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Abstract

The notion of an almost Krull domain is extended to rings satisfying a polynomial identity. Some
general structural results are obtained. We also prove that skew polynomial rings R[X, a] remain
almost Krull if R is an almost Krull ring. Finally, we study when semigroup rings R[S] are almost
Krull rings, in the case when the group of quotients of S has the ascending chain condition on cyclic
subgroups. An example is included to show that the general (semi-) group ring case is much more
difficult to deal with.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 15, 16 A 18, 16 A 38.

1. Introduction

In the literature (cf. [9] and [11]) there appears the notion of an almost Dedekind
domain and an almost Krull domain. An almost Dedekind (respectively almost
Krull) domain R is defined as a commutative integral domain such that RP is a
Dedekind domain (respectively Krull domain) for all non-zero prime ideals P of
R. In particular, an almost Krull domain is almost Dedekind if and only if all
non-zero prime ideals are maximal. Moreover, the notion of an almost Krull
domain is closed under polynomial extensions. In this paper we extend this to
rings satisfying a polynomial identity. We obtain some general structural results
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276 E. Jespers and P. Wauters 12 ]

about these rings. We also prove that if R is an almost Krull ring, and if R[X, a]
is a skew polynomial ring which is a prime P.I. ring, then R[X, a] is an almost
Krull ring. Finally, we offer an example of a (commutative) group ring which is
an almost Krull domain but not a Krull domain.

1. Definition and properties

Throughout, all rings are associative with unity. Ideal will always mean
two-sided ideal. If R is a ring satisfying a polynomial identity, then we say, for
brevity, that R is a P.I. ring. We refer to [16] for results on P.I. rings. Spec/?
denotes the set of prime ideals of R. We refer to [13] for the definition of a
maximal order.

DEFINITION 1.1. Let R be a prime P.I. ring with classical ring of quotients Q.
Then R is said to be an almost Krull ring (respectively almost Asano-order) if for
all 0 # p e SpecC (where C = Z(R), the centre of R), Rp= {q e Q\cq e R
for some c & C\p) is a maximal order with centre a Krull domain (respectively
a Dedekind domain).

In particular, if R is a Krull ring, i.e. R is a maximal order with centre a Krull
domain, then it follows from [4] that R is an almost Krull ring. Similarly, if R is
an Asano-order, hence bounded and therefore hereditary (we refer to [4] for
definitions and proofs), then R is an almost Asano-order by [15].

LEMMA 1.2. Let R be an almost Krull ring. Then R is a maximal order.

PROOF. Let / be a non-zero ideal of R, and let a e Q be such that al c /.
then aIRp c IRp for each maximal ideal p of C. Since IRp is a two-sided ideal
of Rp and Rp is a maximal order, it follows that a e Rp. Hence

ae f| *, = *•
p max

Let R be an almost Krull ring. For all 0 * p e Spec C we have that Z(Rp)= Cp

is a Krull domain. Therefore C is an almost Krull domain. In particular, C is
completely integrally closed. Hence, by [17], R is integral over C. Moreover, since
C is also integrally closed, lying over (LO), going up (GU), incomparability (INC)
and going down (GD) hold for prime ideals (cf. [1]).

Ok...
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Let R be an almost Krull ring. Then

(•) * = n RP.
0#/>eSpecC

But each Rp is a maximal order over a Krull domain. So, by [4] (see also [13]),

*,- n (R,)«,

where X\R) denotes the set of height one prime ideals of R. Moreover, each
(Rp)P'. is a quasi-local Asano-order. (A ring R is said to be quasi-local if J(R),
the Jacobson radical of R, is the unique maximal ideal of it and R/J(R) is
Artinian.) Let p- G X\Cp). Then p- = Cppt, where pt = p- n C. By elementary
properties of localisation, it follows that /», G A^C). It is clear that

(••) (*,)„; = *,,
and therefore

Combination of (*) and (* * *) gives R = C\p e x^o Rp. Note that if p G Xl(C),
then Pv̂  is a quasi-local Asano-order by ( • • ) , and so Cp is a discrete valuation
ring.

We remark that in expression ( * * * ) , the set />, e X\C)\pt c /?} is non-empty.
For let 0 */> G SpecC. Then />,, G S p e c ^ ) . Since Cp is a Krull domain,
pp => #' and q' G ^(C^,) . But then q = (tf' Pi C) e ^ ^ C ) and ? c ; .

It also follows from this observation, and from (LO), (INC) and (GD), that if R
is an almost Krull ring and O ^ P e Spec/?, then P z> P' for some P' e X1(R).

If P G A^ /* ) , then p = PnCe X\C) by (GD). Conversely, if p G ^ X ( C ) ,

then, by (INC), there exists P ^ X\R) such that ; = ? n C . So the map
X\R) -» X ^ C ) : P -> (/» n C) is surjective. We show now that it is also
injective. Let p G X\C). Then Rp is a quasi-local Asano-order. Each ideal of Rp

is of the form A p = [c'la\c G C\ />, O G ^ ) , where A is an ideal of R such that
( ^ n C ) c p. In particular, if P G A^fl) is such that P n C = p, then Pp is an
ideal of R. Moreover, it is easy to check that PpC\ R = P, and then it follows
that P is a non-zero prime ideal of Rp. But Rp has only one non-zero prime
ideal, namely J(Rp). So P = J(Rp)n R, i.e. P is completely determined by p,
and so P is unique.

Let P G X\R) and let /> = P n C G ^ ( C ) . Let C(P) (respectively C(P/)))
denote the elements of R (respectively Rp) which are regular modulo P (respec-
tively Pp). It is clear that C(P) c C{Pp). Let x e C(P/;). Then x = x + Pp is
regular in Rp/Pp, which is simple Artinian. Hence 3c is invertible, i.e. a — 1 — xy
G P for some y G R But P' = 7(/? ), so xy = 1 + a is invertible, and so x is
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invertible. Therefore, if x e C(P), then Rpx = xRp = Rp. We claim that C(R)
is a left and right Ore-set in R. For let x G C(P) and a G R. Then Rpx = Rp,
so a = ax for some a G Rp. But jS = ca G /{ for some c G C\/>, and so
ca = fix G C(P )a n /Lc. Similarly, C(P) is a right Ore-set, and it is clear then
that RC(P) = Rp, where RC(P) = {x'xr\x G C(P), r e / ? } . This establishes

LEMMA 1.3. Let R be an almost Krull ring, let P G Xl(R) and let p = (P n C).
Then C(P) is an Ore-set and Rc(P) = Rp-

LEMMA 1.4. L^f i? fee a« almost Krull ring and S a multiplicatively closed subset of
C, where C is the centre of R. Then Rs is again an almost Krull ring, where
Rs = {c"V|c G S, r G R).

PROOF. Each non-zero prime ideal of Z(RS) = Cs is of the form ps, where p is
a non-zero prime ideal of C such that p n S = 0 . But obviously (Rs)Ps — ^^»
which is a Krull ring. Hence Rs is an almost Krull ring.

PROPOSITION 1.5. Let R be an almost Krull ring. Then the following conditions
are equivalent:

(1) R is an almost Asano-order;
(2) C is an almost Dedekind domain;
(3) all non-zero prime ideals of C are maximal;
(4) all non-zero prime ideals of R are maximal.

PROOF. (1) <=> (2): this is clear from the definition of almost Asano-order and
from (INC).

(2) => (3): let 0 ¥= p G SpecC. Then Cp is a local Dedekind domain, hence a
discrete valuation ring. Therefore p is a minimal non-zero prime ideal.

(3) => (2): let 0 * p G SpecC. Then Cp is a Krull domain. But all non-zero
prime ideals of Cp are maximal since the same holds for C. So Cp is a Dedekind
domain.

(3) =» (4): this follows from (INC).
(4) => (3): this follows from (GU).

PROPOSITION 1.6. Let R be an almost Krull ring. Then the following conditions
are equivalent:

(1) R is a Krull ring;
(2) for each r G R which is regular, r £ C{P) for only finitely many P G X\R);
(3) for all 0 # c e C, c G p for only finitely many p G X\C);
(4) C is a Krull domain.
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P R O O F . (1) => (2) : this is clear by Propos i t ion 1.8 of [5].
(2) => (3): if P e X\R), then p = (P n C) e Xl(C) and (C\p) = C(P) n

C. So if 0 * c e C, then c € p for almost all /> e ^ ( C ) .
(3) =» (4): since C = D^ e ^ Q C ,̂ the result follows from Proposition 1.9 of [8].
(4) => (1): this is clear because R is a maximal order.

We now obtain some structural results about almost Krull rings that form finite
modules over their centres. We first need the following lemma.

LEMMA 1.7. Let R be a prime P.I. ring which is a finite module over its centre C.
If R is a maximal order and C an almost Krull domain, then Rp is a maximal order
for every p e X\C).

PROOF. Let p e Xl(C). Since C is an almost Krull domain, Cp is a discrete
valuation ring, and in particular a noetherian ring. By a result of Formanek (cf.
e.g. [16]), it follows that Rp, too, is noetherian.

To prove that Rp is a maximal order it suffices to show that (/ : ,1) c R (and
(/ : rI) c R) for every non-zero ideal / of Rp. Let / be such an ideal. Since Rp is
noetherian, / = Y.lj-1Rpyj for some elements yj• e / n R, 1 <_/ < k. Let A =
Y,kj=lRyj. Then AR is a non-zero ideal of R. Because of the assumption,
R = T.1LiCri for certain r, e R, 1 < i: < m. Suppose a e (/ : , / ) . Then ar(-_y- e /
for 1 < / < m, 1 <_/ < k. Hence there exists a c e C\p such that car-yjC c A
f o r a l l i,j. H e n c e , caRyj = c a ( L ? = 1 r i C ) y J c A f o r a l l l ^ j a k . T h e r e f o r e ,
caA = caLy^xRyj c 4̂, and thus caAR c ,4/?. Because R is a maximal order, it
follows that cot G R, and in particular that a e /?^. So we have shown that
(/ : , / ) c R. Similarly, (/ : rI) c R.

PROPOSITION 1.8. Let R be a prime P.I. ring which is a finite module over its
centre C. If C is an almost Krull domain, and if R is a maximal order such that for
all 0 =£ p e Spec C, Rp is a projective Cp-module, then R is an almost Krull ring.

PROOF. Because C is an almost Krull domain, we only have to prove that Rp is
a maximal order for any 0 ¥= p e SpecC. By Lemma 1.7 and Proposition 1.3 in
[7] it remains to prove that Homc (Homc (Rp, Cp),Cp), (i.e. the bidual of Rp) is
naturally isomorphic to Rp. Since Cp is a local domain, and since, by assumption,
Rp is a finitely generated free C^-module, the above statement is well-known.

It is now known to the authors whether one can drop the assumption of
projectiveness in the above proposition. But for almost Asano-orders we do
obtain a nice characterisation.
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COROLLARY 1.9. Let Rbe a prime P. I. ring which is a finite module over its centre
C. Then the following are equivalent:

(1) R is an almost Asano-order,
(2) R is a maximal order and C is an almost Dedekind domain.

PROOF. (1) => (2): this follows from Lemma 1.2 and Proposition 1.5.
(2) => (1): because of Proposition 1.5, it is sufficient to show that R is an

almost Krull ring. Now, for each 0 # / i £ SpecC. Rp is an finitely generated
torsion free C^-module, and hence a projective C^-module, because Cp is a
Dedekind domain (cf. [2]). Therefore the result follows from Proposition 1.8.

2. Skew polynomial rings

Let R be a prime P.I. ring with classical ring of quotients Q(R). If a e Aut(2£),
then clearly a extends in a unique way to an automorphism of Q(R). Now G.
Cauchon [3] has proved that if A is a simple P.I. ring, then the skew polynomial
ring A[X, a] is a prime P.I. ring if and only if a is power-inner, i.e. there exists
n > 0 and an invertible element u of A such that o"(a) = uau1 for all a e A. In
particular a" is the identity on Z(A).

THEOREM 2.1. Let R be a prime ring and let a e Aut R be such that R[X, a] is a
prime P.I. ring. Suppose that R is an almost Krull ring. Then R[X, a] is an almost
Krull ring.

PROOF. Let Q(R) denote the classical ring of quotients of R. If R[X, a] is a
prime P.I. ring, so is Q(R)[X, a]. Hence, by the foregoing, a" is the identity on
Z(Q(R)) for some n > 0. So if c e C (note that C denotes the centre of R), then
d = ca(c) • • • a"-\c) e C and a(d) = d, so d e C = (c e C\a(c) = c). It
follows that Q(R)[X, a] = (C'y^X, a] and Z(Q(R)[X, a]) =
(CaylZ(R[X, a\). Also Z(R[X, a]) n R = C, as is easily seen.

We have to show that R[X,a]p is a maximal order over a Krull domain for
each 0 * p e Spec(Z(R[X,o]). So let 0 * p e Spec(Z(R[X,o])). Suppose first
that p D C = 0. Then pZ(Q(R)[X, a]) n Z(R[X, a]) = p, and pZ(Q(R)[X, a])
is a non-zero prime ideal of Z(Q(R)[X,a]). A straightforward computation
shows then that R[X, o]p = Q(R\X, o]pZ(Q[X a]). But <2[X, a] is an Asano-order,
since each two-sided ideal is principal (cf., for example, [3]). So R[X,a] =
Q(R)[X, o\pZ(Q\x,o]) is a n Asano-order, and in particular a maximal order over a
Krull domain.

Suppose now that q = p n C # 0. Then # e SpecC. Now a is an auto-
morphism of C of finite order. By a classical theorem of E. Noether, C is
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integral over C. In particular, there exists a g e SpecC such that Q n C — q.
Moreover, by [2, Chapter V. 2.2. Theorem 2], if P e SpecC is such that
P n C = q, then P = a'(Q) for some i > 0. Hence there are only finitely many
prime ideals of C lying over q. Now let Q G SpecC be such that Q n C = q.
We introduce some notation: let S = C \ q and 7]: = C \ CT'(<2) for 0 < / < n -
1.

CLAIM 1. Rs = n o < / < f I _ 1 / i 7 ; .

PROOF OF CLAIM 1. If c e S, then clearly, since a(c) = c, c <£ a '(g) for all /,
0 < / < « - 1. So c"1 G CloGioi-iR-Tr Conversely, let a e n o ^ / < n - i ^ r , - F° r

each /, there exists c, e 7) such that c,a G /?. Put / = E"_ocrf,. Then / is an
ideal of C, Ja a R and J <t a'(Q) for all /. But since a'(Q) G SpecC for all i,
we have / <£ U"=oa'(^)- So there exists c e J such that c £ a '(g) for all /, and
hence such that a\c) € Q for all /. Put ft = ca(c) • • • a"'1^). Then b G C ,
but ft S ?, for if ft e g = Q n c°, then ft = c°(c) • • • a""1^) G ^ , so that
a'(c) e G f°r s o m e ' > 0 (since Q is prime), and this is a contradiction. Thus
ft G S, and since ft e 7, we have fta G R, and so a e /?s .

CLAIM 2. /? s is a maximal order over a Krull domain.

PROOF OF CLAIM 2. Since R is an almost Krull ring, and since 0 =f= a'(Q) G

SpecC, it follows that / J r is a maximal order over a Krull domain. Since ideals
of Rs extend to ideals of RT, it is immediate from Claim 1 that Rs is a maximal
order. Moreover, Z(RS) = C\jZ(RT), which is a finite intersection of Krull
domains, and so again a Krull domain.

Straightforward computations now show that R[X, a]s = (Rs)[X,a] and

R[X, a]p = (R[X, o]s)Ps- Combination of these facts gives that

( • ) S R[X,a]p=(Rs[X,a])Ps.

By Claim 2, Rs is a maximal order over a Krull domain, and hence a Krull ring
in the sense of M. Charmarie [4]. Therefore, by [4], Rs[X, a] is a Krull ring, and
also (Rs[X,o])ps is a maximal order over a Krull domain, which, by (*), is the
desired result. This completes the proof.

3. Semigroup rings

In [6] a commutative Krull semigroup was defined. We say that a commutative
cancellative semigroup S is an almost Krull semigroup if and only if, for all
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p G SpecS, Sp = {c"xj|c G S\p, s G S} is a Krull semigroup. Note that p G
SpecS, i.e. p is a prime ideal of 5, if S \p is a subsemigroup of S.

Let A; be a field and G a torsion free abelian group. Recall that k[G] is a Krull
domain if and only if k[G] is a unique factorisation domain if and only if G
satisfies the ACC on cyclic subgroups (cf. [10], [12]).

LEMMA 3.1. Let R be a prime P.I. ring and G a torsion free abelian group. If
R[G] is an almost Krull ring, then R is an almost Krull ring. The converse holds if G
satisfies the ACC on cyclic subgroups.

PROOF. Suppose that R[G] is an almost Krull ring. Let 0 ¥= p G SpecC, where
C is the centre of R. Then ^ [ G ] ^ ^ = /^[S] is again an almost Krull ring by
Lemma 1.4, and so /^[S] is a maximal order by Lemma 1.2. Then it follows from
[18] that Rp is a maximal order for each p G SpecC. So to prove that R is an
almost Krull ring, it suffices to show that Cp is a Krull domain for each
O i t / i e SpecC. Let 0 ¥= p e SpecC. Then, since C[S] is an almost Krull do-
main, we have that C[5]p[S] is a Krull domain. But k — Q(C) is a subfield of
Q(C[S]). Because Cp = C[S]p[s] Pi k, it follows that Cp is a Krull domain.

Conversely, suppose that R is an almost Krull ring and that G satisfies the
ACC on cyclic subgroups. Let 0 * p G Spec C[G\. If p n C = 0, then p = pk[G]
n C[G], where k = Q(C) and 0 # pk[G] G Spec k[G]. But R[G]p =
Q(R)[G]pk[G]. Since Q(R) is a simple P.I. ring and G satisfies the ACC on cyclic
subgroups, it follows that Q(R)[G] is a maximal order over a Krull domain [18],
and hence the same holds for Q(R)[G]pk[G] by [5]. If 0 J= q = p n C, then
R[G]p = Rq[G]pj where pq = {c'la\c G C\q, a&p). Now Rq is a Krull ring,

since R is an almost Krull ring and since O ^ ^ e SpecC. Because G has the
ACC on cyclic subgroups, it follows for the same reason as before that R[G]p is a
maximal order over a Krull domain.

PROPOSITION 3.2. let R be a prime P.I. ring and S a torsion free commutative
cancellative semigroup such that the quotient group Q(S) of S satisfies the ACC on
cyclic subgroups. Then the following are equivalent:

(1) R[S] is an almost Krull ring;
(2) S is an almost Krull semigroup, and R is an almost Krull ring.

t

PROOF. (1) =» (2): since R[G] = S ^ f S ] , it is clear from Lemma 1.4 and
Lemma 3.1 that R[G] and R are almost Krull rings. Let q G SpecS. Then
0 # C[q] G SpecC[S], and so C[S)c[q] is a Krull domain. But G = Q(S) is a
subgroup of <2(C[S])\ {0}. Since C[S]c[q] n G = Sq, and since C[S]C[(?]\ {0} is
a Krull semigroup (cf. [19]), it follows that 5^ is a Krull semigroup.
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(2) => (1): let 0 ¥=p e SpecC[S]. If p n S = 0 , then R[S]p =
/>C[G] e Spec C[G] and /> = />C[G] n C[S]. By Lemma 3.1 /?[G] is an almost
Krull ring; hence it follows that R[S]p = R[G]pC[G] is a Krull ring. If q = p n S
# 0 , then ^ e SpecS, so that ^ [ S ] , = ^[S,]^, where pq = {c^alc ^ S\q,
a <=p}. If />,n C = 0, then

Since Ŝ  is a Krull semigroup, and since G satisfies the ACC on cyclic subgroups,
it follows that Q(R)[Sq] is a Krull ring (cf. [18]), and, as before, the same holds
for R[S]p. If m = pq n C # 0, then

Since Rm is a Krull ring (by Lemma 1.3), and since Sq is a Krull semigroup, the
result follows by the same argument as before.

COROLLARY 3.3. The polynomial ring R[{Xt) ̂  j] {I arbitrary) is an almost Krull
ring if and only if R is an almost Krull ring.

PROOF. Let S be the free commutative semigroup generated by {Xt\i e / } .
Obviously /?[(*)),• e / ] = R[S]. Moreover, it is clear from [6] that S is a Krull
semigroup and that Q(S) has the ACC on cyclic subgroups. The result follows
now from Lemma 3.1 and Proposition 3.2.

Let C be a commutative integral domain. It is shown in [19] that C is a Krull
domain if and only if C\{0} is a Krull semigroup. Therefore C \{0) is an
almost Krull semigroup if and only if C is an ahnost Krull domain. Since there
exist almost Krull domains which are not Krull domains, there also exist almost
Krull semigroups which are not Krull semigroups. We give now an example of a
group ring k[G] which is an ahnost Krull domain but not a Krull domain.

EXAMPLE 3.4. Let p be a prime number, and let

G = grp<x,x1/", xl/p\...,x1/'",... >.

Then G is a torsion free commutative group which does not satisfy the ACC on
cyclic subgroups. So k[G] is not a Krull domain for any field k. We show now
that if A: is a field which is not of characteristic p, then R = k[G] is an almost
Dedekind domain. Clearly G = U^=1 Gn where Gn = grp(x, . . . , xl/p") =
grp(x1/p"), an infinite cyclic group. Let Rn = k[GJ. Then k[Gn] = k[T, 7"1] is
obviously a Dedekind domain and R = i)™=lRn. Let 0 * P e Spec/?. Then
P = U^Li^, where Pn = P n Rn e SpecRn. Note that Rn+1 = R'n[Cp], a twisted
group ring over the cyclic group of order p. In particular, Rn+1 is a finite
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-Rn-module, so Rn+1 is integral over Rn. Hence, P =* 0, so 0 # P n Spec/?,,, but
since Rn is integral over Rn_v we have 0 # ( P n #„) n /?„_! = P D Rn_1 e
Speci?n_j. We introduce some notation: let Vn = {Rn)Pn and Bn = (Pn)Pn for all
« > 1. Clearly /?,, = U™_1KII and FM c Vn+1 for all «. Since each Rn is a
Dedekind domain, Vn is a discrete valuation ring for each n, with unique maximal
ideal Bn. We claim that VH+1BH = Bn+1. Now Rn+l/Rn+1Pn = (Rn/Pn)'[Cp]. But
Rn/Pn does not have characteristic p, and so by [14], Rn+i/Rn+\Pn is a
semiprime ring, i.e. Rn+iPn is a semiprime ideal of Rn+l. Since Rn+1 is a
Dedekind domain, it follows that Rn+iPn = QiQ2 ''" Qk> where each Qi is a
maximal ideal of Rn+1, and where Qt ¥= Qj if i # 7. Note that Pn + 1 is one of the
Q,, say P B + 1 = Gi. But Vn+lBn = (Rn+1Pn)Pn+l = (Pn+lQ2 • • • G*)/..+l = Bn+l,
since if G, * Pn+1, then (e,)Pn+I = VH+l. The fact that Fn+15n = Bn+l impUes
that the valuation vn+1 on Kn+1 restricts to the valuation vn associated with Vn.
Therefore

v: Q{Rp) ^ Z: a ^ vn(a),

where a e g(Fn) is a well-defined valuation with associated discrete valuation
ring Rp. Therefore R is an almost Dedekind domain.

We note that if k has characteristic p, then R is not an almost Krull domain.
Suppose that R = k[G] is an almost Krull domain. Let uk[G] be the augmenta-
tion ideal of k[G]. Then uk[G] is a maximal ideal, and so S = ^[<?]U^[G] is a
Krull domain. Now, for each n > 0, we have

where a = (1 + x1/p"+I + x2/>"+l + • • • +x<''-1)/^''+1). But since char AT = p, we
have a e w[G], so a is not a unit in S = fc[G]ut[c]. Therefore, we have

5(1 - x1/ ' ) £ S(l - x1/ '2) g • • • g S ( l - x1^") g • • • ,

a strictly ascending chain of principal ideals, hence divisorial ideals. This is a
contradiction.
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