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Abstract
This paper will outline the functionality available in the CovRegpy package which was written for actuar-
ial practitioners, wealth managers, fundmanagers, and portfolio analysts in the language of Python 3.11.
The objective is to develop a new class of covariance regression factor models for covariance forecasting,
along with a library of portfolio allocation tools that integrate with this new covariance forecasting frame-
work. The novelty is in two stages: the type of covariance regression model and factor extractions used
to construct the covariates used in the covariance regression, along with a powerful portfolio allocation
framework for dynamic multi-period asset investment management.
The major contributions of package CovRegpy can be found on the GitHub repository for this
library in the scripts: CovRegpy.py, CovRegpy_DCC.py, CovRegpy_RPP.py, CovRegpy_SSA.py,
CovRegpy_SSD.py, and CovRegpy_X11.py. These six scripts contain implementations of software
features including multivariate covariance time series models based on the regularized covariance regres-
sion (RCR) framework, dynamic conditional correlation (DCC) framework, risk premia parity (RPP)
weighting functions, singular spectrum analysis (SSA), singular spectrum decomposition (SSD), and X11
decomposition framework, respectively.
These techniques can be used sequentially or independently with other techniques to extract implicit fac-
tors to use them as covariates in the RCR framework to forecast covariance and correlation structures and
finally apply portfolio weighting strategies based on the portfolio risk measures based on forecasted covari-
ance assumptions. Explicit financial factors can be used in the covariance regression framework, implicit
factors can be used in the traditional explicit market factor setting, and RPP techniques with long/short
equity weighting strategies can be used in traditional covariance assumption frameworks.
We examine, herein, two real-world case studies for actuarial practitioners. The first of these is a modi-
fication (demonstrating the regularization of covariance regression) of the original example from Hoff &
Niu ((2012). Statistica Sinica, 22(2), 729–753) which modeled the covariance and correlative relationship
that exists between forced expiratory volume (FEV) and age and FEV and height. We examine this within
the context of making probabilistic predictions about mortality rates in patients with chronic obstructive
pulmonary disease.
The second case study is a more complete example using this package wherein we present a funded and
unfunded UK pension example. The decomposition algorithm isolates high-, mid-, and low-frequency
structures from FTSE 100 constituents over 20 years. These are used to forecast the forthcoming quarter’s
covariance structure to weight the portfolio based on the RPP strategy. These fully funded pensions are
compared against the performance of a fully unfunded pension using the FTSE 100 index performance as
a proxy.

Keywords: portfolio optimization; regularized covariance regression (RCR); empirical mode decomposition (EMD);
singular spectrum analysis (SSA); singular spectrum decomposition (SSD); X11; implicit factors; risk premia parity; risk
parity; long short equity

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1748499524000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000101
https://orcid.org/0000-0003-1831-8351
https://orcid.org/0000-0003-2768-8979
https://orcid.org/0000-0002-8381-1751
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1748499524000101


2 Cole van Jaarsveldt et al.

1. Actuarial setting and context
Modern portfolio theory has seen significant developments in the twenty-first century in two
separate, but related aspects of portfolio optimization originally proposed by Markowitz (1952):

• development of assumptions regarding statistical features of financial returns and their
dynamic covariance–correlation relationships, and

• development of various objectives in pursuit of optimal portfolio weightings for positions in
the portfolio based on assumptions made about future forecasts of trend and covariance of
asset returns.

Multivariate dynamic covariance time series models can be split into various families of mod-
els such as multivariate generalized autoregressive conditional heteroskedasticity (MGARCH),
dynamic conditional constant correlation (DCC), and various families of factor models, see a
survey on suchmodels in Bauwens et al. (2006). Thesemodels are generally all endogenous regres-
sion models, meaning that they are based on dynamics that arise from a past cross section of
asset return residuals and white noise drivers to describe structurally the dynamic evolution of
covariance and correlation in the cross section of asset returns. They have been widely adopted
in many areas of finance, and there are reasonable software implementations for most MGARCH
and DCC time series models in R, Python, and Matlab. Less developed families of multivariate
dynamic volatility models for covariance forecasting are the families of covariance regression fac-
tor models. These are multivariate generalizations of classical factor models such as capital asset
pricing model (CAPM), arbitrage free pricing theory (APT) models, and extended Fama-French
3- and 5-factor models, see a review in Mateus et al. (2019). Importantly from the perspective of
the software package developed in CovRegpy, many of the new classes of dynamic factor models
that can be used for covariance forecasting in multivariate asset return time series are not widely
available in packages in R or Matlab. It is, therefore, the intention of this work to propose a new
library of tools that can implement various new extended families of covariance regression factor
models for covariance forecasting, where the emphasis on novelty lies in the choice of factors and
new factor construction approaches which are based on nonlinear and nonstationary time series
methods, not yet widely adopted in the wealth management space but are proving to be ushering
in a new wave of multivariate asset covariance forecasting tools. This paper, therefore, seeks to
introduce these tools for actuarial practitioners via a dedicated software library CovRegpy.

Before the recent developments of covariance regression methods such as those in Hoff &
Niu (2012) and the applications in financial settings using these methods such as those in Ames
et al. (2017) and (2018), the most common approach to covariance forecasting was using either
empirical historical sample estimators as predictions based on the past realized portfolio asset
returns covariance estimates (over windows of varying length) used as the best estimate for the
forthcoming covariance. Alternatively, for model-based forecasting methods, it is common to uti-
lize methods from multivariate time series such as DCC-MGARCH. It is widely understood that
financial markets are often comprised of nonstationary series that exhibit complex dependence
structures that vary depending on the current state of the economy, macroeconomic outlooks,
and many other factors. DCC-MGARCH, while attempting to explicitly forecast the covariance,
results in a square-root law temporarily growing covariance structure – as a result the weights
will remain the same at any point in the future. That is, given the DCC-MGARCH forecast 1 day
ahead, �DCC(1), the DCC-MGARCH forecast t days ahead will simply be:

�DCC(t)=
√
t × �DCC(1). (1)

Unlike in DCC-GARCHmodels, covariance regression frameworks such as those developed in
Hoff & Niu (2012) can be considered in both non-time series and time series contexts. In gen-
eral, this method will provide a regression technique for attributing covariance to underlying
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factors in a parametric and interpretable manner through the use of a specific type of random-
effects linear regression structure that produces a covariance regression model structure that the
user can specify explicitly and test. In this work, the focus of the covariance regression struc-
ture will be on covariance forecasting in multivariate financial time series settings using a lagged
effects model based on extracted factors that will act as implicit factor covariates when making
covariance forecasts. Numerous regularizations of the original covariance regression of Hoff &
Niu (2012) are presented herein, namely least absolute shrinkage and selection operator (LASSO)
regression, ridge regression, elastic-net regression, group-LASSO regression, as well as subgradi-
ent descent for optimization solutions when estimating of suchmodels in theCovRegpy package.
These are all implemented within various speciality Expectation-Maximization (EM) estimation
frameworks.

Furthermore, this CovRegpy package serves to promote the use of implicit factor extraction
techniques and their integration into covariance regression. This is a newly emerging class of
feature extraction methods proving useful in forecasting covariance of asset returns, though not
yet widely adopted due to a lack of readily available software tools that allow the adoption of these
methods by practitioners. We seek to fill this gap with the CovRegpy package.

Under these implicit factor covariance regressionmethods, the subsequent covariance forecasts
can then be utilized in portfolio optimization methods built in the proposed CovRegpy package,
and examples include the risk premia parity (RPP) as well as classical Markowitz mean-variance
methods (see Markowitz, 1952). Portfolio optimization methods such as RPP (see Qian, 2005) are
interesting modern portfolio allocation methods that complement traditional Markowitz mean-
covariance methods. Portfolio weighting strategies such as RPP have become increasingly popular
since the subprime mortgage crisis which significantly contributed to the wider-reaching 2007–
2008 global financial crisis. In addition to RPP weighting, long short equity weighting rules,
introduced in Jacobs & Levy (1993), restrict the cumulative long and short positions within the
portfolio, replicating real-world shorting costs.

2. Software contributions and context
Despite many innovations in this space, there does not exist very many public-domain, state-of-
the-art packages for the development of these methods for practitioners. The intention of this
work is to develop a public domain freely available software toolbox for state-of-the-art dynamic
portfolio methods that complement other existing packages such as cvxPortfolio, Boyd et al.
(2016), which focuses on different aspects of portfolio optimization problem compared to the
package proposed. The aforementioned package focuses on various dynamic portfolio settings
with a wide variety of constraints that can be incorporated, whereas the proposed CovRegpy
package in this manuscript focuses on building dynamic covariance regression models using
advanced regression methods as well as state-of-the-art signal decomposition methods that work
in nonstationary settings to extract factors and features to act, for instance, as regression factors.

The state-of-the-art nonstationary and nonlinear time series methods adopted in the package
CovRegpy to produce the implicit factor extraction models have all been recently developed,
with an exception being X11 which was developed in Shiskin et al. (1967). The empirical mode
decomposition (EMD) used throughout this package is based on a parallel package established
for actuarial data analytics in AdvEMDpy package which was developed in van Jaarsveldt et al.
(2023a). EMD was originally developed in Huang et al. (1998), Huang (1999), and Huang et al.
(1999). Singular spectrum analysis (SSA) developed inHassani (2007) has been added to this pack-
age with additions like the Kolmogorov–Smirnov test of the distribution of the errors resulting
in Kolmogorov–Smirnov SSA (KS-SSA). Decomposing SSA (D-SSA), decomposes the original
algorithm and presents the individual components extracted rather than grouping them as in the
original algorithm. Singular spectrum decomposition (SSD), which is a refinement of SSA, was
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developed in Bonizzi et al. (2014) and has been added to this package. X11 is introduced in Shiskin
et al. (1967) and further discussed in Sutcliffe (1993) and Doherty (2001). These separate methods
included, and sometimes criticized, herein should not exclusively be thought of as competitors as,
owing to their nonconstructive nature, and they function very well as complementary algorithms,
see van Jaarsveldt et al. (2023b).

3. Overview and structure
The structure of this paper replicates the sequence in which the proposed techniques should be
applied:

• extract factors using implicit factor extraction techniques,
• use l-lagged model or explicitly forecast implicit factor,
• use factors to forecast covariance using covariance regression, and
• weight portfolio according to risk appetite.

The following overview and structure is summarized with the associated packages and section
in Fig. 1. In Section 4, the implicit factor extraction techniques are described with some descrip-
tive figures. In this section, new approaches to these established techniques are discussed in order
to increase flexibility for financial applications. These new approaches, such as KS-SSA, D-SSA,
L2-SSD, L1-SSD, and ITA-SSD, seek to improve flexibility and solve specific problems encoun-
tered when applying the original methods to both synthetic and real-world data. EMD is briefly
discussed in Section 4.2 before moving on to the implicit factor extraction techniques introduced
in this package, namely X11, SSA, and SSD. In Section 4.3, X11 is discussed. In Sections 4.4 and
4.5, SSA and SSD are discussed, respectively. SSD was originally developed to address some of the
shortcomings of SSA. Both of these techniques still have shortcomings as will be noted in Sections
4.4 and 4.5.

In Section 5, the first real-world actuarial case study, regularized covariance regression (RCR)
is presented with its numerous available algorithmic variations. In Hoff & Niu (2012), the idea
of independently estimating the mean and covariance coefficients is discussed without it being
formalized. This independent mean regularized covariance regression (IM-RCR) is formalized in
Section 5.3 and in Algorithm 1. This is followed by LASSO RCR, ridge RCR, elastic-net RCR,
group-LASSO RCR, and subgradient optimization RCR in Sections 5.4, 5.5, 5.6, 5.7, and 5.8,
respectively.

Section 5.1 notes the long-term financial benefits of insurers having more accurate knowl-
edge of the prevalence of chronic obstructive pulmonary disease (COPD) and other early signs
of reduced lung capacity, particularly after the SARS-CoV-2 pandemic, regarding policy pricing
and the savings of early detection and indicators compared against expensive late-stage treatment
and maintenance. Section 5.2 details works examining the diagnostic and mortality forecast-
ing abilities of measures of lung capacity. In Hutchinson (1846) (which cites numerous early
works), the diagnostic ability of reduced lung capacity was already shown to be valuable – this is
motivated within Section 5 with the intention of pricing insurance policies and eventually
constructing individual pricing.

Section 6 presents a more complete case study (using more features of this package) in which
the implicit factor extraction techniques are used to isolate different frequency structures from
the daily returns of FTSE 100 stocks. These different frequency structures are used to forecast
the covariance of the stocks over the forthcoming investment horizon. With these covariance
forecasts, the portfolios (funded portions of pensions) are weighted based on the RPP strategy.
This uses implicit factor extraction techniques in RCR with RPP weighting. Section 6.1 summa-
rizes some of the shortcomings of either using purely funded or unfunded pensions before the
advantages of using hybrid pension schemes to address the demographic changes in developed
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Figure 1. Flow diagram summarizing stages (and providing the respective sub-packages within CovRegpy) of constructing
leveraged risk premia parity portfolios using implicit factor models in a regularized covariance regression framework with
either an l-lagged framework or a formal forecasting framework.

nations are given exposition in Section 6.2. RPP portfolio weighting is described in Section 6.3
before the case study constructing hybrid pensions using the modeling framework from Dutta
et al. (2000) with different covariance forecasts and different risk appetites is presented. This paper
is concluded with some closing remarks in Section 7.

4. Implicit factor models
In Smith (1776), it was first postulated among supporting observations that assets have an intrinsic
value about which their values fluctuate owing to human uncertainty. This formed the founda-
tional ideas of asset pricing for nearly two centuries. In Sharpe (1964) and Lintner (1965), the
CAPM was introduced and despite failing numerous tests, Fama & French (2004), this model did
establish formal asset pricing models as a viable field of study with actual testable predictions con-
cerning risk and return. This model is the first of what one can refer to and is referred to herein,
as an explicit factor model. It is explicit in the sense that the factor upon which an asset’s price
depends is observable or easily inferable.
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Contemporaneously with this explicit factor model, Markowitz (1952) and Tobin (1958) devel-
oped modern portfolio theory as an explanation of the observable diversification in most if not all,
real-world portfolios. This development considered both the returns of assets (above some “risk-
free” asset as proposed in the CAPM) and the risk of assets (quantified as the covariation of the
various assets). This was necessary and, arguably, vital to the further developments seen in mod-
ern economic theory. In Ross (1976), the Arbitrage Pricing Theorem (APT) was developed, which
is widely considered the natural successor to the CAPM which has had increased success in its
predictive capabilities, see Basu & Chawla (2012).

A further development in this field which arguably combines factor models with traditional
portfolio theory is the usage of principal component analysis (PCA) in the construction of prin-
cipal portfolios by applying the technique to either covariances or correlations of sets of assets –
the details of the application thereto are outlined in Jolliffe (1986). Applications of PCA to the
financial industry have varied with Darbyshire (2017) constructing interest rate derivative port-
folios and Pasini (2017) applying the same framework in the construction of equity portfolios.
In Yang (2015), this is further extended to the construction of portfolios of principal portfolios.
These principal components are the first implicit factors in the sense that their interpretation is
less obvious than CAPM and APT explicit factors.

This section outlines the techniques available in the recently published EMD package,
AdvEMDpy, van Jaarsveldt et al. (2023a), and the techniques published in this package,
CovRegpy. These techniques are in contrast to traditional financial factor models such as prin-
cipal portfolios as a dimensionality reduction technique and an attributable variance model and
the explicit market factor models proposed in Fama & French (1993) and (2015) which relates
financial asset prices to several factors – one of which is the difference between the return of
a diversified portfolio of small stocks and the return of a diversified portfolio of large stocks.
Little research has been conducted into the interpretability of these implicit factors or relating
them to easily observable economic factors with a notable exception being van Jaarsveldt et al.
(2023b) where an implicit Carbon ETF factor is related to the annual cycle of carbon dioxide in the
atmosphere.

The explicit factor techniques, while revolutionary, make no attempt to isolate specific time-
frequency structures within the asset basket under observation. The techniques discussed in this
section either implicitly (EMD and X11) or explicitly (SSA and SSD) isolate structures based
on frequency bandwidths and can therefore, to take the model further, be used to construct
horizon-specific portfolios based on one’s requirements and the bandwidths of the components.
An additive synthetic time series has been generated to demonstrate the various available decom-
position techniques in this package. Equation (2) is plotted in Fig. 2 demonstrating a synthetic
time series with a noticeable trend and an annual seasonal structure with white noise. With
t ∈ {0, 1, 2, . . . , 120}, the synthetic time series is

xt = xt,trend + xt,seasonal + xt,irregular, (2)
with

xt,trend = 1
100

× (
t − 10

)× (
t − 60

)× (
t − 110

)+ 1000, (3)

and

xt,seasonal = 100× sin
(
2π
12

t
)
, (4)

and
xt,irregular ∼N (0, 10). (5)

Section 4.2 demonstrates the results of the application of EMD to the time series described in
Equation (2). We advise the reader to see van Jaarsveldt et al. (2023a) for a thorough review of this
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Figure 2. Additive synthetic time series described in Equations (2), (3), (4), and (5), used to demonstrate implicit factor
extraction methods in this section which consists of a trend-cycle, seasonal, and irregular component.

algorithm, its algorithmic variations, and the associated software package which also may produce
implicit market factors for use in this algorithm – see Fig. 1 for usage context. The application of
X11 to this time series is reviewed in Section 4.3 – the results are less favorable than in Section
4.2, but the method is much older and has been shown in van Jaarsveldt et al. (2023b) to act
favorably as a smoother of EMD to form EMD-X11. The base implementation of the SSA and SSD
algorithms to the same synthetic time series is reviewed in Sections 4.4 and 4.5 – the algorithmic
extensions to SSA and SSD developed to address some of the shortcomings discovered in this
work are addressed in the supplement.

4.1 Additive andmultiplicative time series
In Derman & Kani (1994), Dupire (1994), and Rubinstein (1994), it is postulated that the volatil-
ity of assets is not only time-inhomogeneous, but it is also a function of the prices of the assets
themselves or, by extension, the recent changes in the asset prices – this is inline with modern
probability default models that agree that the momentum of the underlying factors is nontrivial
in their predictive capabilities. This follows logically as high prices or recent large increases in
asset prices often foreshadow periods of heightened uncertainty and, therefore, volatility. These
assumptions are not without criticism with Dumas et al. (1998), performing an extensive empir-
ical study that concludes that these models are indistinguishable from smoothed versions of the
implied volatility model proposed in Black & Scholes (1973).

With this context, it is natural to also exploremultiplicativemodels where seasonality and trend
components (and further less-easily named or interpretable components isolable using SSA and
SSD within the CovRegpy package and EMD in the AdvEMDpy package) are multiplied onto
some underlying trend. The framework in this paper is also well suited for multiplicative models,
provided that one uses an appropriate transform such as the natural logarithm as demonstrated
in Equation (6):
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xt = xt,trend × xt,seasonal × xt,irregular
log(xt)= log(xt,trend)+ log(xt,seasonal)+ log(xt,irregular).

(6)

4.2 Empirical mode decomposition
Based on work done in Huang et al. (1998), Huang (1999), Huang et al. (1999), van Jaarsveldt et al.
(2023a), and van Jaarsveldt et al. (2023b), it can be stated with some confidence that EMD and the
various algorithmic variations summarized and presented in van Jaarsveldt et al. (2023a) present
a class of robust trend estimation and decomposition algorithm that are state-of-the-art when
working with general stochastic processes including potential nonstationarity and nonlinearity.
The algorithm, Algorithm 1, presented in pseudocode in Appendix A, of Supplement to: Package
CovRegpy: Regularized Covariance Regression and Forecasting in Python, was first presented in
van Jaarsveldt et al. (2023a). The two conditions that each component isolated using EMD, named
intrinsic mode functions (IMFs), must satisfy are listed in C1 and C2. An additional, optional (and
highly recommended) condition, C3, is referred to as a stopping criterion and is checked after
the initial two conditions are checked. This prevents over-sifting and the propagation of errors
through successive IMF components with the conditions listed below:

C1 abs
(∣∣∣{ dγk(t)

dt = 0 : t ∈ (0, T)
}∣∣∣− ∣∣∣{γk(t)= 0 : t ∈ (0, T)

}∣∣∣)≤ 1,

C2
∑

t abs
(
γ̃

μ

k (t)
)≤ ε2, and

C3 SD(p,q) =∑
t

[∣∣(h(p,q−1)(t)− h(p,q)(t))
∣∣2

h2(p,q−1)(t)

]
< ε3.

In C1, γk(t) is the kth IMF component and with |{·}| being the cardinality set. In C2, γ̃ μ

k (t) is
the mean of the kth IMF and in C3, h(p,q)(t) is the qth iteration of the algorithm for the pth IMF.
The final result of the sifting presented in Algorithm 1 is

xIMF(t)=
K∑

k=1

γk(t)+ rK(t). (7)

As mentioned, EMD refers exclusively to the sifting procedure, whereas the Hilbert–Huang trans-
form (HHT) refers to both EMD (the sifting procedure) followed by the Hilbert transform. The
Hilbert transform of kth IMF can be seen in Equation (8):

γ̌k(t)=HT [γk(t)]= 1
π
PV

∫ ∞

−∞
γk(t∗)
t − t∗

dt∗, (8)

with PV being the Cauchy principle value integral. This is an improper integral that assigns a value
to an improper integral where there exists a discontinuity. The Hilbert transform in Equation (8)
can be expanded to Equation (9):

γ̌k(t)= 1
π

lim
ε→0+

[ ∫ t−ε

t− 1
ε

γk(t∗)
t − t∗

dt∗ +
∫ t+ 1

ε

t∗+ε

γk(t∗)
t − t∗

dt∗
]
. (9)

With the Hilbert transform of the time series defined as in Equation (9), the analytical signal can
then be defined as in Equation (10):

γ a
k (t)= γk(t)+ iγ̌k(t)= a(t)eiθ(t) = a(t)ei

∫
ω(t)dt , (10)
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with the instantaneous amplitude being defined as in Equation (11):

a(t)=
√

γk(t)2 + γ̌k(t)2, (11)

and the phase being:

θ(t)= tan−1
(

γ̌k(t)
γk(t)

)
. (12)

The instantaneous frequency can then be defined as in Equation (13):

ω(t)= dθ(t)
dt

. (13)

4.3 X11
X11 was originally proposed in Shiskin et al. (1967). This algorithm is the focus of
CovRegpy_X11.py. A disadvantage of X11 when compared against EMD is that it is less flexible
in that it can only extract three structures namely the trend-cycle component, seasonal compo-
nent, and the irregular component. Each of these components is individually less flexible than
an IMF from EMD. The irregular component would, in most real-world scenarios, contain addi-
tional meaningful structural information that is regarded as noise in X11. Many shortcomings of
the method are discussed in Sutcliffe (1993) and Doherty (2001).

The Henderson symmetric weights proposed in Henderson (1916), Whittaker (1922), and
Henderson (1924) are used in the X11 algorithm. The edges of the time series present problems for
the symmetric weighting procedure. Two common solutions are proposed. As in Dagum (1980),
(1988), (1996), and Findley et al. (1998), the autoregressive integrated moving average (ARIMA)
model is used to explicitly forecast the edge of the time series so that the symmetric weights can
still be used. An alternative to this without explicitly forecasting the time series involves cal-
culating a set of asymmetric weights. Classical asymmetric weights are calculated in Musgrave
(1964b) and (1964a) with the Reproducing Kernel Hilbert Space derivation of these weights being
done Bianconcini (2006), Dagum & Bianconcini (2006), and (2008). X11 decomposes the times
series as:

x(t)= T(t)+ S(t)+ ε(t), (14)
with T(t), S(t), and ε(t) being the trend-cycle component, seasonal component, and irregular
component, respectively. The symmetric moving average of order k, mak( · ), is defined as:

mak(x(th))= 1
2(k− 1)

x
(
th− (k−1)

2

)
+

(k−2)
2∑

a=− (k−2)
2

1
k− 1

x(th+a)+ 1
2(k− 1)

x
(
th+ (k−1)

2

)
, (15)

with x(th) being the hth time series component. The symmetric seasonal moving average of order
m× n, S{m×n,c}( · ), is defined as:

S{m×n,c}(x(th))= 1
mn

x
(
th− c((n−1)+(m−1))

2

)
+ 2

mn

− c(n−1)
2∑

b=− c((n−1)+(m−1)−2)
2

x(th+b)

+
c(n−3)

2∑
b=− c(n−3)

2

1
n
x(th+b)+ 2

mn

c((n−1)+(m−1)−2)
2∑

b= c(n−1)
2

x(th+b)

+ 1
mn

x
(
th+ c((n−1)+(m−1))

2

)
,

(16)
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Figure 3. X11 time series decomposition of synthetic additive time series into trend-cycle component, seasonal component,
and random error or noise component.

with c being a parameter that depends on both the sampling rate of the time series and the calcu-
lated seasonality of the time series. An example is that if the time series is sampled monthly and
the seasonality is expected to be quarterly, then c= 3. The Henderson moving average of order
l, Hmal( · ), is as in Henderson (1916), Whittaker (1922), Henderson (1916), Bianconcini (2006),
Dagum & Bianconcini (2006), and Dagum & Bianconcini (2008). An example of the application
of the code can be seen below:

trend, seasonal, irregular = \
CovRegpy_X11(time, time_series, seasonality=‘annual’,

seasonal_factor=‘3x3’, trend_window_width_1 = 13,
trend_window_width_2 = 13, trend_window_width_3 = 13)

Fig. 3 demonstrates the result of applying the X11 method in CovRegpy_X11 to the additive
synthetic time series, Fig. 2, described in Section 4 using the parameters as shown in the code
above. The trend-cycle component, seasonal component, and random error component are sepa-
rated from one another, but the noise persists in the system owing to the lack of formal frequency
bandwidth or distribution approaches to the decomposition as will be formally demonstrated in
Section 4.5. The three components visible in Fig. 3 result from applying the above code snippet
to the time series presented in Equation (2) and plotting each component with its corresponding
underlying target time series component.

4.4 Singular spectrum analysis
SSA, as presented in Hassani (2007), can be separated into four stages, namely embedding, sin-
gular value decomposition (SVD), grouping, and diagonal averaging which will be presented in
Sections 4.4.1, 4.4.2, 4.4.3, and 4.4.4, respectively. In Section 9.1.1 of Supplement to: Package
CovRegpy: Regularized Covariance Regression and Forecasting in Python, D-SSA is introduced
and in Section 9.1.2 of “Supplement to: Package CovRegpy: Regularized Covariance Regression
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and Forecasting in Python,” KS-SSA is introduced. D-SSA and KS-SSA have been developed dur-
ing this research to modify SSA to develop a more robust decomposition technique. D-SSA seeks
to construct a decomposing version of SSA, whereas KS-SSA was developed to optimize and auto-
mate the isolation of a trend among white noise – the assumption underpinning this technique is
that the errors have a Gaussian distribution.

4.4.1 Embedding in SSA
The first step involves converting the univariate time series into a multivariate time series by
embedding lagged increments of the original univariate time series to create matrix X such that:

X = [X1(t), . . . , XK(t)], (17)
with Xj(t)= [x(tj), . . . , x(tj+L−1)]T and K = T − L+ 1. L is the embedding dimension that
determines the structures being isolated and becomes increasingly relevant in the algorithmic
variations and methodological extension of SSA, namely SSD (discussed in the next section), for
purposes such as removing the initial trend structure.

4.4.2 Singular value decomposition in SSA
This is followed by the SVD of the matrix X resulting in λ = (λ1, . . . , λL) and U= [U1, . . . ,UL]
being the vector of eigenvalues in descending order (λ1 < . . . < λL) and their corresponding
eigenvectors, respectively. With Vj = XTUj/

√
λj, X is decomposed as:

X =
L∑
j=1

Xj, (18)

where Xj =
√

λjUjVT
j . Equation (18) demonstrates the decomposition of the embedding matrix

in Equation (17). In the absence of rounding errors, Equation (18) should precisely reproduce the
time series after a reversal of the embedding step.

4.4.3 Grouping in SSA
With I being a subset of indices such that I = {i1, . . . , ip} ⊂ {1, . . . , L} = L, the trend is estimated
using a user-selected subset of L, but in practice to estimate the trend, owing to the exponential
decay of the eigenvalue, only the first few indices are used:

XI =
∑
I

Xj. (19)

Theoretically, any subset in P(L) can be used to estimate the trend, but as the eigenvalues mono-
tonically decrease, the amount of variation, and therefore information, in each subsequent Xj
decreases exponentially. It is this step that is adjusted in Section 9.1.1 of “Supplement to: Package
CovRegpy: Regularized Covariance Regression and Forecasting in Python” to produce the D-SSA
by keeping the components separate before performing the following step on individual compo-
nents before grouping them based on the user’s requirements such as a pure trend estimate or an
evaluation of different cyclical components.

4.4.4 Diagonal averaging in SSA
This final step is, in summary, a reversal of the embedding step. By appropriately defining a vector,
such that the lagged embedding of Equation (17) is reversed so that an appropriate averaging can
take place. With this vector, XI[i], defined as in Equation (20):
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Figure 4. SSA and D-SSA trend estimate and component isolation compared against the corresponding underlying
structures.

XI[i]=
∑
r+c=i

XI[r, c], (20)

with the trend estimation then proceeding by using an appropriate averaging vector to reverse the
lagged embedding:

xSSA(t)=
p−1∑
i=1

(p+ 1)− i
p

XI[i]+
L−p∑
i=p

1
p
XI[i]+

L∑
i=L−p+1

(L− i)
p

XI[i]. (21)

In the original SSA, as proposed in Hassani (2007), the only input variables used in the code
above are time_series, L, and est. The time series (time_series) is required as well as the
embedding dimension (L) and the grouping factor (est). One variation on the original algorithm
can be noted as the second output of the algorithm which is time_series_decomp. Rather than
automatically group the structures, as in time_series_est, time_series_decomp stores each
of the structures sequentially for the user’s convenience.

time_series_est, time_series_decomp = \
CovRegpy_ssa(time_series, L, est = 3, plot=False, KS_test=False,

plot_KS_test=False, KS_scale_limit = 1,
figure_plot=False)

An example of the D-SSA output (time_series_decomp) is plotted in Fig. 4. One is advan-
taged in this synthetic example in that one has foreknowledge of the underlying structures, but
this would not necessarily hold when applied to real-world examples. The various components
extracted can be seen against their corresponding underlying components in Fig. 4. The additional
inputs in the above code will be discussed in the Supplement to: Package CovRegpy: Regularized
Covariance Regression and Forecasting in Python.
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4.5 Singular spectrum decomposition
In this section SSD, originally introduced in Bonizzi et al. (2014), is discussed and several algorith-
mic variations are also introduced. This technique is available to the user in CovRegpy_SSD.py
as well as the algorithmic variations. For a detailed description of the modifications made to SSA
to create SSD, see Bonizzi et al. (2014). In summation, the major adjustments are the creation and
automation of the extraction of a trend described in Section 4.5.1 and the formal extraction of
components based on defined narrow bandwidths as described in Section 4.5.2.

4.5.1 Dealing with trended decomposition in the presence of a significant trend
Unlike in SSA, there is a formal test for a significant trend before the remainder of the decom-
position algorithm is performed. If the normalized maximum frequency (fmax/Fs) is below some
threshold, the time series is deemed to have a significant trend. In Bonizzi et al. (2014), the fre-
quency threshold is set to fthreshold = 10−3. If this threshold is satisfied, then L is set to T/3 to
isolate the trend. This follows that done in Vautard et al. (1992). If this threshold is not met, the
embedding dimension, L, is set to 1.2Fs/fmax.

4.5.2 Downsampling in singular spectrum decomposition
This process can be summarized as calculating a frequency band which will be used to down-
sample the possibly detrended time series. By constructing three Gaussian functions such that:

γ (f , θ)=
3∑

i=1
Aie

− (f−μi)2

2σ2i , (22)

with the μ parameters, and therefore, the centers of the Gaussian functions to be fitted to the
power spectral density (PSD), being fixed and defined as:

μ1 = fmax, μ2 = f2, μ3 = fmax + f2
2

, (23)

where fmax is the frequency at which the maximum PSDmode is located and f2 is the frequency at
which the second-highest PSD mode is located, with the other parameters being initialized as:

A(0)
1 = 1

2PSD(fmax), σ
(0)
1 = f : PSD(f )= 2

3PSD(fmax),
A(0)
2 = 1

2PSD(f2), σ
(0)
2 = f : PSD(f )= 2

3PSD(f2),
A(0)
3 = 1

4PSD(f3), σ
(0)
3 = 4|fmax − f2|,

(24)

where σ
(0)
1 = f : PSD(f )= 2

3PSD(fmax) denotes the frequency at which the PSD is equal to two-
thirds of the PSD of the maximum PSD mode nearest to the maximum PSD – this allows for
probable asymmetric peaks in the PSD.

L1 Singular Spectrum Decomposition:
With μ1, μ2, and μ3 fixed, Equation (22) can be fitted using LASSO regression as in Equation

(25). In practice, L1 SSD can result in a perpetual loop if not managed correctly and should be
used with caution.

minθ ||γ (f , θ)− PSD(f )||1. (25)

L2 Singular Spectrum Decomposition:
With μ1, μ2, and μ3 fixed, Equation (22) can be fitted can be fitted using ridge regression as

in Equation (26). This is the preferred method as LASSO regression promotes scarcity and in the
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event of the θ vector being optimized to be identically zeros, without a counting stopping criterion,
would result in an infinite loop:

minθ ||γ (f , θ)− PSD(f )||22. (26)
Once Equation (22) has been fitted to the PSD, the optimal frequency band is calculated as (fmax −
δf , fmax + δf ) where δf is calculated as in Equation (27):

δf = 2.5σ opt
1 . (27)

This frequency band is demonstrated in Fig. 6. Figures, such as Figs. 5 and 6, can be optionally
output when running the code below if one has plot=True which outputs every incremental
PSD fitting process.

4.5.3 Stopping criterion in singular spectrum decomposition
To prevent over-sifting (a word borrowed from EMD, but accurately summarizes the concept),
one should introduce a stopping criterion that stops the algorithm after a certain number of
components have been isolated. The SSD algorithm results in the following decomposition:

xSSD(t)=
M∑
i=1

g̃i(t)+ vM+1(t), (28)

with g̃i(t) being the ith component and vM+1(t) being the residual. This stopping criterion stops
the algorithm when a certain percentage of the PSD of the time series has been accounted for in
the formal components extracted. The algorithm stops when the normalized mean squared error
(NMSE), calculated as follows:

NMSEi =
N∑
t=0

v2(i+1)(t)
x2(t)

, (29)

drops below a certain percentage. A value of α = 0.01 is recommended in Bonizzi et al. (2014)
but is adjustable in this package. The time series (time_series) is the sole input required
for the algorithm with the other additional inputs required being initial_trend_ratio,
nmse_threshold, plot, and debug.

ssd_decomp = CovRegpy_ssd(time_series, initial_trend_ratio = 3,
nmse_threshold = 0.01, plot=False, debug=False)

The nmse_threshold value has been discussed in this section with initial_trend_ratio
being discussed in Section 9.2.3 of Supplement to: Package CovRegpy: Regularized Covariance
Regression and Forecasting in Python. The plot=True input variable results in numerous incre-
mental plots such as Figs. 5 and 6. If debug=True, then each incremental value of the calculated
NMSEi will be printed for debugging purposes. The components resulting from SSD being applied
to the synthetic time series described in Fig. 2 can be seen in Fig. 7 for comparison with Figs. 3
and 4.

4.6 Implicit factor context with regularized covariance regression
As detailed in Fig. 1, the three implicit factor extraction algorithms described in this section isolate
components thatmay then be used as independent covariates (X) in the RCR framework described
in the following section. The implicit factor algorithms are not a necessary step, but it is advised
that if covariance forecasting is intended that the components used in Algorithm 1 be smoothed
or subjected to some form of preprocessing to ensure the forecasted covariance evolves smoothly
over time as in Figs. 8, 9, 10, and 11.
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Figure 5. Initialization of Gaussian functions, Equation (22), to be fitted to the PSD of the additive synthetic example
presented in Fig. 2 for downsampling in SSD.

Figure 6. Fitting of Gaussian functions, Equation (22), to the PSD of the additive synthetic example presented in Fig. 2 for
downsampling in SSD.

5. Actuarial Case Study 1: Reduction in lung capacity versus age and physiology as an
effective early lung disease indicator

In this case study, we introduce the covariance regression model from Hoff & Niu (2012). This
model is generalized in this work through the use of the implicit factors as exogenous variables
in the covariance regression framework and the regularization of the covariance regression intro-
duced in Sections 5.4, 5.5, 5.6, 5.7, and 5.8. We also formalize the independent mean definition in
Section 5.3 wherein users can define the mean of the dependent variable before fitting the covari-
ance regression. We make clear the actuarial applications of this research in Section 5.1. Section
5.2 notes the known diagnostic-assisting strength of forced expiratory volume (FEV) measures as

https://doi.org/10.1017/S1748499524000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000101


16 Cole van Jaarsveldt et al.

Figure 7. SSD of example time series using adjustable initial trend isolation window with the ubiquitous problem that also
permeates EMD analysis known as the edge effect or frequency leakage between trend-cycle component and random error
or irregular component.

it pertains to correctly identifying lung obstructions and degeneration as a proxy for underlying
conditions. The early diagnosis of common respiratory disorders such as:

• small cell lung cancer;
• non-small cell lung cancers such as:

– adenocarcinoma;
– squamous cell cancer;
– large cell carcinoma;

• emphysema;
• chronic bronchitis; and
• chronic asthma;

would significantly reduce the cost to insurers. Early diagnosis (through cheap tests and indicators
such as FEV) would lead to low-cost early treatment or prevention as compared to late-stage
diagnosis and expensive treatment and end-of-life therapy. These cost-benefits are discussed in
Section 5.1 with the specifics of FEV as an indicator of underlying condition being outlined in
Section 5.2. The rest of the section is dedicated to the exposition of RCRwith some closing remarks
and a brief summary in Section 5.9.

5.1 Early lung disease detection and insurance benefits
In Pyenson et al. (2012), the short-term costs and long-term benefits of screening for lung cancer
in high-risk populations (aged 50–64 years in the USA) is demonstrated. The further reduced cost
of the FEV screening (as an indicator for cancer or further, more-expensive, testing) of at-risk
populations in the UK and elsewhere would greatly reduce the strain on national health institu-
tions. The FEV measures examined herein, the research of Cho & Stout-Delgado (2020) which
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notes a distinctive linear decrease in lung capacity with age, and our research which puts confi-
dence bounds on the lung capacity as a function of age and size would all assist in cheap, early,
and accurate measurement of reduced lung capacity that would reduce the future cost of cancer
treatment. The research of Pyenson et al. (2012) strongly indicates that cheap and early screening
for lung cancer would greatly decrease the future strain of healthcare costs on insurers.

Fitch et al. (2011) assesses the prevalence of COPD (in patients without coexisiting asthma) in
a large group of patients (44,366) with a focus on determining a link between the severity of the
condition and the level of adherence to prescribed medication. This work assists in determining
the distributional severity of COPD (grouped into mild, moderate, severe, and very severe) among
those making claims which allows insurers to make reasonable adjustments to their health plans
based on this distribution. In Section 5.2, we make clear the diagnostic value of the FEV mea-
surement for further tests or underlying lung degeneration which would also assist in grouping
insurance clients into probabilistic groups based on likely severity of condition andmortality rates
applications to policy pricing.

It is noted in Pyenson et al. (2014) that lung cancer is, by a wide margin, the greatest cause of
cancer deaths worldwide. Low-dose computed tomography (LDCT) is used to confirm the pres-
ence of lung cancer, but these tests are expensive and only conducted on populations deemed to
be at risk based solely on smoking history and age – these two factors are, admittedly, strongly
correlated with lung cancer instances. FEV and other inexpensive lung function tests are effective
earlier indicators of reduced lung function for insurers to plan and allocate funds for future LDCT
tests and potential treatments. Measures of lung capacity relative to age and size of an individual
(which can be further stratified by gender) among a broader grouping of at-risk individuals such
as younger populations in polluted cities or with vocations where exposure to hazardous airborne
particulates can assist in early detection and further save insurers future health expenditures. The
FEV (modeled herein) and other lung capacity tests (such as FEV per second compared to total
FEV) are shown in Section 5.2 to be diagnostically valuable indicators of diseased lungs.

Dash & Grimshaw (1993) assess the costs associated with positive cancer diagnoses from a
different perspective: Dread Disease contracts. Dread Disease contracts are insurance policies that
have become increasingly popular in the UK (Dash &Grimshaw, 1993) and payout predetermined
lump sums upon the realization of certain mortal contingencies. As stated above, lung cancer is
the largest cause of cancer deaths and any indicators of potential future lung deficiencies (such as
FEV discussed herein) that could lead to cancer could significantly decrease the future cost to the
underwriters of these Dread Disease contracts. Changes in marketing policies in the UK have lead
to an increased interest in these contracts.

Efird et al. (2014) investigates the stage of lung cancer diagnosis as it relates to racial groups
and health insurance policies. It is noted that survival rates among lung cancer diagnosees are
intimately linked with the stage at which it is first detected. It is noted that the type of insurance
policy did not relate to the stage of the cancer diagnosis. Cheap and diagnostically valuable infor-
mation such as early indicators of decreased lung capacity (FEV discussed herein) could assist
in ameliorating this notably significant disparity between racial groups which would assist with
the costs to insurers as a result of late diagnosis and expensive late-stage treatment compared to
comparatively cheaper earlier stage treatments.

Yang et al. (2019) notes the increasing life expectancies of those living with HIV and AIDS
as a result of the provision of antiretrovirals. This decreased HIV-related mortality has had the
unintended consequence of increased exposure to chronic illnesses, particularly lung diseases,
which are often exacerbated by HIV, AIDS, or the associated antiretrovirals. It is noted in Yang
et al. (2019) that the prescence of HIV or AIDs in an individual’s system results symptoms that
mimic an increased rate of biological aging which, when taking into account with this research
and the known linear degradation in lung capacity with age (Cho & Stout-Delgado, 2020), can
be used in the early detection of lung functional decay for the provision, by large private insurers
(Yang et al., 2019), of funding for the relevant treatment.
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5.2 Forced expiratory volume andmortality
As early as 1846 in Hutchinson (1846) (which cites far older work), the measure of the lung capac-
ity as a proxy for the normal function of the lungs was established as a viable diagnostic tool for
determining the presence of lung disease. Specifically, this work focused on the spirometer which
measures the rate of air expulsion from the lung as well as the total lung expulsion and uses these
measurements (FEV per second and total FEV) against normally distributed values based on an
individuals height (as a proxy of size and, therefore, expected lung capacity), gender, and age when
making probabilistic predictions (which would be greatly assisted by our research) about an indi-
viduals health. These measurements and an individuals expected health incomes would greatly
assist in calculating competitive insurance premiums.

Casanova et al. (2005) provides evidence that supports the correlative link between decreased
FEV and the increased likelihood of death related to COPDwhich is caused by a number of serious
medical conditions such as emphysema and chronic bronchitis. It is noted in this study, Casanova
et al. (2005), that age is also a contributory factor in the decrease of lung capacity measured by the
proxy of lung capacity, FEV. The study of the covariance between FEV and age in this work should
be used in conjunction with work such as Dyer (2012) which studies the decreases in lung capacity
with age in the absence of confounding medical causes to better predict mortality outcomes.

Further, Dykstra et al. (1999) uses the FEV (among numerous other lung capacity measures) as
a contributory diagnostic tool when determining whether a patient with a ratio of FEV per second
to total FEV of less than 70% has asthma or COPD. By noting the stabilizing trend of FEV versus
age in Fig. 8 and the work in Cho & Stout-Delgado (2020) that supports a known approximately
linear level of lung deterioration with the age beyond 35 years (approximately 20 mL/year), one
can use deviations from the this trend as a contributory diagnostic factor. Cho & Stout-Delgado
(2020) and our work can also assist in the construction of modifiedmortality tables for individuals
whose lung capacity depreciation rate is above those forecasted and observed.

In the study conducted in French et al. (2015), both age and lowered FEV (and the further
measure of the ratio of inspiratory capacity to total lung capacity once a lowered ratio of FEV
per second to total lung capacity established the presence of COPD) were shown as significant
indicators of increased mortality. Specific occupations have increased the risk of lung diseases –
Farmer’s Lung (caused by the increased inhalation of biologic dust particles) is one such disease.
Braun et al. (1979) studies the long-term and clinical outcomes of this disease – this research (and
other such research) coupled with our research could assist in competitive pricing of life insurance
premiums and provide a framework for individual insurance pricing.

Covariance regression was originally proposed in Hoff & Niu (2012). Algorithm 1 defines
a modified version of the original algorithm where the local mean of the dependent variables
can be estimated independently of the algorithm. This allows for increased flexibility in defin-
ing a local mean structure. A rank 1 covariance regression model seeks to calculate � , the base
unattributable (or systemic or contemporaneous) covariance, and B, the matrix of coefficients
relating the covariance of Y to the independent variables X such that:

cov[Y|X]= � + BXXTBT . (30)
In the following section, the independent mean-covariance regression model is introduced in

translatable pseudocode in Algorithm 1. In this algorithm, Equation (31) is repeated from Hoff &
Niu (2012) which assumes the iterative inverses are well behaved. Within this software package,
the pseudo-inverse is used to avoid unnecessary errors. The sections that follow this restatement
of the algorithm (with a defined pseudocode algorithm and independent mean definition) are
discussed with particular focus on variations of the Equation (31) for differing degrees of fitting
and variable selection – these algorithmic variations are presented herein for the first time and
applied to the same data as in Hoff &Niu (2012) for direct comparison with the original technique
both formally and graphically as in Figs. 10 and 11. These algorithmic variations are presented
here for the reader to explore and develop – the implicit factor models developed in the previous
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Algorithm 1 Covariance Regression

Require: A,X1,X2,Y, iterations
Initialize:
(1)m∼MVN (0, In)
(2) v= 01×n
for iter in [1, . . . , iterations] do
construct X̃2 ∈R

2n×r with the ith row beingmixTi,2 and the (n+ i)th row being vixTi,2
construct Ỹ ∈R

2n×p such that Ỹ= [(Y−X1A)T , 0Tn×p]T
calculate

B= ỸTX̃2(X̃T
2 X̃2)

−1 (31)

construct C= [AT , BT]T ∈R
(q+r)×p

construct X̃ ∈R
2n×(q+r) with the ith row being [xTi,1,mixTi,2] and the (n+ i)th row being

[0Tq , vixTi,2]
construct Ỹ∗ ∈R

2n×p such that Ỹ∗ = [YT , 0Tn×p]T

calculate � = (Ỹ∗ − X̃C)T(Ỹ∗ − X̃C)/n
calculate vi = (1+ xTi,2BT�−1Bxi,2)−1

calculatemi = vi
(
yi − μxi,1

)T
�−1Bxi,2

end for
store � , B

section are ideal candidates for independent variables in the RCR framework owing to (most of)
them yielding smoothed factors (compared to discontinuous explicit market factors such as the
10-year bond yield, etc.) for relatively smooth forecasted covariance transitions.

5.3 Independent mean-covariance regression
In Hoff & Niu (2012), covariance regression is introduced along with the formal derivations. In
this section, a modified and more robust version of the algorithm originally presented in Hoff &
Niu (2012) is presented and detailed in Algorithm 1.

In the absence of some stopping criterion, the modified covariance regression algorithm
requires five inputs. Matrices A ∈R

(q×p) and X1 ∈R
(n×q) are the major modification to the

original algorithm in that the means of the dependent variable, Y, can be calculated and opti-
mized independent of the variance calculation. This increased robustness is ideal for variance
attributable to different frequency structures which are common in the financial setting. Themean
matrix, μ ∈R

(n×p) is calculated as μ =X1A with q being the number of independent variables
(implicit or explicit factors) used in the model, p being the number of dependent variables, and n
being the number of observations.

With X2 ∈R
(n×r) being the matrix of independent variables which can be different to the

basis matrix for mean construction, that is, different to X1, with Y ∈R
(n×p) being the matrix of

independent variables, B ∈R
(p×n) being the matrix of structural covariance coefficients, and with

max_iter being the maximum allowed algorithmic iterations.
Using Algorithm 1, the data from Hoff & Niu (2012), and the specification of the cubic B-

spline knot points as in Hoff & Niu (2012) (knots at 4, 11, 18), one arrives at Equation (32) below
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Figure 8. Replication of Fig. 5 from (see p. 24, Hoff & Niu, 2012) plotting FEV data and variance in the left figure and height
data and variance in the right figure as a function of age.

with X2 = [1, age
1
2 , age]T . Using these parameters, one can arrive at Figs. 8 and 9 to estimate the

covariation of FEV and height as a function of age from Hoff & Niu (2012):

Bdirect =
⎡
⎣−2.60408 −10.45065

1.43707 6.44579
−0.14644 −0.82822

⎤
⎦ . (32)

5.4 LASSO covariance regression
Equation (31) is the direct calculation of B, but in RCR B can be calculated in several ways. BLASSO
is calculated by minimizing the following:

arg minB
(
(Ỹ− X̃2BT)T(Ỹ− X̃2BT)+ λ1||B||1

)
. (33)

This form of optimization promotes sparsity as can be seen in Equation (34). In Equation (34),
it can be noted that the variances and covariance of FEV and height concerning age are most
dependent on age. As a result of the structure of Equation (30), the covariance matrix becomes a
function of age squared:

Blasso =
⎡
⎣−0.00000 −0.00000

−0.00000 −0.00000
−0.04537 −0.12452

⎤
⎦ . (34)
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Figure 9. Replication of Fig. 6 from (see p. 25, Hoff & Niu, 2012) plotting FEV data and variance, height data and variance, and
FEV and height data and correlation as a function of age.

5.5 Ridge regression covariance regression
Ridge regression penalizes unjustifiably large coefficients in B by optimizing the following:

arg minB
(
(Ỹ− X̃2BT)T(Ỹ− X̃2BT)+ λ2||B||22

)
. (35)

In this setting, by manipulating Equation (35), one can observe that ridge regression introduces a
bias such that:

arg minB
(

||Ỹ− X̃2BT + λ2B||22
)
. (36)

By referring to Equation (31) and noting the structure of Equation (36), Equation (37) follows as
a biased version of the original direct solution where λ2 can also be seen as a bias term rather than
merely a penalty:

B= ỸTX̃2
(
X̃T
2 X̃2 + λ2I

)−1
. (37)

By comparing Equation (32) against Equation (38), it can be noted that the coefficients have been
greatly reduced as a result of the penalizing or biasing term:

Bridge =
⎡
⎣ 0.27839 1.31838

0.07562 −0.51146
−0.09374 −0.10844

⎤
⎦ . (38)
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5.6 Elastic-net covariance regression
Elastic-net regression is a compromise between LASSO regression and Ridge regression where B
is optimized using the following:

arg minB
(
(Ỹ− X̃2BT)T(Ỹ− X̃2BT)+ λ1||B||1 + λ2||B||22

)
. (39)

This can be reparameterized (as is in Python) to:

arg minB
(
(Ỹ− X̃2BT)T(Ỹ− X̃2BT)+ λ1r1||B||1 + 1

2
λ1(1− r1)||B||22

)
, (40)

with r1 being the ratio of the L1-norm to the L2-norm. Noting that Equation (39) can be viewed
as a combination of Equations (33) and (36), it becomes clear why Equation (41) displays both
sparsity and smaller parameters. This is seen as a favorable compromise between the twomethods:

Belastic-net =
⎡
⎣ 0.00000 0.00000

0.02062 −0.04304
−0.05310 −0.12245

⎤
⎦ . (41)

5.7 Group-LASSO covariance regression
The group-LASSO regression promotes a sparse number of groups of parameters and in each
group, there will be a sparse set of parameters:

arg minB
(
(Ỹ− X̃2BT)T(Ỹ− X̃2BT)+ λ1||B||1 + λg

∑
g∈G

√
dg ||Bg ||2

)
. (42)

In Equation (43), λg is the penalty term for the grouped coefficient terms, G is a partition of the
coefficients into subsets, dg is the cardinality of each of the subsets (larger sets get penalized more
than smaller sets), and Bg is the set coefficients within subgroup g. With a grouping of {0, 1, 1},
that is with the constant being in a group separate from age

1
2 and age, this results in the following

parameter estimates:

Bgroup-lasso =
⎡
⎣ 0.00823 −0.00091

0.00577 −0.03660
−0.04977 −0.12262

⎤
⎦ . (43)

5.8 Subgradient covariance regression
Equation (44) can be seen as being identical to Equation (33) in Section 5.4. The differences lie in
the method of approaching this solution. Subgradient descent or subgradient optimization allows
optimization when functions are continuous, but non-differentiable:

minimize ||B||1
subject to X̃2BT = Ỹ,

(44)

To initialize the algorithm, several candidates can be used. In this algorithm, B0 is initialized with
Equation (31) which is the direct solution in Euclidean Norm Space. The next iteration of the
solution, Bk+1, is calculated using the following equation:

Bk+1 = Bk − αk

(
Ip − X̃T

2
(
X̃2X̃T

2
)−1X̃2 sign

(
Bk
))

, (45)
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with sign( · ) being defined as:

sign(x)=
⎧⎨
⎩

+1, for x> 0
0, for x= 0

−1, for x< 0

⎫⎬
⎭ , (46)

and with the incremental step size being a member of the square summable, but not summable
family of step sizes. In this application, αk = 10−2

k with the formal conditions of the square
summable step sizes required to satisfy the following conditions:

αk > 0 ∀ k> 0,
∞∑
i=0

α2
k < ∞, and

∞∑
i=0

αk = ∞. (47)

With this technique applied to the dataset from Hoff & Niu (2012) using 10 iterations one
arrives at:

Bsubgradient =
⎡
⎣−1.77455 −4.37165

1.44572 3.53236
−0.28942 −0.71025

⎤
⎦ . (48)

To estimate the base unattributable (or systemic or contemporaneous) covariance, � , and the
coefficients, B, that relate the attributable (or structural) covariance to the independent variables
one can apply the following code:

B_est, Psi_est = \
cov_reg_given_mean(A_est, basis, x, y, iterations, technique,

alpha, l1_ratio_or_reg, group_reg,
max_iter, groups)

Each of these techniques was applied to the original dataset from Hoff & Niu (2012) and the
results are plotted in Figs. 10 and11. In the code above, A_est and basis refer to the mean coef-
ficients and basis to be used for means of the dependent variable, y, with x being the independent
variable. The number of iterations of the core covariance regression algorithm is controlled by the
iterations parameter. The technique is being used in estimating the Bmatrix in each iteration
of the total iterations. The options available for technique are “direct,” “lasso,” “ridge,”
“elastic-net,” “group-lasso,” and “sub-gradient" which correspond to Sections 5.3, 5.4,
5.5, 5.6, 5.7, and 5.8, respectively. The unambiguous penalty term for LASSO, ridge, elastic-net,
group-LASSO regression as well as the first value in the subgradient optimization is alpha.

The l1_ratio_or_reg controls the ratio of the l1-ratio to l2-ratio as in Equation (40) when
performing elastic-net regression. The group-LASSO regression group penalty term is controlled
by group_reg. While possibly misleading when compared against iterations, the max_iter
parameter controls the number of iterations to be used in the subgradient descent algorithm
as in Equation (45). The groups variable controls the grouping of the independent variables
and the corresponding parameters using a vector of indices such as in Section 5.7. Finally, the
test_lasso is a Boolean variable that controls whether the alpha value for LASSO regression is
optimized.

5.9 Closing remarks on lung capacity versus physiology as a cost-saving benefit to insurers
Section 5.1 notes the decrease in costs to insurers from the early detection of a number of degener-
ative lung diseases. Several of the more well-known conditions that affect human lungs are listed
in the introduction to Section 5. The physiological variable that is perceived as the most highly
correlated with most of these conditions is a person’s age. This research has provided a frame-
work for the early detection of the presence of a number of degenerative lung diseases using FEV
measurement (as outlined in Section 5.2) as well as other relevant variables, besides age. With this
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Figure 10. Replication of Fig. 5 from (see p. 24, Hoff & Niu, 2012) plotting FEV data and variance in the left figure and height
data and variance in the right figure as a function of age with RCR alternate estimate.

Figure 11. Replication of Fig. 6 from (see p. 25, Hoff & Niu, 2012) plotting FEV data and variance, height data and variance,
and FEV and height data and correlation as a function of age with RCR alternate estimate.

framework, one can use any number of lifestyle or physiological variables to assess the presence
of outliers in FEV measurements which can lead to early detection and significantly reduce the
costs to insurers through comparatively cheaper early-stage treatment compared against late-stage
treatment or end-of-life therapy.
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Table 1. Summary statistics for quarterly returns of purely funded and unfunded pensions using the
quarterly returns of the FTSE 100 as a proxy for unfunded pension schemes

Pension scheme Funded Unfunded

Summary stats High-Freq Mid-Freq Low-Freq Equal FTSE 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 0.0124 0.0144 0.0191 0.0138 0.0094
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance 0.0088 0.0102 0.0106 0.0078 0.0006
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VaR −0.1762 −0.1485 −0.1189 −0.1254 −0.0073
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVaR −0.2450 −0.2470 −0.2550 −0.2209 −0.0517
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MDD −2.3770 −2.0044 −2.1559 −2.7839 −2.3596

6. Actuarial Case Study 2: Covariance regression for hybrid funded–unfunded pension
portfolios using covariance forecasting and RPP

In this case study, we begin by noting the risks associated with purely unfunded and purely funded
pension plans in Section 6.1 – the primary quantitative financial risks are also demonstrated in
this case study in Table 1 and Fig. 12 with purely funded pensions having higher, less-certain
returns and purely unfunded pensions having significantly lower, more-certain returns. Hybrid
pension schemes are motivated with context concerning the problems arising from changing
demographics in developed nations in Section 6.2.

The RPP portfolio weighting strategy (included in this package) is introduced in Section 6.3
with it being subsequently used to weight the purely funded pensions based on the different
frequency covariance forecasts using the framework given exposition in the previous section,
Section 5. This case study and section is concluded in Section 6.4 where the mean-variance utility
framework of hybrid pension schemes from Dutta et al. (2000) is introduced before we construct
hybrid pension schemes using different risk aversion levels and different frequency forecasts of the
covariance structure of the assets (in the funded portion) for the upcoming investment horizon.

6.1 Unfunded and funded pension schemes
Chapman et al. (2001) notes the lower and more certain returns of bond investment (as a proxy
for fully unfunded) versus the higher and less certain returns of equity investment (as a fully
funded pension proxy). Chapman et al. (2001) goes further in noting that employees, the enter-
prise, the stakeholders (shareholders), and the government seldom benefit from the same schemes.
The stakeholders in the company (and the associated share price) should be taken into account
when setting the contribution rates for the unfunded (or defined benefits) portion of the pension
as well as the investment strategies of the companies once funds have been attained. Chapman
et al. (2001) also notes the need for clarity for the employees and company as the funded por-
tion of the pensions are secured versus the relatively unsecured portion of the pension that is
unfunded should there be unforeseen market shocks such as the 2008–2009 financial crisis or the
SARS-CoV-2 pandemic.

Splinter (2017) notes the broader economic benefits of maintaining an at least partially
unfunded pension scheme for state employees in which it provides a stabilizing effect on a nation’s
economy by providing governments with funds without needing to either raise taxes or cut bene-
fits. There is a downside risk in that the government (and by extensions the employees) then relies
on the same assumptions of unfunded pensions in that the economy will continue to grow and the
money can be provided or returned at a later date. Splinter (2017) notes that the main contributor
to the under-funding of the public employees pensions is the unfunded portions as a result of an
increase in state liabilities with an insufficient associated contribution by employees and the gov-
ernment. Whereas, the funded portions properly invested in diversified equity portfolios’ returns
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were in excess of expectations. Other causes were noted, but the large accumulation of liabilities
was seen as the main contributor to less-than-favorable defined benefit pension funding.

Grubbs (1999) notes the difficulty experienced by some private firms in adequately funding
defined benefits schemes before adequate legislation and planning was enforced. These failed fully
defined benefit plans (or unfunded pensions) relies on inadequate contributions from employees
and the companies. These resulted in a number of disastrous instances such as companies cancel-
ing all their unfunded or defined benefits schemes or only being able to continue paying a small
portion of the retirees at the expense of the future retirees. An extended study on this topic was
conducted in Trowbridge (1952).

With the problems with pure funding and unfunded pensions noted above and with the rise
of demographic mismatches in developed populations discussed in the next section, Section 6.2,
Devolder & de Valeriola (2019) notes that neither funded (referred to as defined contributions
or DC) nor unfunded (referred to as defined benefits or DB) are adequate as risk-sharing com-
promises between generations. This, among other things, motivated the rise of hybrid strategies.
The optimization in Devolder & de Valeriola (2019) of the ratio of funded to unfunded schemes is
considered from the perspective of minimizing the disparity between retirement living conditions
of different generations rather than some risk-returns trade-off of individual investors which is
performed in this case study.

Wang & Lu (2019) studies hybrid pensions strategies to address the problem of risk-sharing
between generations from a stochastic perspective with adjusted contributions and benefits
depending on the performances of the pensions. Using the stochastic optimal control approach,
closed-form solutions are derived using both a quadratic loss function and an exponential loss
function. Various market parameters are adjusted with the contributions and benefits adjusted
accordingly to demonstrate the effectiveness of risk-sharing between different generations when
compared against purely funded or unfunded plans. Some simplifying assumptions were made
in the analysis (such as assuming mortality rates remained constant over time) to allow the
calculation of closed-form solutions.

Further, Blommestein et al. (2009) notes that hybrid pension strategies perform better for
individual private investors in terms of funding ratios and replacement ratios. The simulations
performed by Blommestein et al. (2009) show that hybrid strategies perform best in terms of
sustainable financial risk-sharing between generations. It is found that in relatively stable envi-
ronments where over-funding of hybrid strategies takes place, the most effective way of sharing
risk is through conditional index-linked investing. It is shown how hybrid plans offer an agreeable
compromise between DB plans with no benefit risk to the individual, but risk to the employer,
and DC plans where the individual bears the entirety of the risk through investment decisions,
inflation, and increased longevity.

Hoevenaars & Ponds (2008) evaluates these hybrid options from the balance sheet perspec-
tive as the sum of embedded generational options. This leads to the conclusion that any policy
change of an individual inevitably leads to the transfer of risk between generations. It is found,
maybe not surprisingly, that shifts in the investment pools of pensions to less risky assets shifts
the risks from older generations to younger generations. Whereas, a shift in weightings between
funded and unfunded within the hybrid strategy from flexible contributions and fixed benefits
to fixed contributions and variable benefits shifts the risk from younger generations to older
generations.

6.2 Hybrid funded–unfunded UK pension schemes to address demographic changes
The changing demographics of the more-developed countries in the world (proportionally larger
aging working populations than developing countries) are putting significant strain on unfunded
or pay-as-you-go (PAYG) pension systems – see Miles (2000). The motivation and evidence for
moving away from PAYG pensions is based on developed economies having efficient market
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portfolios that significantly exceed GDP growth and funded pensions lead to returns that are
more robust to temporal distortions in the availability of working-age people within the popu-
lation. These reasons, while arguably logical, are not in themselves conclusive for transfers from
unfunded to funded pension systems for more developed nations.

Miles (1998) notes that for this shift from unfunded to funded pensions, the population would
need more savings. It is also noted that given the aging populations and the unfunded pensions
on which they depend, significant leveraged funding would be required by the governments to
fund these shifts in policy or there would naturally be some losers when shifting systems owing
to the funding needing to come from somewhere. It is, however, noted in Miles (1998) that the
UK is further along in this process than most of its mainland Europe counterparts which face
significant difficulties that have no doubt been exacerbated by the 2007–2008 financial crisis and
SARS-CoV-2 pandemic-induced recessions since the its publication. These demographic changes
and the resulting difficulties they cause for governments in more developed countries to shift
from unfunded to funded pension schemes have given rise to significant literature on the topic
such as Disney (1996), Feldstein (1996), Kotlikoff (1996), Mitchell & Zeldes (1996), Roseveare
et al. (1996), Feldstein & Samwick (1998), and Miles et al. (1999).

Sinn (1999) supports the full or partial shift away from PAYG pension systems as a way or
addressing the growing demographic-related problems in more developed countries by replacing
the loss of labor with capital. These demographic issues (larger ratio of retirees to working-age
population, the associated costs of this relative aging population, and the drastically falling birth
rates) put strain on PAYG systems in a similar manner as pyramids being dependent on a broader
base.

Martell et al. (2013) also notes the difficult decision facing governments when funding pensions
(by matching personal contributions) using debt increases the scheme’s funding ratio which leads
to a country’s credit rating and global perception decreasing. Themajority of the dangers of under-
funding pensions for governments are related to the costs associated with an aging population.
The costs are increasing as a result of the increasing ratio of retirees to the working population,
the increasing life expectancy of retirees, and the increasing healthcare costs associated with an
aging population living longer.

6.3 Equal RPP weighting strategy
RPP portfolio weighting strategies, proposed inMaillard et al. (2010), have had empirical successes
when back-testing on equities over previous financial crises. The RPP weights are calculated as
follows:

ωmed = argmin
N∑
j=1

(
ωj

(�medω)j
ωT�medω

− bj

)
, (49)

with ωmed being the RPP weighting vector, �med being the median of the forecasted covariance,
N being the number of assets, and bj being the relative proportion of risk allocated to asset j. Only
the equal RPP portfolio weighting strategy (bj = 1

N ) is explored in this paper and package, with
the other constraints being:

N∑
j=1

ωj = 1, and (50)

N∑
j=1

ωjI{ωj≥0} ≥ klong for klong ≥ 1.3, and (51)
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N∑
j=1

ωjI{ωj≤0} ≥ kshort for kshort ≤ −0.3. (52)

The final two constraints are referred to as long/short equity constraints that allow a certain
level of shorting (kshort) to finance further long positions. These two weighting strategies are
not exhaustive and are included here for context, clarity of case studies in the package, and
completeness.

6.4 Mean-variance utility
We follow the model in Dutta et al. (2000) with the stochastic return of the portfolio over time
increment t − 1 to t being Pt =wtRf ,t + (1−wt)Ru,t with wt being the proportion of the portfolio
in the diversified RPP portfolio based on either high-, mid-, or low-frequency structures with the
stochastic returns of said portfolio being Rf ,t and Ru,t being the stochastic returns of the unfunded
portion which we approximate with the quarterly UK GDP. The resulting mean-variance utility
function is such that:

E[U(Pt)]=E[Pt]− γ

2
Var(Pt). (53)

with γ being the risk aversion level to be discussed later. The resulting expected returns and
variance of the portfolio are as follows:

E[Pt]=wtE[Rf ,t]+ (1−wt)E[Ru,t]
=wtμf ,t + (1−wt)μu,t ,

(54)

and
Var(Pt)=w2

t σ
2
f ,t + (1−wt)2σ 2

u,t +wt(1−wt)σfu,t , (55)

respectively, with the realized returns of the funded portfolio over time increment t − 1 to t being
μf ,t (for either the high-, mid, or low-frequency covariance forecasts), the realized returns of the
unfunded portfolio over the same increment being μu,t , σ 2

f ,t being the variance of the funded
portfolio, σ 2

u,t being the variance of the unfunded portion, and σfu,t being the covariance between
the two returns. By taking the derivative of Equation (53) with respect to wt and setting to zero, it
can be shown that:

wt =
μf ,t − μu,t + γ (σ 2

u,t − σfu,t)
γ (σ 2

f ,t + σ 2
u,t − 2σfu,t)

. (56)

6.5 Different risk aversions in FTSE 100 hybrid pension schemes
In this study, we take the daily logarithmic returns of the constituents of the FTSE 100 from
1 October 2003 until 1 April 2023 (where available) to construct RPP portfolios using the
high-, mid-, and low-frequency structures to forecast the covariance of the constituents and
weight the portfolios based on these forecasts. The high-, mid-, and low-frequency structures from
the daily logarithmic returns isolated from 1 October 2003 until 31 December 2003 are regressed
against the daily logarithmic returns for the same time series from 1 January 2004 until 31 March
2004.

The high-, mid-, and low-frequency structures isolated from the daily logarithmic returns
isolated from 1 January 2004 until 31 March 2004 are then used to forecast the covariance of
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Figure 12. Plot of the cumulative returns of funded and unfunded pensions from 1 April 2004 until 1 April 2023.

the constituents from 1 April 2004 until 30 June 2004. The portfolio is then weighted based on
the median of these daily covariance forecasts using the different frequency structures. The case
study and resulting returns therefore begin from 1 April 2004 in Fig. 12. This process is repeated
until the available GDP proxy of the FTSE 100 quarterly returns is exhausted which is 1 April
2023.

Rather surprisingly (considering the RPP optimization focusing on the minimization of risk),
the RPP portfolios weighted based on the high-, mid-, and low-frequency forecasts of the upcom-
ing investment period’s covariance structure have higher returns when compared against the
FTSE 100 and less desirable variance and value-at-risk (VaR). The cumulative returns of the port-
folios, besides the FTSE 100 proxy, are much more susceptible to market-wide shocks such as
those seen during the 2007–2008 financial crisis and the SARS-CoV-2 pandemic-induced reces-
sion. Based on the variance, the high-frequency content is more accurate when used to forecast
the covariance than the mid-frequency and low-frequency content, but the VaR indicates that the
low-frequency content is more susceptible to extreme shocks.

Noting the risk aversion level (γ ) in Equations (53) and (56), we see that as the level of risk
aversion is increased sequentially from 1.2 in Table 2 to 1.4 in Table 3 and, finally, to 1.6 in
Table 4 the weightings in the respective funded pension portions of the hybrid schemes decrease.
This study indicates that a desirable compromise between the level of acceptable risk and the
expected returns of the pensions can be attained by weighting the funded portions of the pen-
sions using RPP based on covariance forecasts and increasing or decreasing the risk aversion level
to meet an individual’s need regarding the proportion of the pension scheme to be funded or
unfunded.
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Table 2. Summary statistics for quarterly returns of hybrid pensions schemes using risk aversion level of
γ = 1.2

Pension scheme Hybrid schemes: γ = 1.2

Summary stats High-freq:wt ≈ 0.296 Mid-freq:wt ≈ 0.429 Low-freq:wt ≈ 0.872
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 0.0103 0.0116 0.0179
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance 0.0014 0.0025 0.0084
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VaR −0.0504 −0.0595 −0.1030
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVaR −0.1063 −0.1319 −0.2272
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MDD −3.2860 −2.6620 −2.1658
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Summary statistics for quarterly returns of hybrid pensions schemes using risk aversion level of
γ = 1.4

Pension scheme Hybrid schemes: γ = 1.4

Summary stats High-freq:wt ≈ 0.251 Mid-freq:wt ≈ 0.362 Low-freq:wt ≈ 0.733
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 0.0102 0.0112 0.0165
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance 0.0012 0.0020 0.0063
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VaR −0.0423 −0.0491 −0.0865
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVaR −0.0974 −0.1185 −0.1967
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MDD −3.1067 −2.8143 −2.1788

Table 4. Summary statistics for quarterly returns of hybrid pensions schemes using risk aversion level of
γ = 1.6

Pension scheme Hybrid schemes: γ = 1.6

Summary stats High-freq:wt ≈ 0.217 Mid-freq:wt ≈ 0.312 Low-freq:wt ≈ 0.628
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 0.0101 0.0110 0.0155
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance 0.0010 0.0017 0.0050
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VaR −0.0361 −0.0413 −0.0740
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVaR −0.0908 −0.1084 −0.1738
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MDD −2.9831 −2.7519 −2.1907

6.6 Closing remarks on hybrid pensions schemes
In Section 6.1, we note works that are critical of both purely funded and purely unfunded pensions
schemes. In general (depending on the prevailing economic conditions over the lifetime of the
scheme), the funded schemes have higher and less certain returns with the returns of the unfunded
schemes being lower and more certain. Numerous works cited in this section allude to the neces-
sity for some desirable compromise between these two schemes. Section 6.2 notes not only that
hybrid pension schemes would benefit the holders of these schemes, but they would also address
arising demographic issues in the majority of more-developed countries as the shrinking work-
forces and growing retired populations are putting siginificant financial strain on traditionally
unfunded pension schemes.

We introduce the RPP weighting strategy in Section 6.3 which we use in this case study to allo-
cate portfolio weights. The mean-variance utility methodology of hybrid pension schemes which
we use to allocate the ratio of our unfunded portion (using the FTSE 100 as a proxy) and our
funded portion (using difference frequency covariance forecasts) is outlined in Section 6.4. The
construction of the unfunded proxy and the funded portfolios using different frequency forecasts
is given exposition in Section 6.5. We display the results of both purely unfunded and purely
funded pension schemes using mean returns as well as various common portfolio risk measures
in Table 1.
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We note that the funded portfolios have higher returns as well as significantly higher vari-
ances, VaRs, and CVaRs. This leads to the hybrid pension scheme results in the following tables.
By noting Tables 2, 3, and 4, one can infer that the high-frequency structures used to forecast
the forthcoming investment period’s covariance structure are more responsive to changes in the
covariance structures and therefore require a lower relative weighting (when compared against
using mid- and low-frequency structures) in the funded portions of the portfolios to lower the risk
measures such portfolio variance, VaR, and CVar. The mid-frequency structures are less respon-
sive than the high-frequency structures while being more responsive than the low-frequency and
constant structures. This forms a hierarchy of performance in both overall returns and the risk
measures.

7. Conclusion
In Section 4, several decomposition algorithms are presented. The first of the decomposition algo-
rithms is EMD which had a thorough examination of its algorithmic variations in van Jaarsveldt
et al. (2023a) and the associated AdvEMDpy package. X11 is presented in Section 4.3 with several
algorithmic variations already existing, but not presented herein owing to the scope and the focus
of this work being RCR. SSA, originally proposed in Hassani (2007), is presented in Section 4.4.
The algorithmic extensions of SSA developed in this package are given exposition in Supplement
to: Package CovRegpy: Regularized Covariance Regression and Forecasting in Python – these are
D-SSA and KS-SSA. SSD was originally presented in Bonizzi et al. (2014) (presented in Section 4.5
herein), and independent trend analyzing SSA (ITA-SSD) is presented in the supplement which
can dynamically adjust the isolation and extraction of an initial trend to prevent residual portions
of trend obscuring the later decomposition and analysis.

In Section 5, by comparing Figs. 8 and 9 with Figs. 10 and 11, respectively, one can observe
and compare the RCR parameter estimation against the original technique proposed in Hoff &
Niu (2012). In addition to standard covariance regression, LASSO covariance regression, ridge
covariance regression, elastic-net covariance regression, group-LASSO covariance regression,
and subgradient covariance regression are also presented herein and are optional extensions in
CovRegpy.py for algorithmic flexibility – see Sections 5.4, 5.5, 5.6, 5.7, and 5.8. This RCR algo-
rithm and the algorithmic variations developed in this package are presented within the context
of providing actuarial practitioners with a statistical framework for predicting the likelihood of
future debilitating lung conditions which can be easily, and cheaply, treated with genetic testing
and early-stage treatment compared against late-stage diagnosis and costly medical treatment and
end-of-life care – this is discussed in Sections 5.1 and 5.2.

In Section 6, we present a case study which first examines the shortcomings of both purely
funded and purely unfunded pensions – see Section 6.1. After addressing the shortcomings of the
separate strategies, we note that many of the more-developed countries would not only enrich
their citizens by adopting hybrid pension schemes as suitable compromises between the secure
returns of unfunded pensions and the higher returns of the funded pensions but would also
address the impending drastic demographic changes and their negative effects on the currently
prevailing purely unfunded pension schemes with aging populations and shrinking workforces.

We show, using a case study built on equally weighted sector indices of the FTSE 100 over
a period of approximately 20 years, that purely funded RPP portfolios using high-, mid-, and
low-frequency covariance forecasts outperform unfunded pensions (using the equally weighted
FTSE 100 as a proxy) in terms of absolute returns, but the returns are significantly less certain. By
constructing hybrid RPP portfolios using different risk aversion levels (see Sections 6.3 and 6.4)
for each frequency of covariance forecast, we note the following:

• high-frequency covariance forecasts are more responsive to changes in the underlying inter-
relationships between the indices;
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• mid-frequency covariance forecasts are less responsive than the high-frequency forecasts, but
more responsive than the low-frequency forecasts;

• during periods of strong GDP growth, the ideal strategy favors higher-frequency covariance
forecasts with a higher proportion of the cumulative portfolio in the unfunded portion; and

• during periods of economic stagnation (lower or no GDP growth), a higher portion of the
pension fund should be directed towards the funded portion which should utilize the lower-
frequency covariance forecasts.

This framework has developed a robust approach to address the impending potentially catas-
trophic demographic changes in the more developed nations, the optimal funding ratio strategies
during periods of varying economic growth, and the optimal frequency of structures to use
when forecasting covariance for the funded portion of portfolios during different economic
climates.

Additional algorithmic extensions and forecasting techniques are presented in Supplement to:
Package CovRegpy: Regularized Covariance Regression and Forecasting in Python. One such
technique, named IFF (instantaneous frequency forecasting), is presented in the supplement
which provides a forecasting technique which uses the changes in a structure’s instantaneous
amplitude and instantaneous frequency to predict how its temporal structure continues.

Supplementary material. The supplementary material for this article can be found at http://dx.doi.org/10.1017/
S1748499524000101.

Data Availability Statement. The data, Python code, figures, and other replication materials that support this study are
openly available in CovRegpy at:

https://zenodo.org/doi/10.5281/zenodo.10827714.
A regularly maintained version catalog of the software package CovRegpy, as well as detailed installation instructions

and examples for both experienced and new users, can be found here:
https://github.com/Cole-vJ/CovRegpy.
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