ON SEMIGROUPS OF ENDOMORPHISMS OF BIREGULAR ALGEBRAS

FU-CHIEN TZUNG

(Received 25 July 1977; revised 11 July 1978)

Communicated by T. E. Hall

Abstract

Let A be a finite dimensional algebra over a field F. Let R and S be biregular algebras over F such that $1_R \in R$ and $1_S \in S$. We show that if $R/P \simeq A \simeq S/M$ for each primitive ideal P in A and each primitive ideal M in S then $\operatorname{End}_F R \simeq \operatorname{End}_F S$ implies $R \simeq S$.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 M 25.

1. Introduction

Magill (1964) showed that two Boolean rings R and S are isomorphic if and only if their respective semigroups of ring endomorphisms End R and End S are isomorphic. One kind of generalized Boolean rings is the kind of so-called p^k -rings (Foster). Let p be a prime integer and k a positive integer. A ring R is said to be a p^k -ring (Foster) if (i) $1_R \in R$, (ii) $x^{p^k} = x$ for all x in R, (iii) R has at least one subring F isomorphic to the Galois field GF (p^k) and (iv) $1_R \in F$. A subring F of R satisfying (iii) and (iv) is said to be a normal subfield of R. Note that if F is a normal subfield of R then R is an algebra over F. Luh and Smith (1974) showed that if R and S are p^k -rings (Foster) with normal subfields F and G respectively and if their respective semigroups of algebra endomorphisms $End_F R$ and $End_G S$ are isomorphic then R and S are isomportic as rings. In this paper, we generalize their result to a class of biregular rings. A question raised by Luh and Smith is 'If R and S are p^k -rings (Foster) and their respective semigroups of ring endomorphisms End R and End S are isomorphic, does that imply R and S are isomorphic?'. We show, in this paper, the answer is affirmative in a more general setting.

Fu-Chien Tzung

2. Preliminaries

Let R be a ring and \mathscr{P} the set of primitive ideals in R. Let A be any subset of \mathscr{P} . Set $\mathscr{D}_{\mathcal{A}} = \cap \{P \mid P \in A\}$ and define $\mathscr{ClA} = \{P' \mid P' \in \mathscr{P}, P' \supseteq \mathscr{D}_{\mathcal{A}}\}$. Then \mathscr{P} is a topological space under the closure operator \mathscr{Cl} . The topological space thus obtained will be called the *structure space* of R. If we use the symbol X to denote the structure space of R then $\mathscr{P} = \{P_x \mid P_x \text{ is primitive, } x \in X\}$.

A ring R is said to be *biregular* if every principal ideal in R is generated by a central idempotent. Let R and A be rings. If R is a left A-algebra and if R has an identity 1_R then the mapping $a \rightarrow a 1_R$ is a homomorphism of A into R. We shall call this the *natural homomorphism* of A into R.

If R is a biregular ring which is a left A-algebra, every r in R has the form r = er where e is a central idempotent. Then ar = (ae)r, $a \in A$. This shows that every ideal I of R is an A-ideal. Hence I and R/I are left A-algebras where R/I is the residue class ring $\{r+I|r \in R\}$.

We shall call a topological space X to be *totally disconnected* if any pair of points in X can be separated by two complementary closed sets in X.

LEMMA 2.1. Let R be a ring, A a simple ring with an identity element. Then the following are necessary and sufficient conditions that R be isomorphic to the ring of continuous functions with compact supports on a locally compact totally disconnected space to A (which is considered to be a discrete space):

- (1) R is biregular.
- (2) R is a left A-algebra.
- (3) For each primitive ideal P_x in R the natural homomorphism of A into the residue class ring (with identity) R/P_x is an isomorphism onto R/P_x .

PROOF. See Jacobson (1968), p. 214.

Let R and A be as in 2.1, X the structure space of R, and C(X, A) the ring of continuous functions of X into the discrete space A. For $f \in R$ and P_x a primitive ideal in R, we may write $f + P_x = a_x(1_x + P_x)$, where $a_x \in A$, and define $f': X \to A$ by $f'(x) = a_x$. Then $f' \in C(X, A)$. The correspondence $f \to f'$ is in fact the isomorphism of R onto C(X, A) in 2.1. In the sequel we shall identify f with f' and write $f(x) = a_x$.

LEMMA 2.2. Let R be a biregular algebra over a field F. If R has an identity and every primitive image R/P_x of R is isomorphic to a finite dimensional algebra A over F, then

(1) the structure space X of R is compact and totally disconnected,

- (2) R contains a subalgebra \hat{A} which is isomorphic to A over F such that $\hat{A} + P_x = R$ for every primitive ideal P_x of R, and
- (3) R is isomorphic to C(X, AÅ) the ring of continuous functions from X into the discrete space Å.

PROOF. See Jacobson (1968), p. 215.

Note that the \dot{A} in the above lemma is an algebra over the field F and $1_R \in \dot{A}$. The existence of such an \dot{A} implies (2) and (3) of 2.1. We shall call it a normal subalgebra of R. If $\bar{a} \in \dot{A}$ then $\bar{a} + P_x = \bar{a}(1_R + P_x)$ for every primitive ideal P_x in R. Therefore $\bar{a}(x) = \bar{a}$ for every x in X. This also shows that $1_{\dot{A}} = 1_R$. For clarification, we shall use the symbol a to denote $\bar{a}(x)$ and σ_R the identity mapping $a \rightarrow \bar{a}$ from \dot{A} into R. Also note that \dot{A} is primitive since $\dot{A} \simeq R/P_x$. Consequently \dot{A} is simple since R/P_x is biregular and $1_A \in \dot{A}$.

Let X be a topological space. Then the set of continuous selfmaps is a semigroup under operation composition. This semigroup will be denoted by S(X).

LEMMA 2.3. Let X and Y be compact and totally disconnected spaces. Then X is homeomorphic to Y if and only if S(X) is isomorphic to S(Y).

PROOF. See Magill (1970), p. 987.

Note that if X is a compact and totally disconnected space then X has a base of open and closed sets by Simmons (1963), Theorem 33.C.

3. Endomorphisms and continuous selfmaps

Throughout this and the next sections, R will denote a biregular algebra over a field F such that $1_R \in R$ and every primitive image of R is isomorphic to a fixed finite dimensional algebra A over F, End R the semigroup of ring endomorphisms of R, End_{\overline{A}} R the semigroup of (left) algebra endomorphisms of R over \overline{A} , End_{\overline{A}} $R = \{\psi \in \text{End}_{\overline{A}} R | \psi(\overline{1}_R) = \overline{1}_R\}, \psi_0$ the zero endomorphism, ψ_1 the identity endomorphism, X the structure space of R, b^{-1} the multiplicative inverse of b in an algebraic structure, f^{\leftarrow} the inverse of a mapping f, and $\varphi g = \varphi(g)$ for g in the domain of a mapping φ .

LEMMA 3.1. Let $\tau \in S(X)$ then there exists a unique $\tau' \in \operatorname{End}_{\overline{A}}{}^1R$ such that $\tau'f = f \circ \tau$ for every f in R.

PROOF. Let $\tau \in S(X)$ and define $\tau' \colon R \to R$ by $\tau' f = f \circ \tau$. Let $\tilde{a} \in \tilde{A}$ then

$$(\tau' \tilde{a} f)(x) = (\tilde{a} f \circ \tau)(x) = \tilde{a} f(\tau x) = \tilde{a}(\tau x) f(\tau x) = a f(\tau x) = \tilde{a}(x) (f \circ \tau)(x)$$
$$= (\tilde{a} \tau' f)(x) \quad \text{and} \quad \tau'(\bar{1}_R) = \bar{1}_R \circ \tau = \bar{1}_R.$$

If $\tau' = \sigma'$ then $f(\tau x) = f(\sigma x)$ for all f in R and all x in X. But X is totally disconnected, so $\tau x = \sigma x$ for every x in X. It is routine to show $\tau' \in \text{End } R$. Hence $\tau' \in \text{End}_{\overline{A}}^{-1} R$ and is unique.

LEMMA 3.2. Let $\psi \in \operatorname{End}_{\overline{A}}^{1} R$ and $\psi[R] = \tilde{A}$. Then there exists a unique y in X such that $\sigma_{\overline{P}}^{\leftarrow}(\psi f) = f(y)$ for every f in R.

PROOF. Let $P_y = \ker \psi$. Since \tilde{A} is simple, P_y is a primitive ideal in R. Let $f \in R$ then $f + P_y = a_y(\bar{1}_R + P_y) = \bar{a}_y + P_y$ and $f(y) = a_y = \sigma_R^{\leftarrow}(\bar{a}_y) = \sigma_R^{\rightarrow}(\psi \bar{a}_y) = \sigma_R^{\leftarrow}(\psi f)$ for some $a_y \in \tilde{A}$ since $\psi \in \operatorname{End}_{\tilde{A}}^{-1} R$.

LEMMA 3.3. Let Φ be a family of mappings that determines the topology of a space Y. A mapping σ from a space S into Y is continuous if and only if $\varphi \circ \sigma$ is continuous for every φ in Φ .

PROOF. See Gillman and Jerison (1960), p. 42.

LEMMA 3.4. Let $\psi \in \operatorname{End}_{\overrightarrow{A}}{}^1R$. Then there exists a unique $\tau \in S(X)$ such that $\psi f = f \circ \tau$ for every f in R.

PROOF. Let $x \in X$ and define $\alpha: R \to \hat{A}$ by $\alpha f = \sigma_R(\psi f(x))$. Clearly $\alpha \in \text{End } R$. Since

$$\alpha \overline{\mathbf{I}}_R = \sigma_R(\psi \overline{\mathbf{I}}_R(x)) = \sigma_R(\overline{\mathbf{I}}_R x) = \sigma_R(\mathbf{1}_{\overline{A}}) = \overline{\mathbf{I}}_R,$$

and since

$$\begin{aligned} \alpha(\bar{a}g) &= \sigma_R(\psi \bar{a}g(x)) = \sigma_R((\bar{a}\psi g)(x)) = \sigma_R(\bar{a}(x)\psi g(x)) \\ &= \sigma_R(a\psi g(x)) = \bar{a}\sigma_R(\psi g(x)) = \bar{a}\alpha g \end{aligned}$$

for every g in R, we have $\alpha \in \operatorname{End}_{\overline{A}^1} R$. It follows that there exists a unique y in X such that $\sigma_R^{\leftarrow}(\alpha g) = g(y)$ for every g in R by 3.2. Define $\tau: X \to X$ by $\tau x = y$. Then $g(\tau x) = g(y) = \sigma_R^{\leftarrow}(\alpha g) = \sigma_R^{\leftarrow}(\sigma_R(\psi g(x))) = \psi g(x)$ for every g in R and every x in X. Since $\psi g \in R$ for all g in R and since X is compact and totally diconnected, we have $\tau \in S(X)$ by 3.3.

LEMMA 3.5. End $\overline{A}^1 R$ is anti-isomorphic to S(X).

PROOF. Define $\pi: S(X) \to \operatorname{End}_{\overline{A}}{}^1 R$ by $\pi(\tau) = \tau'$ where $\tau' f = f \circ \tau$ for every f in R. The π thus defined is a one-to-one mapping from S(X) onto $\operatorname{End}_{\overline{A}}{}^1 R$ by 3.1 and 3.4. Let τ, θ be in S(X). Then

$$(\pi(\tau\theta))(f) = f \circ (\tau\theta) = (f \circ \tau)(\theta) = \theta'(f \circ \tau) = (\pi\theta)(\tau'f) = (\pi\theta)(\pi\tau)(f)$$

for every f in R. Therefore π is a semigroup anti-isomorphism from S(X) onto $\operatorname{End}_{\overline{A}^1} R$.

4. Semigroups of endomorphisms of a biregular algebra

Throughout this section, S will denote a biregular algebra over the field F such that $l_S \in S$ and every primitive image of S is isomorphic to A, \tilde{B} a normal subalgebra of S, $\operatorname{End}_{\bar{B}}{}^1S = \{\varphi \in \operatorname{End}_{\bar{B}}S\varphi(\bar{I}_S) = \bar{I}_S\}, \varphi_0$ the zero endomorphism of S, φ_1 the identity endomorphism of S, and Y the structure space of S.

THEOREM 4.1. If $\operatorname{End}_{\overline{A}} R \simeq \operatorname{End}_{\overline{B}} S$ then $R \simeq S$.

PROOF. Let π be an isomorphism from $\operatorname{End}_{\overline{A}} R$ onto $\operatorname{End}_{\overline{B}} S$. Let $\psi \in {}_{\overline{A}}{}^1 R$ and $\varphi = \pi \psi$. If $\varphi(I_S) \neq I_S$ then $\varphi(I_S)$ is an idempotent in S. Let $d = \varphi(I_S)$ then d is nonzero since π is an isomorphism. Let (d) be the principal ideal generated by d then (d) = (e) for a central idempotent e in S since S is biregular. Define $\varphi_{1-e}: S \to S$ by $\varphi_{1-e}(s) = (I_S - e)s$. Then $\varphi_{1-e} \in \operatorname{End}_{\overline{B}} S$ since $I_S - e$ is a central idempotent. Since $\varphi_{1-e}(e) = (I_S - e)e = e - e^2 = \bar{0}_S$. So $(e) \subseteq \ker \varphi_{1-e}$. Therefore $\varphi_{1-e} \varphi = \varphi_0$. But $\psi_0 = \pi^+(\varphi_0) = \pi^+(\varphi_{1-e})\psi$ and $\psi I_R = I_R$, so $\pi^+(\varphi_{1-e})(I_R) = \psi_0 I_R = 0_R$ and hence $\pi^+(\varphi_{1-e}) = \psi_0$. This is a contradiction since π is an isomorphism. Therefore $\varphi \in \operatorname{End}_{\overline{B}} S$. Thus $\operatorname{End}_{\overline{A}} I^1 R$ is isomorphic to $\operatorname{End}_{\overline{B}} I^1 S$. Which implies that S(X) is isomorphic to S(Y) by 3.5. It follows that X is homeomorphic to \overline{B} .

Let T be a p^k -ring (Foster). Then T may be viewed as an algebra over the Galois field GF(p). Since $t^{p^k} = t$ for every t in T, so T has no nonzero nilpotent elements. Therefore T is biregular by Jacobson (1968), Proposition 1, p. 210. Let K be a normal subfield of T. If M is a maximal ideal in T then T/M contains a copy of K since K is a field and $1_T \in K$. Since T/M is a field and $(t+M)^{p^k} = t+M$ and so T/Mis isomorphic to K which is isomorphic to GF (p^k) . Thus Theorem 4.1 is a generalization of the theorem of Luh and Smith.

For the rest of this section, π will denote an isomorphism of $\operatorname{End}_F R$ onto $\operatorname{End}_F S$. We shall show that if $\operatorname{End}_F R \simeq \operatorname{End}_F S$ then $R \simeq S$.

LEMMA 4.2. $\pi \psi_0 = \varphi_0, \ \pi \psi_1 = \varphi_1.$

LEMMA 4.3. Let $\psi \in \operatorname{End}_F R$. Then $\psi(\overline{I}_R) = \overline{I}_R$ if and only if $(\pi \psi)(\overline{I}_S) = \overline{I}_S$.

[5]

PROOF. See the proof of 4.1.

LEMMA 4.4. Let $\psi_p \in \operatorname{End}_{\overline{A}}^{-1} R$ such that $\psi_p[R] = \overline{A}$. Then $\psi \psi_p = \psi_p$ for every $\psi \in \operatorname{End}_{\overline{A}}^{-1} R$. Furthermore, if $\varphi_p = \pi \psi_p$ then $\varphi \varphi_p = \varphi_p$ for every $\varphi \in \pi[\operatorname{End}_{\overline{A}}^{-1} R]$ and $\varphi_p^2 = \varphi_p$.

PROOF. Since $\psi(\overline{I}_R) = \overline{I}_R = \psi_p(\overline{I}_R)$ and ψ , $\psi_p \in \operatorname{End}_{\overline{A}} R$, so $\psi|_{\overline{A}} = \psi_p|_{\overline{A}} = id$ (the identity function on \overline{A}). But $\psi_p[R] = \overline{A}$, so $\psi\psi_p = \psi_p$. Now if $\varphi = \pi\psi$ for some $\psi \in \operatorname{End}_{\overline{A}} R$ then $\varphi\varphi_p = (\pi\psi)(\pi\psi_p) = \pi(\psi\psi_p) = \pi(\psi_p) = \varphi_p$. Since $\psi_p = \psi_p\psi_p = \psi_p$, so $\varphi_p^2 = \varphi_p$.

LEMMA 4.5. Let $\psi_p \in \operatorname{End}_{\overline{A}}{}^1 R$ such that $\psi_p[R] = \overline{A}$. If $\psi \in \operatorname{End}_{F}{}^1 R$ and $\psi_p \psi = \psi$ then $\psi|_{\overline{A}}$ is an automorphism and $\psi[R] = \overline{A}$.

PROOF. $\psi[R] = \psi_p \psi[R] = \psi_p[\psi[R]] \subseteq \psi_p[R] = \overline{A}$. Let $\delta = \psi|_{\overline{A}}$. Then δ is a ring isomorphism since \overline{A} is simple and $\delta(1_{\overline{A}}) = 1_{\overline{A}}$. Since $\psi \in \operatorname{End}_F^1 R$ so δ is also a vector space homomorphism over F. But \overline{A} is finite dimensional over F and so δ is onto.

LEMMA 4.6. Let $\delta \in \operatorname{Aut}_F A$ the automorphism group of A over F. Then there exists $\delta_R \in \operatorname{Aut}_F R$ such that $\delta_R|_{\overline{A}} = \delta$.

PROOF. Let $\theta = \sigma_R^{\leftarrow} \delta \circ \sigma_R$ (recall that R is the ring of continuous functions of X into \dot{A} and σ_R the identity mapping of \dot{A} into R). Then $\theta \in \operatorname{Aut}_F \dot{A}$ and is a homeomorphism of the discrete space \dot{A} onto \dot{A} . Define $\delta_R : R \to R$ by $\delta_R(f) = \theta \circ f$ for $f \in R$. Clearly $\delta_R \in \operatorname{Aut}_F R$. Let $\ddot{a} \in \dot{A}$; then $\delta(\ddot{a}) \in \dot{A}$. Let $\ddot{a}_1 = \delta(\ddot{a})$. For $x \in X$, we have

$$\begin{aligned} (\delta_R \tilde{a})(x) &= (\theta \circ \tilde{a})(x) \\ &= \theta(\tilde{a}x) = \theta(a) = (\sigma_R^{+} \circ \delta \circ \sigma)_R(a) = (\sigma_R^{-} \circ \delta)(\sigma_R a) = (\sigma_R^{+} \circ \delta)(\tilde{a}) = \sigma_R^{+}(\delta \tilde{a}) \\ &= \sigma_R^{+}(\tilde{a}_1) = a_1 = \tilde{a}_1(x) = (\delta \tilde{a})(x). \end{aligned}$$

Therefore $\delta_R|_{\overline{A}} = \delta$.

LEMMA 4.7. If $\alpha: \overline{B} \to S$ is an isomorphism leaving F fixed then $M_y + \alpha[\overline{B}] = S$ for every primitive ideal M_y in S. (We identify the natural image of F with F.)

PROOF. Define $\alpha^* \colon S/M_y \to S/M_y$ by $\alpha^*(\bar{b}+M_y) = \alpha \bar{b}+M_y$. The domain of α^* is S/M_y since $\bar{B}+M_y = S$. Since $S/M_y \simeq \bar{B}$ and \bar{B} is simple so S/M_y is simple.

It follows that α^* is an isomorphism since $\alpha^*(\bar{1}_S + M_y) = \bar{1}_S + M_y$ the identity of S/M_y . Since \bar{B} is finite dimensional over F so is S/M_y . Hence α^* is onto since α^* is also a vector space homomorphism. Therefore $\{\alpha \bar{b}\}_{\bar{b} \in \bar{B}} + M_y = S$ or $\alpha[\bar{B}] + M_y = S$.

LEMMA 4.8. If $\alpha: \overline{B} \to S$ is an isomorphism leaving F fixed then $\operatorname{End}_{\overline{B}^1} S \simeq \operatorname{End}_{\overline{D}^1} S$, where $\overline{D} = \alpha[\overline{B}]$.

PROOF. $\overline{D} + M_y = S$ for every primitive ideal M_y in S by 4.7. It follows that S is isomorphic to the ring of continuous functions from X into \overline{D} by 2.1 and the remarks following 2.2. Therefore $\operatorname{End}_{\overline{R}} S \simeq \operatorname{End}_{\overline{D}} S$ and hence $\operatorname{End}_{\overline{R}}^{-1} S \simeq \operatorname{End}_{\overline{D}}^{-1} S$.

LEMMA 4.9. $\pi[\operatorname{End}_{\overline{A}}{}^1 R] = \operatorname{End}_{\overline{D}}{}^1 S$ for some normal subalgebra \overline{D} if S.

PROOF. Let $\psi_p \in \operatorname{End}_{\overline{A}}{}^1 R$ such that $\psi_p[R] = \overline{A}$. Let $\varphi_p = \pi \psi_p$ and $\overline{D} = \varphi_p[S]$. We want to show that \overline{D} is isomorphic to \overline{B} . Since $\psi_p(\overline{1}_R) = \overline{1}_R$ so $\varphi_p(\overline{1}_S) = \overline{1}_S$ by 4.3. Therefore $\varphi_p[\overline{B}]$ is isomorphic to \overline{B} since \overline{B} is simple. Since $S/M_y \simeq \overline{B}$ for every primitive ideal M_y in S so there exists $\varphi_M \in \operatorname{End}_F{}^1S$ such that $\varphi_M[S] = \varphi_p[\overline{B}]$. Clearly $\varphi_M|_{\overline{B}}$ is an isomorphism of \overline{B} into $\varphi_p[\overline{B}]$ which is contained in \overline{D} . Since $\psi_p \in \operatorname{End}_{\overline{A}}{}^1R$ and $\psi_p[R] = \overline{A}$ so $\varphi_p^2 = \varphi_p$ by 4.4. Therefore $\varphi_p|_{\overline{D}} = id$ and hence $\varphi_p \varphi_M = \varphi_M$. Let $\psi_M = \pi^+(\varphi_M)$ then $\psi_p \psi_M = \psi_M$. Let $\delta = \psi_M|_{\overline{A}}$ then δ is an automorphism of \overline{A} and $\psi_M[R] = \overline{A}$ by 4.5. Therefore δ has an extension $\delta_R \in \operatorname{Aut}_F R$ by 4.6. Clearly $\delta_R^{-1} \psi_M$ is identity on \overline{A} . So

$$\delta_{\overline{R}}^{-1}\psi_M \in \operatorname{End}_{\overline{A}}^{-1}R$$
 and $\pi(\delta_{\overline{R}}^{-1}\psi_M) \in \pi[\operatorname{End}_{\overline{A}}R].$

Let $\delta_S = \pi \delta_R^{-1}$; then

$$\delta_S \varphi_M = (\pi \delta_R^{-1}) (\pi \psi_M) = \pi (\delta_R^{-1} \psi_M) \in \pi[\operatorname{End}_A^1 R].$$

Let $\psi = \pi^{\leftarrow}(\delta_S \varphi_M)$; then $\psi \in \operatorname{End}_{\overline{A}}{}^1 R$ and hence $\psi \psi_p = \psi_p$ by 4.4. Therefore $(\delta_S \varphi_M) \varphi_p = \varphi_p$ and

$$\bar{D} = \varphi_p[S] = (\delta_S \varphi_M) \varphi_p[S] = \delta_S \varphi_M[\bar{D}] \subseteq \delta_S \varphi_M[S] = \delta_S \varphi_p[\bar{B}].$$

Since $\delta_S = \pi \delta_R^{-1}$ and π is an isomorphism so $\delta_S \in \operatorname{Aut}_F S$. Therefore \overline{D} is contained in an isomorphic image of \overline{B} . But $\varphi_p[\overline{B}] \subseteq \overline{D}$ and both φ_p and $\delta_S \varphi_p$ are vector space homomorphisms and so \overline{D} is isomorphic to \overline{B} since \overline{B} is finite dimensional. Thus $\varphi_p[\overline{B}] = \overline{D}$ is a normal subalgebra of S by 4.7. Let $\varphi \in \operatorname{End}_{\overline{D}}^{-1} S$ then $\varphi|_{\overline{D}} = id$, and $\varphi\varphi_p = \varphi_p$. Let $\psi = \pi^+ \varphi$. Then $\psi_p = \pi^+(\varphi_p) = \pi^+(\varphi\varphi_p) = (\pi^+ \varphi)(\pi^+ \varphi_p) = \psi\psi_p$. Since $\psi_p \in \operatorname{End}_{\overline{A}}^{-1} R$ so $\psi_p|_{\overline{A}} = id$. Let $\overline{a} \in \overline{A}$ then $\psi(\overline{a}) = \psi(\psi_p, \overline{a}) = \psi\psi_p(\overline{a}) = \psi(\overline{a}) = \overline{a}$. Therefore $\psi|_{\overline{A}} = id$ and hence $\psi \in \operatorname{End}_{\overline{A}}^{-1} R$. This implies that $\varphi = \pi \psi \in \pi[\operatorname{End}_{\overline{A}}^{-1} R]$. Thus $\operatorname{End}_{\overline{D}}^{-1} S \subseteq \pi[\operatorname{End}_{\overline{A}}^{-1} R]$. Let $\varphi \in \pi[\operatorname{End}_{\overline{A}}^{-1} R]$ then $\varphi\varphi_p = \varphi_p$ by 4.4. Since $\varphi_p^2 = \varphi_p$ so $\varphi_p|_{\overline{D}} = id$. Therefore $\varphi|_{\overline{D}} = id$ and hence $\varphi \in \operatorname{End}_{\overline{D}}^{-1} S$. This shows that $\pi[\operatorname{End}_{\overline{A}}^{-1} R] \subseteq \operatorname{End}_{\overline{D}}^{-1} S$. Thus $\operatorname{End}_{\overline{D}}^{-1} S = \pi[\operatorname{End}_{\overline{A}}^{-1} R]$. THEOREM 4.10. If $\operatorname{End}_F R \simeq \operatorname{End}_F S$ then $R \simeq S$.

PROOF. By 4.9, we have $\pi[\operatorname{End}_{\overline{A}}{}^1 R] = \operatorname{End}_{\overline{D}}{}^1 S$. Therefore $\operatorname{End}_{\overline{A}}{}^1 R \simeq \operatorname{End}_{\overline{D}}{}^1 S$. But $\operatorname{End}_{B}{}^1 S \simeq \operatorname{End}_{D}{}^1 S$ by 4.8. So $\operatorname{End}_{A}{}^1 R \simeq \operatorname{End}_{B}{}^1 S$. Thus $R \simeq S$ by 4.1.

If T is a p^k -ring (Foster) and K the Golois field GF(p) then T is a biregular algebra over F such that $T/M \simeq GF(p^k)$ for every maximal ideal M in T. Therefore if U is another p^k -ring (Foster) and $End_K T \simeq End_K U$ then $T \simeq U$ by 4.10. But $End_K T = End T$ and $End_K U = End U$ so $End T \simeq End U$ implies $T \simeq U$.

5. Endomorphisms of rings of continuous real-valued functions

Throughout this section, all spaces are assumed to be completely regular and Hausdorff. The symbol **R** will denote the real field with natural topology, and C(X) the ring of continuous functions from a space X into **R**. If X is a space, then End $C(X) = \text{End}_{\mathbf{R}} C(X)$ by Gillman and Jerison (1960), 1I, p. 23. A space X is said to be *realcompact* if $C(X)/M \simeq \mathbf{R}$ for every maximal ideal M in C(X).

LEMMA 5.1. Let X and Y be realcompact spaces. If End $C(X) \simeq$ End C(Y) then $S(X) \simeq S(Y)$.

PROOF. Essentially the same as that of 4.1.

A class of topological spaces is said to be S-admissible if for each pair of spaces X and Y from the class, any isomorphism from S(X) onto S(Y) is induced by a homeomorphism. There are extensive classes of spaces which are S-admissible and at the same time are such that the spaces belonging to them are all realcompact, for example, the class of compact totally disconnected spaces. For a survey of known results on S-admissible classes, one may consult Magill (1975/76).

THEOREM 5.2. Let X and Y be realcompact spaces and suppose they both belong to the same S-admissible class. Then the following statements are all equivalent.

- (1) End $C(X) \simeq$ End C(Y).
- (2) $C(X) \simeq C(Y)$.
- (3) X is homeomorphic to Y.
- (4) $S(X) \simeq S(Y)$.

PROOF. (1) implies (2): immediate following from 5.1.(2) implies (3): See Gillman and Jerison (1960), Chapter 8, Theorem 8.2.

(3) implies (4): obvious.

(4) implies (1): Since both X and Y are in the same admissible class, so $X \simeq Y$ by definition. Hence End $C(X) \simeq$ End C(Y).

The author wishes to thank Professor Jiang Luh of North Carolina State University for his help in the preparation of this paper.

References

- L. Gillman and M. Jerison (1960), Rings of continuous functions (Van Nostrand, New York).
- N. Jacobson (1968), Structure of rings (Amer. Math. Soc., Providence, R.I.).
- J. Luh and D. B. Smith, Jr. (1974), 'On semigroups of endomorphisms of generalized Boolean rings', J. Austral. Math. Soc. 18, 411-418.
- K. D. Magill, Jr. (1964), 'Semigroups of continuous functions', Amer. Math. Monthly 71, 984-988.
- K. D. Magill, Jr. (1970), 'The semigroup of endomorphisms of a Boolean ring,' J. Austral. Math. Soc. 11, 411-416.
- K. D. Magill, Jr. (1975/76), 'A survey of semigroups of continuous selfmaps', Semigroup Forum 11, 189-282.
- G. F. Simmons (1963), Introduction to topology and modern analysis (McGraw-Hill, New York, San Francisco, Toronto, London).

North Carolina State University at Raleigh Raleigh, NC 27650 U.S.A.

Current address: Singer Company, Link Division 11800 Tech Road, Silver Spring MD 20903 U.S.A.