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One major difficulty in modern microscopy is the identification and quantification of distinct feature clusters 

in micrographs, where the term feature refers to precipitates, grains, pores, oxides, etc. Examples of clustering 

include determining whether a feedstock batch is contaminated, and if so, how many distinct contaminants are 

present, or the number of distinct precipitates in a novel alloy. One method for automating the discovery and 

quantification of such clusters is a two-step Bayesian approach of first applying a Dirichlet process to estimate 

the likely number of clusters, followed by an iterative Bayesian Gaussian Mixture Model to estimate the mean, 

variance, and weight of each cluster. A process flowchart with four-dimensional example Energy Dispersive 

Spectroscopy (EDS) inputs is provided in Figure 1 for reference. The Dirichlet process is a non-parametric 

method for estimating the probability of observation Yk+1 belonging to a new cluster given Yk existing 

observations, “i” existing clusters, and cluster parameter vector α = [α1, …, αi] [1]. A common analogy for the 

Dirichlet process is known as “stick breaking” [2], [3]. Presume that observed continuous measurements 

correspond to several multivariate Gaussian distributions and that the sum of the distribution weights is equal 

to unity. A stick of length one can be used to represent the weight of all distributions; the stick may be broken 

into an infinite number of pieces where each piece represents a unique Gaussian distribution and the length of 

the piece equal to the relative weight of the distribution. The Dirichlet process, therefore, technically describes 

an infinite number of Gaussian distributions. Because it is neither feasible nor efficacious to simulate an infinite 

number of distributions, it is common practice to truncate distributions with negligible contributions and 

instead provide distribution weight estimates over the range of (1, maximum plausible number of distributions) 

[4]. Selection of the maximum plausible number of distributions is subjective; however, there is a negligible 

computation penalty for oversizing the search range. For example, if an alloy family typically has 3-4 

elementally unique phases, selecting a search range of (1, 10) would be reasonable. In the event that the 

Dirichlet process does not find a number of clusters that explains a significant percentage of observations, the 

most likely cause is either A) underestimating the maximum number of clusters or B) that cluster distributions 

are not Gaussian. Once the most likely numbers of distributions have been determined, users iteratively 

perform multivariate Gaussian regressions and incorporate subject matter expert opinion to determine the 

“true” number of distributions. Input data may be either raw elemental percentages or Principal Component 

Analysis’ projections, though the latter adds a layer of obscurification. Alternative unsupervised machine 

learning methods can estimate the single most likely number of clusters and model a Gaussian mixture [5]; 

however, in the context of microscopy it is proposed to be advantageous to insert human supervision and 

review all likely numbers of clusters rather than outputting a single Gaussian mixture model. Non-elementally-

Gaussian corrosion products or precipitates, low sampling rates for rare clusters, and data collection artifacts 

may result in less than ideal data. Therefore, the mathematically most likely number of clusters may not be 

accurate in an application-specific context. The advantages of such an approach are determining the number 

of clusters in a statistically informed manner rather than based on intuition, enabling users to shift time usage 

from manually identifying clusters to higher value activities such as analyzing correlations and investigating 

unexpected clusters, providing the covariance matrix for each cluster, and identifying which measurements 

have a high probability of being outliers. Furthermore, the approach is flexible by accepting any continuous 

variable, and may be implemented at either the pixel-level or feature-level. Implementation at the feature-level 

allows for incorporation of morphological data such as grain size, grain aspect ratio, and crystalline orientation 

from an Electron Backscatter Diffraction scan. The primary limitations of the proposed approach are the 

inability to incorporate categorical data such as crystalline structure and the assumption of clusters being 
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normally distributed. The approach is postulated to be particularly effective when using EDS measurements to 

determine the number of elementally distinct clusters in manufactured materials, as manufacturing variability 

and EDS measurement uncertainty can be reasonably modeled as Gaussian distributions and the calculated 

covariance matrices carry meaningful information on the intra-cluster composition variation. The authors 

present an application case study herein on a novel Oak Ridge National Laboratory developed FeNiCr alloy. 

Early results indicate that certain heat treatments may result in up to six elementally unique metallic and 

precipitate phases in the alloy, resulting in a rich exploratory dataset. A representative Backscatter Electron 

micrograph of the alloy is provided in Figure 2 for reference. The Bayesian machine learning approach outlined 

above is compared to both traditional multi-scale characterization and alternative machine learning methods 

including Principal Components Analysis with respect to determining the number of feature clusters. 
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Figure 1. Process Flowchart for Two-Step Dirichlet-Gaussian Mixture Clustering Approach 
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Figure 2. Sample Backscatter Diffraction Micrograph with Potential Unique Phases Indicated 
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