This is because the transition boundary is jointly determined by
the position of the CS and the triple point. Given a linear decrease in Mach number along
the stagnation line behind the DS, one can use theoretical estimates to determine the local
temperature, velocity components and flow deflection angles θ from the DS to the wall.
This is possible as the inviscid flow behind the DS in the x–z symmetry plane is isentropic.
With the flow variables behind the DS, the parameters associated with the CWs and the CS
can be solved through an analytical, iterative method (Emanuel 1982, 1983). The detailed
solving process has been outlined in Zhang et al. (2021), and the approach used in this
paper is consistent with it. In the current study, the solved positions of the CS were only
used for identifying the primary interaction type.
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(b)(a)

Figure 8. (a) Computational domain and boundary conditions. (b) Grid near the crotch with a quarter of the
domain removed.

2.2. Numerical methods
This paper uses numerical simulations as a reference to support the theoretical results.
The numerical simulations are carried out with a Reynolds-averaged Navier–Stokes
solver based on the finite volume method. The inviscid flux is solved using Roe’s flux
differencing scheme (Roe 1981). The viscous terms are discretized using the second-order
upwind scheme. The turbulence is modelled using the one-equation Spalart–Allmaras
model (Spalart & Allmaras 1992). The air is assumed to be a calorically perfect gas with
a constant specific heat ratio γ of 1.4. The molecular viscosity of the gas is assumed
to obey Sutherland’s law. Figure 8(a) depicts a three-dimensional computational domain
with boundary conditions including inflow, outflow and solid wall. The inflow boundary
conditions adhere to the experiments conducted by Zhang et al. (2021), which encompass
a free stream Mach number M0 of 6, static pressure p0 of 1247 Pa and static temperature
T0 of 122 K. At the outflow boundary, the static pressure was prescribed, and all other flow
quantities were extrapolated from the interior. No-slip and isothermal conditions were
applied on the solid wall with a fixed temperature of 300 K. The numerical approaches
are consistent with the previous study of Zhang et al. (2021). In their work, the complex
shock structures and vortical flows, such as the incident shock/turbulent boundary layer
interaction and shock interactions on VBLEs, can be well captured at a free stream Mach
number of 6. In this section, the convergence of the methods across a broader range of
Mach numbers is verified.

Figure 8(b) depicts the grid distribution near the crotch with a quarter of the domain
removed, where ξ , ζ and ψ refer to the numbers of grid points along the wall-normal,
circumferential, and spilling directions around the crotch, respectively. The surface cell
thickness yields a wall y+ of less than 1, and the grid size increases gradually away from
the wall. The numerical solution was considered converged, when the stagnation point
pressure and heat flux were kept less than 0.1 %, along with the stability of continuity
and velocity residuals. Given the intricate nature of the vortical flows at the crotch, the
three-dimensional calculations in the present study do not use any assumed symmetric
boundary.

A typical VBLE with β = 24◦ and R/r = 3 (i.e. R = 6 mm) is used to study the grid
resolution for a more accurate result. Three different grid scales are employed to analyse
the influence, that is, coarse grid, fine grid and refined grid, as given in table 1. The surface
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Case ξ × ζ × ψ (the crotch) Surface cell thickness Total cell number

Coarse grid 175 × 240 × 150 1 × 10−6 m ∼ 6.3 × 106

Fine grid 200 × 280 × 160 5 × 10−7 m ∼ 9.0 × 106

Refined grid 300 × 420 × 240 3 × 10−7 m ∼ 3.0 × 107

Table 1. Grid scales used in the grid resolution analysis.

Refined grid

Fine grid

(b)(a)

Figure 9. The Mach number contours at the crotch in the x–z symmetry plane using fine and refined grid
densities: (a) M0 = 6; (b) M0 = 10.
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(b)(a)

Figure 10. Wall pressure distribution on the centreline (y = 0) of the crotch in the grid resolution analysis:
(a) M0 = 6; (b) M0 = 10.

cell thickness of the coarse, fine and refined grids was 1 × 10−6 m, 5 × 10−7 m and
3 × 10−7 m, respectively. In figure 9, the Mach number contours at the crotch in the x–z
symmetry plane are displayed for different free stream Mach numbers (M0 = 6 and 10)
using two grid densities (the fine and refined grids). Although slight differences exist in
terms of the flow details, the main flow structures in both grid densities are similar and
well captured across the range of Mach numbers.

Figure 10 compares the wall pressure distributions on the centreline (y = 0) of the crotch
for Mach numbers 6 and 10 obtained using the three grid scales. The picture displays
excellent agreement between the pressure obtained from all three sets of grids for both

975 A45-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

86
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.866


T. Zhang, J. Cheng, C. Shi, C. Zhu and Y. You

M0 = 6 M0 = 10

Case Hm (mm) Hm (%) Hm (mm) Hm (%)

Coarse grid 5.901 0.102 6.859 0.117
Fine grid 5.898 0.051 6.852 0.015
Refined grid 5.895 — 6.851 —

Table 2. The MS heights Hm in the symmetry plane in the grid resolution analysis.

Exp. Exp.

CFD CFD

(b) (c)(a)

Exp.

CFD

Figure 11. Comparison between the experimental results reported by Zhang et al. (2021) and the numerical
simulations: (a) R/r = 1; (b) R/r = 3; and (c) R/r = 5, at M0 = 6 and β = 24◦.

Mach numbers. Furthermore, as an important parameter of the primary MR configuration,
the MS heights Hm in the symmetry plane obtained from the three different grid scales are
presented in table 2. All variations in the percentages of Hm are calculated with respect to
the refined grid. There are negligible differences between the three different grid scales.
In particular, the variations in the MS height Hm between the fine and refined grids are all
below 0.1 %. This emphasizes that the fine grid is sufficiently accurate for the simulations
and was used throughout the paper.

The validity of the numerical simulations was assessed by comparing them with the
experimental results reported by Zhang et al. (2021), as shown in figure 11. The schlieren
images captured by the experiments are directly compared with the CFD results. It is
observed that the numerical simulations accurately capture the shock waves in front of the
crotch, pointing to the reliability of the numerical method employed in this study.

3. Results and discussion

In this section, the shock structures of the primary MR generated on VBLEs will be studied
using the theoretical and numerical methods presented in § 2.2. Based on the theoretically
predicted position of the shock configurations, the transition boundary between the
primary MR and sRR is then provided.

3.1. Overall configuration
Figure 12 displays the theoretical shock configurations and the numerical Mach number
contours under the conditions M0 = 6 and β = 24◦. Good agreement is observed between
the theory and CFD results for different values of the ratio R/r. In figure 12(a), the flow
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Figure 12. Comparison of the theoretical shock configurations with the numerical Mach number contours:
(a) R/r = 1; (b) R/r = 3; and (c) R/r = 4, at M0 = 6 and β = 24◦.

structure corresponding to R/r = 1 is illustrated. In this example, the transmitted shocks
TSs emanating from the triple points impinge on the wall and induce local boundary layer
separation. As a result, there is no CS generated from the elbow. It is worth noting that
while there is a slight discrepancy in the position of the triple point between the theory
and numerical calculation, the theoretical MS height closely aligns with the CFD results.
As such, it is apparent that the disparity in the triple point position can primarily be
attributed to the deviation in the standoff distance of the DS. Figure 12(b) depicts the flow
structure corresponding to ratio R/r = 3. Along with the disappearance of the separation,
the curved shock CS generates along the converging wall and forms a secondary MR
with the transmitted shock TS. The collision of the supersonic jets from the TS and CS
at the stagnation point of the crotch result in the formation of the CVP behind the MS.
The middle part of the MS curves upstream due to the impact of the CVP. Although
these secondary interaction configurations cannot be predicted by the theoretical method,
the position of the triple point T and the CS can both be accurately captured. As the
ratio R/r further increases to 4, the secondary MR gradually transition into secondary
RR configuration, as demonstrated in figure 12(c). One can determine the location of
the interaction point by solving the intersection between the TS and the CS. Under this
condition, the secondary interaction point IP2 is far from the triple point T of the primary
MR configuration. If R/r continues to increase, IP2 will approach the triple point, thereby
transforming the primary shock structure into an sRR. In general, though the details of the
flow cannot be obtained, the overall configurations are well predicted by the theoretical
method for different situations.
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Conditions l/r d/r

Case M0 R/r β (deg.) CFD Theory Experiments (Zhang et al. 2021) CFD Theory

1 6 1 24 0.838 0.927 1.626 1.547 1.762
2 6 1 29 0.726 0.735 1.594 1.533 1.421
3 6 3 24 0.852 0.927 1.123 1.056 1.131
4 6 4 24 0.860 0.927 1.098 1.016 1.068
5 6 4 40 0.570 0.566 1.107 1.033 1.001
6 8 3 24 0.643 0.653 — 0.911 0.867
7 10 3 24 0.540 0.546 — 0.844 0.810

Table 3. Normalized standoff distances of the DS and positions of the triple point for various conditions.

Furthermore, the shock angles of the DS, as observed in figure 12, are almost identical to
the half-span angle β = 24◦ of the straight branch. This value is below the minimum angle
of the incident shock needed for the existence of MR determined by the von Neumann
criterion, which is approximately 29◦ at M0 = 6. This indicates that the reflection types
are inverse MRs, in which the SL is deflected upwards at the triple point (Ben-Dor 2007).
In steady, two-dimensional oblique shock MRs, an inverse MR cannot occur due to the
requirement of forming the sonic throat via the compression of the SL and the reflecting
surface. However, based on the theoretical model presented in this paper, it is apparent
that in the three-dimensional shock MRs on VBLEs, the sonic throat is formed between
the MS and the wall surface. This explains why the occurrence of the inverse MRs depicted
in figure 12 is not restricted by the von Neumann criterion.

Table 3 presents a comparison of the non-dimensional standoff distances of the DS
at the triple point and the triple point positions for various free stream Mach numbers
and geometric parameters between the experimental results of Zhang et al. (2021), the
numerical simulations and the theoretical predictions presented in this study. Overall,
the theoretical prediction is in good agreement with the experimental and numerical
results within a diverse array of parameters. Depending on the conditions, the theoretical
predictions for the triple point positions can be either larger or smaller than the
experimental and numerical results while the numerical calculations are consistently
slightly smaller than the experimental measurements. This may be attributed to the
assumptions used in the current model, such as the neglect of the boundary layer and
the secondary interactions of the TS, as well as the uncertainty of the experiments and the
numerical code used. Moreover, an inspection of the table indicates that for the same M0
and β values, the numerical calculated standoff distance l slightly grows with the increase
of the ratio R/r (in cases 1, 3 and 4). This is because, under this condition, the vertical
compression is not strong enough for the DS to attain a fully developed state over a limited
length of the straight branch. In other words, the DS is still in the developmental stage. As
the R/r increases, the triple point shifts downstream relative to the elbow (as observed in
figure 12), and the DS gradually moves towards a fully developed state.

Based on the findings from figure 12 and table 3, the position of the triple point is
observed to be sensitive to the free stream condition and geometric parameters, particularly
the R/r ratio. The theoretical model developed in this study can accurately predict this
value across a broad range of conditions and situations. Consequently, this theoretical
model can be relied upon to study the three-dimensional shock MRs on VBLEs.

975 A45-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

86
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.866


Mach reflection on VBLEs

6

Theory

CFD

Theory

CFD

Theory

CFD

Exp. (Zhang et al. 2021)

3

2

1

0

5

4

3H
m

/r

2

1

0
1 2 3

R/r

d/r

3

2

1

0

–1

–2

d 1
/r

4 5

1 2 3

R/r
4 5

1 2 3

R/r
4 5

(b)(a)

(c)

Figure 13. Normalized theoretical results, experimental measurements of Zhang et al. (2021) and numerical
simulations for ratio R/r ranging from 1 to 5 at M0 = 6 and β = 24◦: (a) the MS height Hm; (b) the triple point
position d; and (c) the relative position d1 of the triple point T and the elbow.

3.2. Parametric analysis
This subsection provides a parametric analysis of the MR configuration in a parameter
space of the ratio R/r (§ 3.2.1), the half-span angle β (§ 3.2.2) and the free stream Mach
number M0 (§ 3.2.3), utilizing both theoretical methods and numerical simulations.

3.2.1. The ratio R/r
Figure 13 shows the theoretical results for the geometric variations of the shock
configuration at M0 = 6 and β = 24◦, alongside the experimental results of Zhang et al.
(2021) and the numerical results. The MS height Hm and the triple point position d are
displayed as a function of the ratio R/r in figure 13(a,b), respectively. To represent the
relative position of the triple point T and the elbow, the horizontal distance between T and
the elbow is defined as the relative position d1 and displayed in figure 13(c). This value of
d1 is crucial to the transition of primary MR and sRR. When T is upstream of the elbow,
d1 is negative, and when T is downstream, d1 is positive. The Mach number contours
corresponding to R/r = 1, 3 and 4 have been provided in figure 12. It can be observed that
as the R/r ratio increases, the MS height increases quite rapidly while d decreases before
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experiencing a slight increase. Meanwhile, d1 continues to increase, which indicates that
the triple point consistently shifts downstream relative to the elbow throughout the increase
in R/r. This phenomenon makes it easier for the CS to intersect the DS, resulting in a
considerable impact on the transition from the primary MR to sRR.

In figure 13, the geometric variations of the shock configurations are accurately captured
by the theoretical model. Actually, the trend is not hard to comprehend. When the R/r
ratio is small, the gap between the two DSs is minimal. Inflow through the side surface
constitutes a substantial proportion of the flow, resulting in an upstream movement of the
MS. With the growth of R/r, the distance between the DSs widens, leading to reduced
influence of the flow through the side surface and a downstream movement of the MS.
Moreover, as R/r increases, the distance between the DSs at a given x-coordinate increases
linearly. As a result, since the variation of the triple point position with the ratio R/r
is relatively small, the increase in MS height Hm is nearly linear, as demonstrated in
figure 13(a). At the same time, d1 generally inclines more slowly as the triple point
approaches the surface (otherwise the flow through the side surface may be choked), as
shown in figure 13(c). The variation of d can be explained by the geometry of the crotch.
For the arc surface, d can be expressed as a function of R and d1 as follows:

d = R(1 − sinβ)− d1. (3.1)

When half-span angle β is fixed, the first term of (3.1) is proportional to R. Therefore,
when the increase rate of d1 is sufficiently low, d may increase proportionally with the
increases of the R/r ratio, as demonstrated in figure 13(c). Furthermore, for smaller R/r
ratios, the MS height predicted by the theoretical method is closer to the CFD results,
however, the deviations in the triple point positions d and d1 are larger. This is attributed
to the fact that the DS has not reached its fully developed state, as discussed in the previous
section. As the R/r ratio increases, the triple point moves downstream resulting in a
decrease in the deviation. The discrepancy also decreases as the free stream Mach number
and half-span angle increase.

Figure 14 further compares the theoretical results with the experimental results of
Zhang et al. (2021) and the numerical results at M0 = 6 and β = 40◦. The corresponding
theoretical shock configurations and numerical Mach number contours are displayed in
figure 15(a–c) (R/r = 1, 3 and 5). It is apparent that in this case, the increase in MS
height Hm continues to exhibit an almost linear trend. However, the difference lies in the
fact that the triple point position d shows a monotonically decreasing trend. It is worth
mentioning that there is a point E on these curves, across which the trend changes slightly.
Point E aligns with the moment when the transmitted shock TS collides with the junction
of the straight branch and the crotch. To the left of this kink point, the TS hits the straight
branch, as depicted in figure 15(a), where R/r = 1. Consequently, at this condition, no CS
is generated, albeit the separation induced by the TS is less severe compared with that of
β = 24◦ (figure 12a). The weaker separation is probably due to the reduction in the flow
velocity behind the DS and the shock intensity of the TS, as well as the lack of the pressure
gradient caused by the convergence surface of the crotch. In addition, the numerical
simulation of this condition reveals an evident asymmetrical MR configuration in the flow
field. The phenomenon has been attributed to the instabilities of the SL and the supersonic
jet by Xiao et al. (2018). The asymmetric configuration arising from the symmetric leading
edge implies the potential for a dual solution, which is of relevance to the initial flow
conditions. By adjusting the boundary conditions, Xiao et al. (2018) were able to obtain
a mirror-symmetrical solution in addition to the original one. This asymmetry can also
be responsible to some degree for the discrepancy between the theoretical predictions and
numerical results.
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Figure 14. Normalized theoretical results, experimental measurements of Zhang et al. (2021) and numerical
simulations for ratio R/r ranging from 1 to 5 at M0 = 6 and β = 40◦: (a) the MS height Hm; (b) the triple point
position d; and (c) the relative position d1 of the triple point T and the elbow.

As the R/r ratio increases, the point where the TS intersects the wall will shift
downstream and cross over the elbow. For R/r = 3, where the TS collides with the crotch,
a sequence of CWs emerge from the elbow, as shown in figure 15(b). To represent these
CWs more clearly, contour lines have been made denser in the enlarged view. It is observed
that these CWs intersect with the TS before merging into a CS due to the decrease in
the flow Mach number behind the DS caused by the large half-span angle β. Hence, the
point where the first CW intersects with the TS is defined as the interaction point IP2.
The coalescence of IP2 and the triple point is considered the symbol of the transition
from the primary MR to sRR. Moreover, as a result of the decrease in the flow Mach
number behind the DS, the bulge in the middle of the MS shrinks. Under this condition,
the triple point predicted by the theory deviated to the downstream significantly compared
with the numerical simulation. This discrepancy will lead to an earlier transition from the
primary MR to sRR. At R/r = 5, as illustrated in figure 15(c), the theoretically predicted
configuration has transitioned to an sRR, whereas the numerical result remains an MR. The
earlier transition is also partly due to the deviation of the CWs, which could be attributed
to the boundary layer effects near the wall.
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Figure 15. The theoretical predicted shock configurations and the numerical Mach number contours at
M0 = 6 and β = 40◦: (a) R/r = 1; (b) R/r = 3; and (c) R/r = 5.

From the above analysis, it can be inferred that the transition from primary MR to sRR
can be triggered by the R/r ratio through its impact on the relative position between the
triple point and the elbow, as well as the shape of the CS or CWs. The position of the triple
point is mainly determined by the flow proportion through the side surface, which closely
depends on the geometry.

3.2.2. The half-span angle β
The geometric variations of the shock structures for half-span angle β ranging from
24◦ to 48◦ at M0 = 6 and R/r = 3 are depicted in figure 16. The shock configurations
and numerical Mach number contours corresponding to β = 28◦, β = 36◦ and β = 44◦
are provided in figure 17. It is apparent that under these circumstances, the MS height
and the triple point position are not significantly affected by β. This is consistent with
the experimental results of Zhang et al. (2021) for R/r = 1. According to (2.18), the
phenomenon may be attributed to the simultaneous reduction of the standoff distance l
of the DS and the flow Mach number behind it accompanied by the increase of β. The
former results in the reduction of the area for the flow behind the DS to pass through, and
the latter leads to the increase of the contraction ratio required to decelerate the flow to
sonic velocity isentropically.

It is worth noting that the function of the MS height Hm with respect to β shows an
S-shape in figure 16(a). Since the triple point position d is almost independent of the angle
(figure 16b), the fluctuations in MS height are primarily attributed to variations in the
shock angles and positions of DSs in the x–z symmetry plane. On one hand, the reduction
in the standoff distance l indicates that the DS is shifting towards the straight branch and,
as a result, the distance between the two DSs widens. The shift becomes less notable when
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Figure 16. Normalized theoretical results and numerical simulations for half-span angle β ranging from 24◦ to
48◦ at M0 = 6 and R/r = 3: (a) the MS height Hm; (b) the triple point position d; and (c) the relative position
d1 of the triple point T and the elbow.

β becomes larger, as illustrated by figure 5(b) in § 2.1.1. On the other hand, as the β angle
increases, the effect of the change in the DS angle on the increase of MS height becomes
more significant, which is determined by the triangular relationship. Therefore, the MS
height increases more quickly at smaller and larger β angles, while the increase rate is
slower in the middle range of β. From figure 16(c), it is observed that the relative position
d1 of the triple point T and the elbow showed a decreasing trend. Since the triple point
position d remains almost constant, the reduction in d1 is primarily a result of the shift in
elbow position, which moves downstream as β increases. The decrease of d1 hinders the
transition from the primary MR to sRR. However, the decrease of the standoff distance
l and the change of the shape of the CS and CWs caused by the reduction of the flow
Mach number behind the DS will facilitate the transition. Indeed, during the process of
increasing β, the transition between the primary MR and sRR is non-monotonic, which
will be discussed in § 3.3.

In the Mach number contours shown in figure 17, the shock configurations
corresponding to different half-span angles are basically consistent. In figure 17(a), the
CWs generated from the curved wall converge into a CS and the CS intersects the TS.
In figures 17(b) and 17(c), these CWs intersect with the TS before they coalesce into a
CS. The secondary interaction configurations between the TS and the CS or CWs are
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Figure 17. The theoretical predicted shock configurations and the numerical Mach number contours at
M0 = 6 and R/r = 3: (a) β = 28◦; (b) β = 36◦; and (c) β = 44◦.

all RRs. Nonetheless, despite a minimal change in shock configuration, the bulge in the
middle of the MS became considerably smaller with increasing β. As mentioned above,
the deformation of the MS is induced by the CVP generated by the supersonic jets moving
downstream along the wall and colliding near the stagnation point. As the flow Mach
number behind the DS decreases, the velocity of the supersonic jets also diminishes,
leading to a reduction in the accumulation effects caused by these supersonic jets.

Generally, the half-span angle β has two main effects on the transition from the primary
MR to sRR: firstly, it impacts the shapes of the CS and CWs by altering the inflow
conditions in front of them; secondly, it impacts the relative position of the elbow and
triple point T. The two effects oppose one another as β increases. The former promotes
the transition from MR to sRR, while the latter hinders the occurrence of the transition.

3.2.3. The free stream Mach number M0
In addition to demonstrating the impact of the geometric parameters on the shock
interaction structure, the theoretical model presented in this study can also precisely
predict the influence of the incoming flow conditions on the interaction. As shown in
figure 18, the height of the MS and the position of the triple point for a VBLE configuration
with a ratio R/r = 3 and a half-span angle β = 24◦ under varying free stream Mach
numbers are plotted. The theoretical predictions agree well with the numerical simulations
within the free stream Mach number range of 6 to 10. The shock configuration
corresponding to M0 = 6, 8 and 10 are provided in figure 19(a–c), respectively. As the
free stream Mach number increases, the secondary interaction between the TS and the CS
experiences the transition from MR to RR, while the primary configuration remains MR.
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Figure 18. Normalized theoretical results and numerical simulations for free stream Mach number M0 ranging
from 6 to 10 at R/r = 3 and β = 24◦: (a) the MS height Hm; (b) the triple point position d; and (c) the relative
position d1 of the triple point T and the elbow.

When the secondary interaction is an RR, the distance between the triple point T and the
secondary interaction point IP2 reduces. It appears that transition from the primary MR to
sRR can occur with smaller R/r ratios at higher free stream Mach numbers.

According to figures 18(a) and 18(b), throughout the process of increasing the free
stream Mach number, the MS grows and the triple point moves downstream. Since the
geometry is fixed, this suggests that the spacing between the shock wave and the wall
in the x–z symmetry plane decreases. This is mainly because the isentropic contraction
ratio σ of the flow becomes smaller at higher Mach numbers. The change in MS height
is primarily a result of the decrease in the standoff distance l, which is determined by
the increase in the vertical Mach number component M0 sinβ. Although the downstream
movement of the triple point generates an opposing impact, which lowers the MS to some
extent, it appears to not fully offset the effect of the variation in l.

The change in free stream Mach number also imposes dual effects on the primary MR
and sRR transition by affecting both the relative position d1 and the shape of the CS and
CWs. Firstly, an increase in the relative position d1 (figure 18c) facilitates the transition.
Secondly, an increase in the Mach number behind the DS causes a reduction in the angle
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Figure 19. The theoretical predicted shock configurations and the numerical Mach number contours R/r = 3
and β = 24◦: (a) M0 = 6, (b) M0 = 8; and (c) M0 = 10.

of the CS or CWs and hinders the transition. Overall, it appears that an increase in Mach
number makes it easier for the transition from the primary MR to sRR.

3.3. Transition of the primary MR and sRR
As shown by the comparison results in §§ 3.1 and 3.2, the theoretical model is able to
accurately predict the MR configuration across a broad range of flow and geometric
parameters. Utilizing this, the theoretically predicted position of the triple point and the CS
(or the CWs) can be employed to determine the transition boundary between the primary
MR and sRR. In this section, we first theoretically calculate the transition boundary at a
free stream Mach number of 6 and compare the results with those obtained from numerical
simulations. Subsequently, the theoretically predicted transition boundaries under different
free stream Mach numbers are presented.

Figure 20 displays a comparison of the theoretical transition criterion with the current
numerical results and those of Zhang et al. (2021) at M0 = 6 in the (R/r, β) plane. The
black solid line is the theoretical predicted transition boundary of the primary MR and
sRR. The red dashed line is the transition criterion fitted by Zhang et al. (2021) using
the numerical standoff distances and triple point positions. Their study also provides the
transition criteria between RR and MR, which is, however, beyond the scope of this paper.
Since the numerical calculations conducted in their study were limited to the range of β
between 16◦ and 48◦ (indicated by the circles), the transition criterion is solely applicable
within this range and cannot be predicted for larger β values. To further showcase the
reliability of the theoretical method, we additionally predict the transition boundary for
larger β values of 52◦ and 56◦ while conducting numerical calculations (indicated by
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Figure 20. Theoretical transition boundary of the primary MR and sRR with numerical simulations in the
(R/r, β) plane at M0 = 6.

the boxes). Although there is some deviation, the theoretical transition boundary is in
good agreement with the numerical results. Overall, for β values ranging from 24◦ to
56◦, the theoretical predicted transition boundary is slightly lower than that obtained
through numerical simulations. As deduced in § 3.2, this can primarily be attributed
to the downstream deviation of the theoretical triple point position from the numerical
calculations. Specifically, for small β angles (β = 16◦ and 20◦), the predicted transition
boundary is higher than the numerical results due to the errors in standoff distances.

Furthermore, it is worth noting that the theoretical prediction of the transition boundary
demonstrates a trend of first decreasing and then increasing with the increase of β, whereas
the fitting results exhibit a monotonic decline. Based on the current numerical results at
β = 52◦ and 56◦, it is evident that the prediction of the trend by the theory is correct,
despite some slight inaccuracies. This may be attributed to Zhang et al. (2021) disregarding
the impact of β on the triple point position during the fitting process. According to
this trend, there must exist a minimum point on the transition boundary where the
R/r ratio equals Rm/r. If the R/r ratio is lower than Rm/r, the primary MR cannot
transition to sRR, no matter the value of β angle. In other words, a sRR configuration
does not exist for R/r < Rm/r. Conversely, when the ratio R/r is higher than Rm/r, the
interaction configuration may transition from the primary MR to sRR and then back
to the primary MR with the increase of β. The pressure contours shown in figure 21
illustrate such a transition process. In figure 21(a–c), the ratio R/r is fixed at 5.5 and
β angles are set to 16◦, 40◦ and 56◦, respectively. In figure 21(a), it is observed that
the CWs generated from the crotch coalesce into a CS. The CS intersects transmitted
shock TS downstream of the triple point T at IP2. Therefore, the flow configuration is
an MR, although the secondary interaction point IP2 is close to the triple point. As β
increases to 40◦, shown in figure 21(b), the CWs intersect the DS directly at point IP3
before the formation of the CS. Downstream of IP3, the DS gradually deflects inward
due to the gradual interference from the CWs, forming a curved detached shock (CDS),
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Figure 21. Variations of shock interaction configurations with half-span angle β at M0 = 6 and R/r = 5.5:
(a) the primary MR, β = 16◦; (b) sRR, β = 40◦; and (c) the primary MR, β = 56◦.

which transforms into a BS at the kink point, generating a weak TS and an SL.
Thus, the interaction configuration has successfully transitioned from the primary MR to
sRR. Remarkably, as β is further increased to 56◦, the interaction configuration transitions
back to the primary MR due to the downstream shift of the elbow, as illustrated in
figure 21(c). The MR–sRR–MR transition process depicted in figure 21 provides further
evidence for the validity of the theoretical model.

Figure 22 shows the primary MR and sRR transition boundary depending on the ratio
R/r and the half-span angle β for free stream Mach number M0 ranging from 6 to 10
based on the present prediction. It is evident that the ratio R/r required for the transition
from MR to sRR decreases at higher free stream Mach numbers. Across the varying
M0, the R/r values corresponding to the transition boundary exhibit a consistent trend
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Figure 22. Theoretical transition boundary of the primary MR and sRR in the (R/r, β) plane for different
free stream Mach numbers.

of initially decreasing and then increasing with an increase in β. The minimum point on
every transition line gradually shifts towards smaller β and R/r values with the increase
of M0.

Indeed, thanks to the adaptability of the continuity method, the theoretical model
can also be applied to predict the transition boundaries of VBLEs with more intricate
configurations, like non-uniform bluntness (Wang, Li & Yang 2021), various conic
crotches (Wang et al. 2020) and elliptical cross-sections (Zhang, Wang & Li 2022). The
predicted transition boundaries can offer valuable insight for designing VBLEs, especially
considering the substantial decline in pressure/heating load during the transition (Xiao
et al. 2018; Li et al. 2019).

4. Conclusion

The primary MR configuration of three-dimensional curved shock waves generated on
VBLEs is investigated theoretically and numerically. An innovative theoretical model
is formulated for this configuration. When considering the straight branch, the flow
perpendicular to the straight branch is treated as a two-dimensional supersonic flow around
a cylinder and a simplified continuity method is applied to calculate the position of the DS.
When considering the shock interaction at the crotch, the continuity method is extended to
three-dimensional flow and utilized to predict the interaction structure of the primary MR.
By assuming that the shape of the MS is hyperbolic, a three-dimensional control volume
surrounded by the MS, the side surface and the ST is established. The control volume is
analysed using a simplified form of the continuity equation, allowing for the prediction of
the height of the MS and the position of the triple point. The theoretical model reveals the
mechanism behind the occurrence of inverse MRs on VBLEs, wherein a sonic throat ST
can form between the MS and the wall surface without the compression of the SLs.

The reliability of the theoretical model is proved by the good agreement between the
theoretical predicted triple point positions and the current numerical results, as well as
previous experimental results. By using the theoretical model and numerical simulations,
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the impact of the ratio R/r, the half-span angle β and the free stream Mach number M0
on the primary MR configurations and the MR to sRR transition is examined. It appears
that the increase of R/r and M0 promotes the transition from the primary MR to sRR,
while the effect of β is non-monotonic.

Based on the predicted shock positions of the configuration, the transition boundary
between the primary MR and sRR is derived. At a free stream Mach number of 6,
the theoretical approach accurately predicts the trend of the transition boundary with
verification from numerical results. Under a fixed M0, it is observed that if the R/r ratio
is below a certain threshold Rm/r, the transition from the MR to sRR cannot occur,
despite the value of the half-span angle β. When R/r exceeds the threshold, the interaction
configuration can transition from the primary MR to sRR and then back to the primary MR
upon an increase in β. The transition process has been demonstrated through a series of
numerical simulations with an R/r ratio of 5.5 at M0 = 6.
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