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A DUAL VIEW OF THE CLIFFORD THEORY OF 
CHARACTERS OF FINITE GROUPS 

RICHARD L. ROTH 

I n t r o d u c t i o n . Let G be a finite group, K a normal subgroup of G, % an 
irreducible complex character of G. In the usual decomposition of 

X\KJ using 
Clifford's theorems, G/K is seen to operate by conjugation on the irreducible 
characters of K and if a is an irreducible component of %U» then I(a)} the 
inertial group of o-, plays an essential role as an appropriate intermediate sub
group for the analysis. In this paper we consider the case where G/K is abelian 
and s tudy the action of the dual group (G/K) " (of linear characters of G/K) on 
the irreducible characters of G effected by multiplication. This action appears 
to be related in a dual way to the action of G/K on the characters of K. We 
define a subgroup J(x) of G which plays a role similar to t ha t oil (a) and which 
we call the dual inertial group of x- T h e dual inertial group of J(x) equals the 
inertial group 1(a) precisely in case the ramification index e equals 1 and in 
general [I(a-): J(x)] — e2- T h e results include some conditions t ha t imply 
e = 1 and in general give further insight into the role of the ramification 
index e when G/K is abelian. 

1. B a c k g r o u n d . In this paper all groups are finite and all characters are 
assumed to be characters of representations over the field of complex numbers . 
\G\ denotes the order of a group G; [G:H] denotes the index of a subgroup H 
in G; deg \p means the degree of the character \f/; and 

(x,*) = (VlGI)Zx(g^(g-1) 

is the usual "inner product ." If % is a character of G and K is a subgroup, then 
X\K denotes the restriction of x to K. If \p is a character of K, then \pG is the induced 
character of G. If ^ and x are characters of a subgroup K, then (x//, X)K denotes 
the "inner product" computed over K. 

Let G be a group and K a normal subgroup of G. If a is a character of K 
and g £ G, then a0 is the conjugate character described by as(x) = (r(gxg~l) 
all x £ K. Le t 1(a) = {g\a° = a}, called the inertial group of a. Since a0 = a 
if g Ç K, it is clear t h a t any two representatives of the same coset of G modulo 
K produce the same permutat ion and we may consider G/K to be represented 
in this way by permutat ions of the set of irreducible characters of K. 

Let x be an irreducible character of G and let a be an irreducible component 
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of xU- Then by Clifford's theorem, 
m 

X\K = e X ) <r°\ 

where gi, . . . , gm are coset representatives for G modulo 1(a) and e = eK(x) 
is a positive integer called the ramification index of x with respect to K 
(see, for example, [1, Theorem 49.7, p. 345 and Ex. 1, p. 346; 2, p. 53; 4, 
Chapter 5, Theorem 17.3]). Feit in [2, Theorem 9.11] shows that eK(x) — eKi)P) 
wmere \p is an irreducible component of x|/(<o- For later reference we also quote 
the following result. 

LEMMA 1.1. (see [2, Theorem 9.12]). If I(a)/K is cyclic, then eK(x) = 1. 

A number of basic properties of the character group of an abelian group will 
also be used in this paper. If G is a finite abelian group, let G denote the group 
of one dimensional characters. For the following well-known properties of 
G see, for example, [4, Chapter 5, § 6]. 

LEMMA 1.2. (a) G ^ G. 

(b) There is a one-one correspondence between the set of subgroups of G and 
those of G defined by the mapping K —> KL = {X G G\\(k) = 1, all k G K\, 
for each subgroup K of G. If H is a subgroup of G, then H = K-1 where K = 
{g e G\X(g) = 1, all X Ç H}. H = (G/K) * in this case. 

(c) If K is a subgroup of G, the restriction map (restricting to K the domain 
of the characters of G) is a homomorphism of G onto K with kernel KL. Hence 
K ^ G/K+-. 

(d) {g\\(g) = 1, all X G G] = {1} ; i.e., the trivial subgroup of G corresponds 
to G in the correspondence described in part (b). 

2. The actions of G/K and (G/K)A on the characters. Let K be a normal 
subgroup of G. In this section we list and compare the effects of the action of 
G/K on the characters of K and the action of (G/K) " on the characters of G if 
G/K is abelian. Here (G/K) " denotes the group of one dimensional characters 
of G/K. These may be regarded as the one-dimensional characters of G whose 
respective kernels include K. If X G (G/K) " and x is an irreducible character 
of G, then Xx is also an irreducible character of G. Thus, (G/K) * is represented 
by permutations on the set of irreducible characters of G. As described in § 1, 
G/K is similarly represented by permutations on the set of irreducible charac
ters of the subgroup K, by conjugation, whether or not G/K is abelian. 

THEOREM 2.1. Let x be an irreducible character of G and let G/K be abelian. 
Then the action of (G/K) "fixes x if and only if ex = ^G where \[/ is an irreducible 
component of X\K and e = eK(x)-

Proof. Suppose that ex = ^G- tG(g) ~ 0 for all g G K. Hence Xx = x if 
X G G/K*, since \(g) = 1 for g G K and x(g) = (l/e)*G(g) = 0 if g G K. 
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Conversely, suppose that Xx = x for all X Ç (G/K) *. By Lemma 1.2, part (d), if 
^ ^ , there exists X 6 (G/Z) A with X (g) * 1. X (g)x (g) = x(g)\ hence x fe) = 0 
for all g (£ K. Now let 

m 

X\K = E «*", 

as discussed in § 1. Then 

l=(x,x) = (1/|G|) E x(g)x(g-1) 

= (1/|G|) L x(*)x(*_1) 

= (I*|/|G|)(XU,XU)* 

= W I G l K Z ^ v Z r ' ) * 
= (\K\/\G\)e2m. 

Hence [G:K] = e2m. Now deg î G = [G:K] deg ^ = e2m deg \p, while deg x = 
em deg ^. Hence deg \f/G = e deg %• But e = (xU, \^)^ = (x> \^G) by Frobenius 
reciprocity, so ex = ^ 

COROLLARY 2.2. 7/ (G/K) " jfoces x ^ ^ [G:i£] = e2m where e = e^(x) and 
m = [G: ! (* ) ] . 

As a special case of Theorem 2.1. we have the following corollary. 

COROLLARY 2.3. Let G/K be cyclic and x be an irreducible character of G. Then 
the action of (G/K) " fixes x if and only if there exists an irreducible character \p 
of K such that x = ^G> 

Proof. Since G/K is cyclic, so is I(\//)/K. Hence by Lemma 1.1., e = 
eK(x) = 1. 

(Note that Corollary 2.3 is [5, Theorem 3.1], where it is proved in a different 
manner.) 

THEOREM 2.4. Let K <J G and xbe a character of G which remains irreducible 
when restricted to K. Then the characters Xx are distinct as X varies over the 
irreducible characters of G/K. Further, if 6 is an irreducible character such that X\K 
is a constituent of 6, then 6 is of the form Xx as above. 

Proof. See [3, Lemma 3.1]. 

Note that this theorem (with its proof) is implicitly included in [4, Chapter 
V, Theorem 17.12, p. 572]. 

The converse also holds for the first part of Theorem 2.4. 

THEOREM 2.5. Let K be a normal subgroup of G and let x be an irreducible 
character such that the set of characters {Xx} are irreducible and distinct as X varies 
over the irreducible characters of G/K. Then X\K is an irreducible character of K. 

https://doi.org/10.4153/CJM-1971-096-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-096-6


860 RICHARD L. ROTH 

Proof. Let Xi, . . . , Xr be the irreducible characters of G/K, where Xi is the 
1-character, and let % = Xix, X2x, • • • , Xr% be distinct and irreducible. Let 

X\K = e £ V\ 

where e = eK(x) and m = [G: I(y//)]. Then (X\K, *P) = e and XotU = ««(xU) 
where nt is the degree of \ u i = 1, 2, . . . , r. Hence (Xzx, $G) = (XzxU> ^)K = 
w^, by Frobenius reciprocity. Note that deg(X^x) = nt deg x- Hence 
[G:K]deg* = deg ^ è E w » ^ ( d e g x ) = [G:X>(deg x) ^ [C:^]degX ^ 
[G:iT]deg ^, since \p is a component of xU- Hence deg x = deg \p, e = I and 
xU = ̂ . 

We are primarily concerned with the above two theorems in the case G/K 
abelian. In that case, (G/K) " is said to operate faithfully on x if Xx = x and 
X G (G/K) * imply that X is the 1 character. Restating Theorems 2.4 and 2.5 in 
this case we have the following corollary. 

COROLLARY 2.6. Let G/K be abelian and let x be an irreducible character of G. 
Then %\K is irreducible if and only if (G/K) * operates faithfully on x- If X\K = $ 
is irreducible and 6 is an irreducible character of G such that 6\K = \p, then 6 must 
be of the form Xx for some X £ (G/K) " (i.e., 6 belongs to the orbit of x under the 
action of (G/K) "). 

If \p is an irreducible character of K, G/K will be said to operate faithfully 
on \p if \[/° = \p implies that g Ç K. 

THEOREM 2.7. Let K <\ G and ^ be an irreducible character of K. Then \pG 

is irreducible if and only if G/K operates faithfully on xj/. 

Proof. See, for example, [1, Theorem 45.5, p. 329]. 

THEOREM 2.8. Let K <\ G and let \p be an irreducible character of K. If \j/ extends 
to a character of G, then G/K fixes \p. If G/K fixes \p and either G/K is cyclic or 
(\G/K\, \K\) = 1, then \p extends to a character of G. 

Proof. Since a character of G must be constant on G conjugacy classes, it is 
clear that G/K must fix \p if it extends to G. For the remainder, see [4, Theorem 
17.12, p. 572]. 

The theorems in this section suggest a duality between the action of (G/K) " 
on the irreducible characters of G (when G/K is abelian) and the action of G/K 
on the characters of K. This relationship is most striking when G/K is cyclic. 

Summary for G/K cyclic. Let G/K be cyclic, x be an irreducible character of 
G and \p an irreducible character of K. 

I. (G/K) " operates faithfully on x <=> xU is irreducible. (G/K) " fixes x <=> X 
is induced from a character of K. 

II. G/K operates faithfully on \p t=$ \pG is irreducible. G/K fixes \f/ <=> \p is the 
restriction of a character of G. 
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The above summary describes only the extreme cases for G/K cyclic. The 
general case for G/K cyclic is included in the next section as part of the general 
treatment of the situation when G/K is abelian. 

3. G/K abelian : the dual inertial group. Throughout this section G/K is 
assumed to be abelian. We let % be an irreducible character of G and let (G/K) " 
operate on %. (G/K) A is represented transitively on the orbit of x- Let H be 
the kernel of this representation; since (G/K)* is abelian, i7 coincides with 
the stabilizer of x; he., H = {X G (G/K) A|XX = x}-

Definition. Let J(x) be the subgroup of G such that (J(x)/K)L = H in the 
notation of Lemma 1.2; i.e., J(x) = {g € G\\(g) = 1, all X € H}. Then J(x) 
is called the dual inertial group of x with respect to K, also to be denoted in this 
paper as / , for convenience. 

Note that K <| J <| G. In the usual use of Clifford's theorems one descends 
from G to K in two steps with the intermediate group being I (a), the inertial 
group of an irreducible component of X\K> In this discussion, J(x) is used as the 
principal intermediate subgroup. 

Let 
m 

X\J = E e^\ 
i=l 

with e = ej(x), ^ a n irreducible character of / and gi, . . . , gm coset repre
sentatives of I(\p) in G. By Lemma 1.2, part (b), (G/J) * may be identified with 
i^and since H fixes x by definition, Theorem 2.1 shows that 

ex = }/,Q = (r/,°i)G,i = 1, 2, . . . , w . 

Lemma 1.2, part (c) implies that restricting the characters of G/K to J/K is 
a homomorphism of (G/K) " onto (J/K) * with kernel H. 

Let x = Xi> X2, • . . , Xr be the distinct images of x under the operation of 
(G/K) *. Choose n , r2, . . . , rr £ (G/K) " with r2x = Xn •̂ == 1> 2, . . . , r. These 
are then a set of coset representatives of (G/K) * modulo H. Let Ti\j = Xz-, 
*' = 1, 2, . . . , r. Then (J / iQ A = {Xi, X2, . . . , X,}. 

L e t ^ = \̂ i be a given irreducible component of X|J as above and let X^ = ^-, 
j = 1, 2, . . . , r. We form an m X r tableau of characters with ^/* appearing 
in the ith row and jth column (gi = 1, g2, . . . , gm being a set of coset repre
sentatives for G modulo I(yp)). 

G: x = Xi X2 . . . Xj Xr 

<Al ^ 2 ^ * r | 

W* ^ , » t ^ / 2 ^ / 2 

w< w< * / ' * r " 
y}/^™ f* . . . ^ / » ^/»» 
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THEOREM 3.1 (Properties of the tableau). The rm characters in the tableau are 
distinct. The elements in the jth column are the components of XJ\J while each 
element in row i when restricted to K yields the same irreducible character at and 
<ri,. . . ,<rm

 are distinct and form one orbit under the action of G/K. The rows of the 
tableau are orbits under the faithful action of (J/K) ". The columns are orbits under 
the faithful action of G/I where I = I(\f/), the inertial group of \j/ with respect to G. 

Proof. 

tiG = (\é)G = Td° = era = eXi for i = 1, 2, . . . , r. 

Hence the set \pi, fa, . . . , $r are distinct, (J/K) * acts faithfully on \j/ and 
^i , • • • i ^r is an orbit of (J/K) ". Since G/Jis abelian, J(\f/) is normal in G and 

J (^) = ityoi) for each i. 

Further, X ^ = (\j\p)0 = ^ / for each g in G (and each j = 1, 2, . . . , r) , since 
Xj is the restriction of a character of G. Hence 

/ = m = /(*,) = aw). 
Each column is thus an orbit under the faithful action of G/I and contains m 
distinct characters. Since 

each row is an orbit under (J/K) A. 
Now 

X\J = E eV\ 
so 

X$\i = rjX\j = h(Z e*oi) = £ eXrf* = Z **/'• 

Thus elements in the7th column are the components of XJ\J and ^j-(x) = e = 
CJ(XJ)> ^j0i is an element in the ith column, so 

(W)G = <*, 
(by Theorem 2.1), so two columns have no elements in common. 

Hence the rm characters in the tableau are distinct, since if two were equal 
they would need to be in the same column, and the elements in any column 
are distinct. 

Since (J/K) * acts faithfully on all the elements in the tableau, they each 
restrict to irreducible characters on K, by Corollary 2.6. For each i = 1,. . . , ra, 

V'IK = (X^'OI* for a l l j = 1, 2, . . . , r 
(since K lies in the kernel of \j), so all the elements in a row have the same 
restriction to K. For the ith row let a\ be this character. For convenience we 
will often denote u\ merely as a. Now if i ^ j , then <n 9^ o-j by the second 
part of Corollary 2.6. Further, 

This completes the proof. 
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Continuing to refer to the tableau we prove the following theorem. 

THEOREM 3.2. Let G/K be abelian and x be an irreducible character of G. Let 
J = J(x) be the dual inertial group of % {with respect to K), \f/ an irreducible 
component of X\J and & = \[/\K. Then 

(i) a is irreducible and 1(a) = I(\//). (This subgroup will be denoted as I.) 
(ii) eK(x) — ej(x) (we denote this as "e" for short). 

(iii) We have a chain of normal subgroups I C / C / C G and [I: J] = e2. 
Thus, [G:K] = mre2 where m = [G:I] and r — [J:K] = size of orbit of 
X under the action of (G/K) *. 

( iv) * = l«*J(cr) = J (x ) . 
(v) In general, e2 divides [1(a): K]. 

(vi) vG = e^ Xi where {xi\i = 1, 2, . . . , r} is the set of (distinct) elements 
in the orbit of x under the action of (G/K) ". 

Proof, (i) The irreducibility of a was seen in Theorem 3.1. If ^^ = x// then 
clearly a9 = a, so I(\p) C 1(a). If a9 = a then \p9 is an extension of a to K; 
hence \p9 = \rf for some X, G (J/K) A, by Corollary 2.6. But 

xps — ypsi for Some gi 

and since the elements of the tableau are all distinct, 

}p0i = X ^ 

implies that i = j = 1 and \//9 = \j/. Thus 1(a) C I(\p). 

(ii) 

X\J =T,ej(x)V\ 

hence 

X\K =Hej(x)(T9i. 

As shown in Theorem 3.1, the elements a0i are all distinct, so ej(x) — eK(x)\ 
this is denoted as "e" for short. 

(iii) [G:J] = e2m by Corollary 2.2, where m = [G:I], Since J Ç1 I, we have 
[I: J] = e2 and in the discussion of the tableau it was seen that [J:K] = r was 
the number of distinct characters rx, r Ç (G/K) A. 

(iv) This is immediate from (iii). 
(v) [I:K] = e2r follows from (iii), so e2 divides [I:K]. 

(vi) As seen in proof of (ii), (X\K, <0 = <?• Hence (x, aG) = e by Frobenius 
reciprocity. Since X\K = x*U» (x*i O = e- Now deg o-G = [G:2T|deg a = 
e2 rm deg a, while deg(e £ xO = er deg x = er(em deg cr) == deg aG. Hence 

COROLLARY 3.3. Le£ G/i£ &e abelian. In the action of G/K on the irreducible 
characters of K, the number of orbits equals the number of orbits under the action 
of (G/K) * on the irreducible characters of G. 
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Proof. T o each orbit (xi, . . . , Xr] under (G/K) A the tableau construction 
associates an orbit {alf . . . ,<rm} under G/K consisting of precisely the irreducible 
components of XI\K* By Theorem 3.2, pa r t (vi), the irreducible components 
of <TIG form precisely one orbit under (G/K) * and this was the unique orbit to 
which {(7i, . . . , am] was assigned. 

T h e next theorem considers some conditions under which the dual inertial 
group equals the inertial group. 

T H E O R E M 3.4. Let G/K be abelian. Each of the following conditions implies 

that J(x) = 7(cr). 
(a) 1(a)/J (x) is cyclic. 

(b) \I(v)/J(x)\ and | / ( x ) | ar^ relatively prime. 
(c) \I(a)/K\ and \K\ are relatively prime. 

Proof. I = 1(a) = I(\p) by Theorem 3.2. Hence by Theorem 2.8, conditions 
(a) and (b) each imply t h a t the character \j/ of J(x) extends to an irreducible 
character p of I. Now G/I acts faithfully on p since it acts faithfully on \[/ = p\j. 
Hence pG is irreducible (Theorem 2.7) and 

P% = P7i, 

{gu • • • t gm) being coset representat ives of G modulo / . 

PG\J= (£pdi)\j=Zri-

Hence (pG\Jy rp)j = 1 = Q>G, $G) = (pG, eX). T h u s pG = x and e = 1. T h e 
result follows by Theorem 3.2, pa r t (iv). 

In case (c), a extends to an irreducible character p' on 1(a) by Theorem 2.8. 
T h e n p'\j = \\// (some X G (J/K) A), since these are the only extensions of a to / . 
Let t ing r be a linear character of G/K whose restriction to J is X - 1 (the group 
inverse in (J/K)*), then ( T | / ) ( P ' ) = p, an irreducible character of I which 
extends \p. T h e same discussion jus t given for cases (a) and (b) now completes 
the proof. 

Remark. Case (c) is also covered in [2, Theorem 9.14], 

COROLLARY 3.5. If G/K is abelian, then each of the following conditions 
implies that 1(a) = J ( x ) . 

(i) G/K is cyclic, 
(ii) I(a)/K is cyclic, 

(iii) G/J(x) is cyclic. 

Proof. Each of these conditions implies t h a t I(a)/J(x) is cyclic, which is 
condition (a) of Theorem 3.4. Note t h a t pa r t (ii) also follows directly from 
L e m m a 1.1 and Theorem 3.2, pa r t (iv). 

Note. Since writing and submit t ing this paper, the au thor has become aware 
t h a t some of the results concerning the dual inertial group are to be found in 
Lemma 3.2 of G. J . Janusz ' s paper: Some remarks on Clifford's theorem and the 
Schur index, Pacific J . M a t h . 32 (1970), 119-129. 
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