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Abstract

Let 4 be a finite dimensional algebra over a field F. Let R and S be biregular algebras over F
such that 1 € R and 15 € S. We show that if R/P~ A4~ S/M for each primitive ideal P in A
and each primitive ideal M in § then Endy R~ Endp S implies R~ S.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 M 25.

1. Introduction

Magfll (1964) showed that two Boolean rings R and S are isomorphic if and only
if their respective semigroups of ring endomorphisms End R and End § are iso-
morphic. One kind of generalized Boolean rings is the kind of so-called p*-rings
(Foster). Let p be a prime integer and k a positive integer. A ring Rissaidtobea
p*-ring (Foster) if (i) 1z€R, (ii) x** = x for all x in R, (iii) R has at least one
subring F isomorphic to the Galois field GF (p¥) and (iv) 1€ F. A subring F of R
satisfying (iii) and (iv) is said to be a normal subfield of R. Note that if Fis a normal
subfield of R then R is an algebra over F. Luh and Smith (1974) showed that if R
and S are p*-rings (Foster) with normal subfields Fand G respectively and if their
respective semigroups of algebra endomorphisms Endz R and EndgS are iso-
morphic then R and S are isomporhic as rings. In this paper, we generalize their
result to a class of biregular rings. A question raised by Luh and Smith is ‘If R and
S are p*-rings (Foster) and their respective semigroups of ring endomorphisms
EndR and End S are isomorphic, does that imply R and S are isomorphic?.
We show, in this paper, the answer is affirmative in a more general setting.
239
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2. Preliminaries

Let R be a ring and & the set of primitive ideals in R. Let A be any subset of 2.
Set 2, =n{P|Pc A} and define €74 ={P’'|P' e P, P'29D}. Then 2 is a topo-
logical space under the closure operator 7. The topological space thus obtained
will be called the structure space of R. If we use the symbol X to denote the structure
space of R then # = {P,| P, is primitive, x€ X}.

A ring R is said to be biregular if every principal ideal in R is generated by a
central idempotent. Let R and A be rings. If R is a left 4-algebra and if R has an
identity 15 then the mapping a—alp is a homomorphism of A4 into R. We shall
call this the natural homomorphism of A into R.

If R is a biregular ring which is a left 4-algebra, every r in R has the form r = er
where e is a central idempotent. Then ar = (ae)r, ac A. This shows that every
ideal I of R is an A-ideal. Hence I and R/I are left A-algebras where R/I is the
residue class ring {r+I|re R}.

We shall call a topological space X to be totally disconnected if any pair of points
in X can be separated by two complementary closed sets in X.

LEMMA 2.1. Let R be a ring, A a simple ring with an identity element. Then the
Jollowing are necessary and sufficient conditions that R be isomorphic to the ring of
continuous functions with compact supports on a locally compact totally disconnected
space to A (which is considered to be a discrete space):

(1) R is biregular.

(2) Ris aleft A-algebra.

(3) For each primitive ideal P, in R the natural homomorphism of A into the

residue class ring (with identity) R/P, is an isomorphism onto R/P,.

PrOOF. See Jacobson (1968), p. 214.

Let R and A4 be as in 2.1, X the structure space of R, and C(X, 4) the ring of
continuous functions of X into the discrete space 4. For fe R and P, a primitive
ideal in R, we may write f+ P, = a,(1,+ P,), where a,€ 4, and define f': X—> 4
by f'(x) = a,. Then f’ € C(X, A). The correspondence f—f' is in fact the iso-
morphism of R onto C(X, A) in 2.1. In the sequel we shall identify f with f” and
write f(x) = a,,

LeMMA 2.2. Let R be a biregular algebra over a field F. If R has an identity and

every primitive image R/P,, of R is isomorphic to a finite dimensional algebra A over F,
then

(1) the structure space X of R is compact and totally disconnected,
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(2) R contains a subalgebra A which is isomorphic to A over F such that A+ P, = R
Jor every primitive ideal P, of R, and

(3) R is isomorphic to C(X, AA) the ring of continuous functions from X into the
discrete space A.

PRrROOF. See Jacobson (1968), p. 215.

Note that the 4 in the above lemma is an algebra over the field F and 1€ 4.
The existence of such an 4 implies (2) and (3) of 2.1. We shall call it a normal
subalgebra of R. If d€ A then d+ P, = d(1+ P,) for every primitive ideal P, in R.
Therefore d(x) = d for every x in X. This also shows that 13 = 1. For clarifica-
tion, we shall use the symbol a to denote d(x) and oy the identity mapping a—4
from A into R. Also note that A4 is primitive since A~ R/P,. Consequently A4 is
simple since R/P, is biregular and 1 ;€ 4.

Let X be a topological space. Then the set of continuous selfmaps is a semigroup
under operation composition. This semigroup will be denoted by S(X).

LEMMA 2.3. Let X and Y be compact and totally disconnected spaces. Then X is
homeomorphic to Y if and only if S(X) is isomorphic to S(Y).

ProoF. See Magill (1970), p. 987.

Note that if X is a compact and totally disconnected space then X has a base of
open and closed sets by Simmons (1963), Theorem 33.C.

3. Endomorphisms and continuous selfmaps

Throughout this and the next sections, R will denote a biregular algebra over a
field F such that 1€ R and every primitive image of R is isomorphic to a fixed
finite dimensional algebra 4 over F, End R the semigroup of ring endomorphisms
of R, End; R the semigroup of (left) algebra endomorphisms of R over 4,
End;! R = { €Endz R|Y(1x) = 15}, 4, the zero endomorphism, i, the identity
endomorphism, X the structure space of R, b~ the multiplicative inverse of b in an
algebraic structure, /< the inverse of a mapping f, and @g = ¢(g) for g in the
domain of a mapping ¢.

LemMa 3.1. Let 7€S(X) then there exists a unique v’ €Endz'R such that
7'f = for for every fin R.
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PROOF. Let 7€ S(X) and define 7’: R—> R by 7'f = for. Let dc 4 then

(7'af)(x) = (@fo7) (x) = df(7x) = a(vx) f(7x) = af (rx) = d(x) (fo7)(x)
=(@r'f)(x) and 7'(Ip) =1Igor=1g

If 7' = o’ then f(rx) = f(ox) for all fin R and all x in X. But X is totally dis-
connected, so 7x = ox for every x in X. It is routine to show ' €End R. Hence
7' €Endz' R and is unique.

LemMMA 3.2. Let y € End 3! R and [R] = A. Then there exists a unique y in X such
that o5 (Yf) = f(y) for every fin R.

PRrOOF. Let P, = kery.. Since A is simple, P, is a primitive ideal in R. Let feR
then f+ P, = a,(Ip+P,) = d,+ P, and f(y) = a, = o}(d,) = o3(¥d,) = ox(yf) for
some a, € 4 since ycEndz' R.

LemMA 3.3. Let O be a family of mappings that determines the topology of a space
Y. A mapping o from a space S into Y is continuous if and only if oo is continuous
Sor every ¢ in ®.

PRrOOF. See Gillman and Jerison (1960), p. 42.

LeMMA 3.4. Let yeEndz' R. Then there exists a unique € S(X) such that
Yf = for for every fin R.

Proor. Let xe X and define a«: R—>A4 by of = og(f(x)). Clearly aeEnd R.
Since
olp = opIp(x)) = op(Ipx) = op(12) = Ip,
and since
o(dg) = op(Pdg(x)) = op((d@g) (x)) = op(a(x) Yg(x))
= op(afg(x)) = dopfe(x)) = dog

for every g in R, we have a € End3! R. It follows that there exists a unique yin X
such that o3(ag) = g(y) for every g in R by 3.2. Define 7: X-> X by 7x = y. Then
g(mx) = g(y) = og(ag) = op(ox(Pg(x))) = Yg(x) for every g in R and every x in X.
Since yig € R for all g in R and since X is compact and totally diconnected, we have
7€S(X) by 3.3.

LeMMA 3.5. End 41 R is anti-isomorphic to S(X).
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PROOF. Define 7: S(X)—End3! R by =(7) = 7° where 7'f = fo for every fin R.
The = thus defined is a one-to-one mapping from S(X) onto End3!' R by 3.1 and
3.4. Let 7, 8 be in S(X). Then

@) (f) =fo(r0) = (for) (0) = O'(for) = (n0) (=)f) = (O) (w7) (f)

for every fin R. Therefore = is a semigroup anti-isomorphism from S(X) onto
End 31 R.

4. Semigroups of endomorphisms of a biregular algebra

Throughout this section, .S will denote a biregular algebra over the field F such
that 1g€S and every primitive image of S is isomorphic to 4, B a normal sub-
algebra of S, Endg' S = {pe€Endg Sp(1g) = 1}, @, the zero endomorphism of S,
@, the identity endomorphism of S, and Y the structure space of S.

THEOREM 4.1. If End 3 R~ Endg S then R~ S.

PROOF. Let 7 be an isomorphism from Endz R onto Endg S. Let € 3! R and
p=mp. If p(Ig)# 14 then p(Ig) is an idempotent in S. Let d = ¢(Ig) then d is
nonzero since  is an isomorphism. Let (d) be the principal ideal generated by d
then (d) = (e) for a central idempotent e in S since S is biregular. Define ¢;_,: S— S
by @, (s)=(Ig—e)s. Then ¢, _,€EndzS since Ig—e is a central idempotent.
Since @,_(e) =(Ig—e)e =e—e2 =04 So (e)ckerg, ,. Therefore ¢, @ = @,.
But iy = 7(py) = 7 (¢ )¢ and I, =1Tg, so 7(p;_)(Ig) =Yy 1z = Og and
hence 7(p,_,) = . This is a contradiction since = is an isomorphism. Therefore
@€Endg S. Thus End 3! R is isomorphic to Endz!.S. Which implies that S(X) is
isomorphic to S(Y) by 3.5. It follows that X is homeomorphic to Y by 2.3. Hence
R~ Sby 2.2 and since 4 is homeomorphic as well as isomorphic to B.

Let T be a p*-ring (Foster). Then T may be viewed as an algebra over the Galois
field GF (p). Since t** = ¢ for every t in T, so T has no nonzero nilpotent elements.
Therefore T is biregular by Jacobson (1968), Proposition 1, p. 210. Let K be a
normal subfield of T. If M is a maximal ideal in T then 7/M contains a copy of X
since K is a field and 1, € K. Since T/M is a field and (¢+ M)?* = ¢+ M and so T/M
is isomorphic to K which is isomorphic to GF (p*). Thus Theorem 4.1 is a generali-
zation of the theorem of Luh and Smith.

For the rest of this section, 7 will denote an isomorphism of Endz R onto Endy S.
We shall show that if Endz R~Endy S then R~ S.

LEWA 4.2. Tflpo = @o» ﬂlﬁl =@

LEMMA 4.3. Let y€Endy R. Then Y(15) = I if and only if (mp) (Ig) = 1.
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ProoF. See the proof of 4.1.

LEMMA 4.4. Let §,€Endz' R such that yi,[R]1 = A. Then yab, = i, for every
y€Endz* R. Furthermore, if @, = mj, then pp, = @, for every pen[Endz'R]
and gvf, = @,

Proor. Since (1) = Iz = ¢,(I) and ¢, ,€Endz R, so |z = |7 = id (the
identity function on A). But $,[R] = 4, so yup, = ¢,. Now if ¢ = mjs for some
')b € Endz Rthen PPp = ("‘l') (ﬂ'l’p) = "(‘/"/‘p) = "(‘/’p) =®p Since '/’p = 'ﬁp ‘l’p = '/’p,
so gvf, = @p.

LemMA 4.5. Let , € Endz' R such that $i,[R]1 = A. If Endp' R and i, = ¢
then |z is an automorphism and J[R] = A.

PROOF. $[R] = Y, $[R] = ¢, [$[RII=,[R] = A. Let & = ¢|3. Then 3 is a ring
isomorphism since A is simple and (1) = 13. Since Y€ Endz' R so & is also a
vector space homomorphism over F. But 4 is finite dimensional over F and so &
is onto.

LEMMA 4.6. Let 8 € Auty A the automorphism group of A over F. Then there exists
SREAutFR such that SRIZ = 8.

PROOF. Let 8 = of0 8005 (recall that R is the ring of continuous functions of
X into 4 and o the identity mapping of 4 into R). Then f€Auty 4 and is a
homeomorphism of the discrete space 4 onto 4. Define 8: R— R by 8x(f) = 8of
for feR. Clearly 8p€Auty R. Let Ge 4; then 8(@)€ 4. Let 4, = 8(d). For xe X,
we have

(528) () = (Bod) (x)
= 6(dx) = 6(a) = (o350 500) 5(0) = (o g 8) (@) = (50 8) (@) = T5(34)
= o3(@) = & = G(x) = (3) (x).

Therefore 8z|7 = 8.

LEMMA 4.7. If a: B— S is an isomorphism leaving F fixed then M, +a[B] = S for
every primitive ideal M, in S. (We identify the natural image of F with F.)

PrOOF. Define o*: S/M,— S/M, by o*(b+M,) = ob+M,. The domain of o*
is S/M, since B+M, = S. Since S/M,~B and B is simple so S/M, is simple.
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It follows that a* is an isomorphism since a*(Ig+M,)=1g+M, the identity
of S/M,. Since B is finite dimensional over F so is S/M,. Hence o* is onto since
a* is also a vector space homomorphism. Therefore {ab}; . 5+M, =S or
a[Bl+M, =S.

LeMMA 4.8. If a: B~> S is an isomorphism leaving F fixed then Endg' S~Endg' S,
where D = o[B].

ProoF. D+ M, = S for every primitive ideal M,, in S by 4.7. It follows that S is
isomorphic to the ring of continuous functions from X into D by 2.1 and the
remarks following 2.2. Therefore Endg S~Endz S and hence Endg' S~ Endg! S.

LeMMA 4.9. #[End 4! R} = End3' S for some normal subalgebra D if S.

PROOF. Let ,, e Endz* R such that ,[R] = 4. Let @, = m, and D = p,[S]. We
want to show that D is isomorphic to B. Since ¢,(Ig) = Ty so ¢,(Ig) = 13 by 4.3.
Therefore ,[B] is isomorphic to B since B is simple. Since S/M,~ B for every
primitive ideal M, in S so there exists gy €End;!S such that gu[S]= @,[B].
Clearly @y |5 is an isomorphism of B into @ [B] which is contained in D. Since
Yp€Endz' R and ¢,[R] = 4 so @2 = ¢, by 4.4. Therefore @,|5 = id and hence
Pp Py = Py~ Let Yy = m(@y) then b, iy = iy, Let 8 = ¢fyr|5 then 8 is an auto-
morphism of 4 and ¢, [R] = 4 by 4.5. Therefore 8 has an extension 8 €Auty R
by 4.6. Clearly 87!, is identity on 4. So

05 YyycEndz*R and w(87'yYyy) enm[Endz R].
Let &g = w8z!; then
g pu = (w85 (mfipy) = m(87" ) € w[End o' R].

Let ¢ = n(8gpy); then ycEndz*R and hence np, =4, by 4.4. Therefore
(s Pa) Pp = P and

D = 9,[S] = (85 Pa) ¢S] = 85 Pu( D1 35 p[S1 = 859, Bl.

Since 8g = w8z! and 7 is an isomorphism so §g€ Aut S. Therefore D is contained
in an isomorphic image of B. But ¢,[B]< D and both ¢, and 85¢, are vector
space homomorphisms and so D is isomorphic to B since B is finite dimensional.
Thus ¢,[B] = D is a normal subalgebra of S by 4.7. Let p e End ' S then p|5 = id,
and pp, = @,,. Letyp = " . Then gy, = 7 (p,) = 7 (pp,) = (7 @) (7 ) = Yy,
Since s, e Endz* Rso ¢, |5 = id. Let de A then (@) = P(f, @) = Pup,(d) = (@) = 4.
Therefore |7 = id and hence y € End3! R. This implies that ¢ = m) ew{End ! R].
Thus Endp' SS#[Endz'R]. Let pen[Endz'R] then ¢p, =@, by 4.4. Since
#2 = @, 30 @, |5 = id. Therefore p|5 = id and hence p € Endp' S. This shows that
w[Endz' R]< End5! S. Thus End5' S = #[End 3! R].
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THEOREM 4.10. If Endz R~Endy S then R~ S.

Proor. By 4.9, we have #w[End3' R] = End5! S. Therefore Endz! R~ Endg! S.
But End ;! S~ End;' S by 4.8. So End ;! R~Endz' S. Thus R~ S by 4.1.

If T is a p*-ring (Foster) and K the Golois field GF (p) then T is a biregular
algebra over F such that 7/M ~ GF (p*) for every maximal ideal M in T. Therefore
if U is another p*-ring (Foster) and Endg T~Endg U then T~ U by 4.10. But
Endgx T = End T and Endg U = End U so End T~ End U implies T~ U.

5. Endomorphisms of rings of continuous real-valued functions

Throughout this section, all spaces are assumed to be completely regular and
Hausdorfl. The symbol R will denote the real field with natural topology, and
C(X) the ring of continuous functions from a space X into R. If X is a space, then
End C(X) = Endgz C(X) by Gillman and Jerison (1960), 1I, p. 23. A space X is
said to be realcompact if C(X)/M =~ R for every maximal ideal M in C(X).

LeMMA 5.1. Let X and Y be realcompact spaces. If End C(X)~End C(Y) then
S(X)=S(Y).

ProoF. Essentially the same as that of 4.1.

A class of topological spaces is said to be S-admissible if for each pair of spaces
X and Y from the class, any isomorphism from S(X) onto S(Y) is induced by a
homeomorphism. There are extensive classes of spaces which are S-admissible and
at the same time are such that the spaces belonging to them are all realcompact,
for example, the class of compact totally disconnected spaces. For a survey of
known results on S-admissible classes, one may consult Magill (1975/76).

THEOREM 5.2. Let X and Y be realcompact spaces and suppose they both belong to
the same S-admissible class. Then the following statements are all equivalent.

(1) End C(X)~End C(Y).

2@ C(X)=C(Y).

(3) X is homeomorphic to Y.

@ S(X)=S(Y).

PROOF. (1) implies (2): immediate following from 5.1.
(2) implies (3): See Gillman and Jerison (1960), Chapter 8, Theorem 8.2.
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(3) implies (4): obvious.
(4) implies (1): Since both X and Y are in the same admissible class, so X~ Y by
definition. Hence End C(X)~ End C(Y).

The author wishes to thank Professor Jiang Luh of North Carolina State Univer-
sity for his help in the preparation of this paper.
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