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PROBABILITY DENSITY FUNCTION OF THE PRODUCT 
AND QUOTIENT OF TWO CORRELATED EXPONENTIAL 

RANDOM VARIABLES 

BY 

HENRICK J. MALIK AND ROGER TRUDEL 

ABSTRACT. This article deals with the distributions of the product and 
the quotient of two correlated exponential random variables. We consider 
here three types of bivariate exponential distributions: Marshall-Olkin's 
bivariate exponential distribution, Gumbel's Type I bivariate exponential 
distribution, and Gumbel's Type II bivariate exponential distribution. 

1. Introduction. Multivariate exponential distributions play an important role in 
studying the reliability of complicated systems since the failure of various components 
may be correlated. Many workers have investigated various exponential distributions. 
For a review of the literature on bivariate and multivariate exponential distributions the 
reader is referred to Johnson and Kotz (1972) and Basu and Block (1975). On setting 
the index parameters pi9 p2 and p3 to unity in Cherian's (1941) bivariate gamma 
distribution, and/? = 1 in Kibble's (1941) bivariate gamma distribution, we obtain two 
corresponding bivariate exponential distributions. Constructing a model where succes­
sive damage leads to ultimate failure, Downton (1970) extensively studies in a re­
liability context a special case of this latter distribution where the correlation must be 
positive. Marshall and Olkin (1967) develop a bivariate exponential distribution using 
a two-component system subjected to "shocks" and a suitably defined two-dimensional 
Poisson process. Gumbel (1960) introduced two types of exponential distributions. 

The distributions of the products and quotients of random variables are widely used 
in many areas of statistical and system analysis. They are met in problems of selection 
and ranking rules which are described and exhibited by Gulati (1970) and Gupta (1965). 
They are also found in the context of life testing and in the closely related problem of 
reliability. They also can occur when the random variables have dimensions of a ratio 
such as cost of a structure per pound of pay load or fuel consumption per mile. Some 
engineering applications involving products and quotients of random variables are 
examined by Donahue (1964). In the area of system reliability the products and 
quotients of random variables are used in determining the system's availability and 
system's effectiveness. A comprehensive treatment and bibliography of products and 
quotients of random variables is given by Springer (1979). 
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We consider here three bivariate exponential distributions, one introduced by 
Marshall and Olkin (1967) and two studied by Gumbel (1960). These last two, type I 
and type II, respectively, belong to Pearson's (1970) and Morgenstern's (1956) families 
of distributions. Since the exponential distribution is a special case of the generalized 
gamma distribution, we find the distribution of the product and quotient of two indepen­
dent variâtes distributed exponentially as particular cases of those found for the gener­
alized gamma variâtes by Malik (1967, 1968). 

2. Marshall—Olkin's Bivariate Exponential Distribution. In this paper we find 
the distribution of the product and the quotient of two correlated exponential random 
variables. Consider a two-component system where failure is caused by three types of 
Poisson "shocks". These mutually independent "shocks' occur at rates X,, X2 and X3 

causing failure in the first, the second and both components, respectively. Then Mar­
shall and Olkin (1967) give their bivariate exponential distribution as the joint distribu­
tion function of the lives of the two components. The authors also give its multivariate 
analogue as well as a corresponding multivariate Weibull distribution by performing a 
simple change of variables. In particular, on transforming the random variable (X, Y) 
to (X1/p, Y]/l) in their bivariate exponential density function, we have a bivariate 
Weibull distribution, namely, 

(2.1) //(JC, y) = exp. [-{X,JCP - \2y
y - X3 max(jc3, y1)}] 

where X\, X2, X3
 > 0 and x, y > 0. The Weibull distribution has found wide applications 

in the industrial field, mainly in life testing problems. 
The distribution function of Marshall—Olkin's bivariate exponential distribution is 

given by 

(2 2) Fix y) = 1 — e~{{X] + X3)v} — e~{(X2 + X})y]t + e-{^\x + K2y + hm^^y)} 

where JC, y > 0 and X)? X2, X3 > 0, or equivalently, 

H(x, y) = P(X > JC, Y > y) 

= 1 - F(x) - F (y) + F(x, y) 

(2.3) //(JC, y) = e-lM + ^y + Mmaxu.v)} 

with JC, y, X,, X2, X3 > 0. 

2.1 Distribution of the Product. If we now make the transformation U = XY, V 
— F in (2.3) we have the joint distribution of U and V as 

(2.4) H{u, v) = -e 
v 

— ^s,—{X] 7 + \ 2
V + x3 max(7,v)} 

When max(X, Y) = X or max(U/V, V) = U/V, the above equation (2.4) reduces to 

(2.5) H(u, v) = ! £>-<*•+ Mï + *2V} 
v 
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where 0 < v < Vw, so that the distribution of the product of the variâtes in (2.3) is 
given by 

(2.6) # i (w)= -e 7—"X2Vdv 

with Xl5 X2, X3, u > 0. 
Now when max(X, K) = y, that is, max(U/V, V) = V, (2.4) becomes 

(2.7) //(w, v) = I^-^ , ï + (x2 + x3)v} 
v 

where 0 < Vw < v, and so that the distribution of the product of our variâtes in (2.3) 
is obtained as 

(2.8) H2(u) = I - éTT-"(X2 + X3)vdv 

with X,, X2, X3, v > 0. 
Both (2.6) and (2.8) can be evaluated to any desired degree of accuracy from 

numerical integration techniques once the parameters X, (i — 1, 2, 3) are specified. 

2.2 Distribution of the Quotient. Applying the transformation U = X/Y, V - F to 
(2.3), we get 

( 2 . 9 ) H(U, V) = V e-<X,«v + X2v + X3max<iiv.v)} 

If max(X, Y) = X or max( W , V) = UV, then (2.9) reads 

(2.10) H(u, v) = V^-{(X| + X3)IIV + X2V} 

with 0 < v < oo and 1 < u < °o, so that the distribution of the quotient of the variâtes 
in (2.3) using Gradshteyn and Ryzhik (1965; 3.351(3) p. 310) is given as 

(2.11) #i(w) = 
[(X, + X 3 ) " + ^ 2 ] 2 

where u > 1 and Xj, X2, X3 > 0. 
If now max(X, Y) = Y, that is, max(UV, V) = V, then (2.9) simplifies to 

(2.12) H(u, v) = ve-^ + Wh)*} 

with 0 < v < o o a n d 0 < w < l . Using Gradshteyn and Ryzhik (1965; 3.351(3) p. 310), 
we can now find the respective distribution of the quotient of our variâtes in (2.3) as 

(2.13) H2(u) l 

[X2 + X3 + X, uf 

where 0 < u < 1 and X)7 X2, X3 > 0. 
The distribution of the ratio of the variâtes in our bivariate exponential distribution 

(2.3) is therefore given by 
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[(X, + \3)u + \ 2 r 2 if u > 1 
(2.14) H(u) = 

[(X,w + \2 + X3] if 0 < M < 1 

where Xi, \2 , A>3 > 0. 

3. Gumbel's Type I Bivariate Exponential Distribution. The probability density 
function of Gumbel's Type I (1960) bivariate exponential distribution is given by 

(3.1) / (* , y) = {(1 + ax) (1 + ay) -a} e'^'^ 

where x, y > 0 and 0 < a < 1. Its distribution function is then found as 

(3.2) F(JC, y) = 1 -e'x - é>~v + e-x-y-^ 

with x, j > 0 and 0 < a < 1. If a = 0, (3.2) becomes 

F(JC, y) = 1 - e~x - ^"v -f e'x~y 

(3.3) 
= (1 - e~x) (1 - *->) 

and so our random variables X and Y become stochastically independent. 

3.1 Distribution of the product. In (3.1) we make the transformation U = XY, 
V = Y to obtain the joint distribution of U and V as 

(3.4) f(u, v) = - {(au + v) (av + 1) -av} «rS-*-™ 
v2 

With the assistance of Gradshteyn and Ryzhik [(1965); 3.41(9) p. 340 and 8.486(16) 
p. 970)], we now get the distribution of the product of our exponential variâtes in (3.1) 
as the marginal density 

h(u) = e la H 1 \ e {v v) dv 
j 0 I V v 2 J 

(3.5) = 2e~au {a2u - a + 1) K0(2Vu) + 2aV~u K^lVu)] 

where « > 0 and 0 ^ a ^ 1 and Kv(z) is the modified Bessel function of the second 
kind. 

3.2 Distribution of the quotient. Let us apply the transformation U = X/Y, V = 
Y to (3.1), getting 

(3.6) / ( I I , v) = v {(1 + auv) (1 + av) -a} e uv—v—auv-

Using Gradshteyn and RyzhhV[1965; 3.462(1) p. 337], we then find the distribution of 
the quotient of the variâtes in Gumbel's Type I bivariate exponential distribution as the 
marginal of U 

(u) = v{(l - a) + v(au + a) + a2uv2} (1 + u)v—auv2 
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(1 + H)V8"" r (\+u 

(3.7) = \(l-a)D-2' 2au { Wlau) 

Vu Wlau! Wlaûn 

where u > 0 and 0 < « < 1 and Dp(z) is parabolic cylinder function. 

4. GumbePs Type II Bivariate Exponential Distribution. Gumbel's Type II 
(1966) bivariate exponential distribution has the probability density function 

(4.1) f(x,y) = e-x-y{l + a(2e-*-l)(2<T>-l)} 

where x, y > 0 and |a| < 1, with the distribution function 

(4.2) F(x, y) = (1 - e~x) (1 - e~y) [1 + ae~ix+y)]. 

Clearly, X and K are stochastically independent random variables if and only if a = 0. 

4.1 Distribution of the Product. We effect the regular transformation U = XY, V 
= 7 in (4.1) to obtain 

(4.3) f(u, v) = - e~'-v {1 + a(2<T* - 1) (2e~v - 1)}. 

From Gradshteyn and Ryzhik [(1965); 3.471(9) p. 340], we can now find the distribu­
tion of the product of the variâtes in Gumbel's Type II bivariate exponential as the 
marginal 

h(u) = I - éT(v + ?) {1 + 4ae~(v + î) - 2aé>~v - 2aeT? + a} dv 

(4.4) = 2(1 + a) K0(2\^) + 8a[AT0(4V^) - K0(2V2u)] 

where u > 0 and |a | < 1 and A v̂(z) is the modified Bessel function of the second kind. 

4.2 Distribution of the Quotient. By performing the change of variables U = X/Y, 
V = Y in (4.1), we have 

(4.5) f (w, v) - ve'uv~v {1 + a(2é'~MV - 1) (2e~v - 1)}. 

In finding the marginal of U, we obtain the distribution of the quotient of the ex­
ponential variâtes in (4.1) as 

h(u) = [ v e-
v{] + u} {1 + a + 4ae~v(]+u) - 2aéTv - 2aéTMV} dv 

1 + 2a 
2a (1 + uf 

J - + — 1 
L(2 + «)2 (1 + 2u) uf\ 

(l+2w)2(2 + w)2 + 2a(2w + llw2 + 2 w 3 - w 4 - 1) 
(4.6) = 

(l+w)2(2 + w)2(l+2w)2 
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where u > 0 and |a| < 1. 
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