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Abstract . Wisdom's pcrturbativc method is applied to the 5:2 and 7:3 resonances. Some com-
parisons with Yoshikawa's model are performed: for values of eccentricity up to about 0.3-0.4, 
agreement exists and it is better for 5:2 resonance. A clear difference between the cases 5:2 and 
7:3 is observed : the former one, like in the case 3:1, can show significant variations of eccentric-
ity, even starting from very small values, close to zero, while the latter seems to undergo such 
variations, but with initial eccentricity not less than a value near 0.1. 

1. Introduction 

Although a complete understanding of the Kirkwood gaps is still far, we can see that 

some new ideas developed by Wisdom have brought very useful information and new 

motivation for the problem. In the study of the 3:1 resonance, Wisdom (1985) used a 

truncated model of second order in eccentricity (e), for the disturbing function, and 

developed an interesting perturbative treatment which explains the high excursions 

of e he had found in a previous work . At a first sight, the study of other resonances 

could be done in a similar way, provided the truncated disturbing function is able 

to well represent the real dynamics of the motion. However, according to Henrard 

and Lemaître (1987) and Lemaître and Henrard (1988), truncation effects are very 

serious. For example, for 2:1 and 3:2 commensurabilities, the large variations of 

e and the area of phase space covered by chaotic solutions are very sensible to 

the order of truncation. In fact, the ratio of convergence of the series in e, for 

resonances of first order, is smaller than in the 3:1 case. In addition, the dominant 

part of resonant terms is of order one, while secular and long-period parts are 

of order two. For higher-order resonances like 5:2 or 7:3, the ratio of the semi-

major axes is a little better, but now, the resonant part is weaker than secular and 

long-period parts. In this work, using Wisdom's perturbative method, we briefly 

present some preliminary results (full results will be reported elsewhere) for 5:2 

and 7:3 resonances. To see the performance of the method, some comparisons with 

Yoshikawa's (1989,1990) and Sidlichovsky's (1986) results are made. Due to the 

truncated model used for the disturbing function, only small or moderate values of 

e can be considered. 

2. Averaged System 

Like in Wisdom (1985) and Sidlichovsky (1987), for the cases 5:2 or 7:3, the domi-

nant critical terms of the disturbing function can be grouped in one single cosine. 

Then, neglecting short-period terms and after a proper expansion in the neigh-

bourhood of exact resonant point, the Hamiltonian can be written in the general 

form: 

H = H'(zie) + F9(x2tZi) (1) 
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Fig. 1. Level curves in (e, w)-pla.ne for II = 0 in eqn.2 (case 5:2). 
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Fig. 2. Level curves in (β,τπ) plane for 5λ' — 2λ — 3τσ = 0 and semi-major axis at exact 

resonant point in the truncated Hamiltonian for 5:2 resonance. 

where «2» «4 are long-period variables and H' is a pendulum-like system, whose 

angular variable Θ depends on the resonant combination of mean longitudes and also 

on #2, £4 (Wisdom 1985). Defining action-angle variables (I, φ) for the pendulum 

H1 and taking a canonical transformation from (#, 0, X2, #4) to a new set (J, φ, « , t/), 

the new Hamiltonian (neglecting higher-order terms) can be written: 

Η — H'(I, A(x, y)) + F,(x, y). (2) 

In this approximation, 7 is a constant. Then, level curves for eqn. 2 can be drawn 

fixing either I or H. In case of separat rix of the pendulum, the above canonical 
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transformation is not defined. The curve where this occurs is called critical curve 

Curves of eqn. 2 parametrized by H are closely related to (#2, a^-curves obtained 

from eqn. 1 via surfaces of section (Guckenheimer-Holmes 1983). Then, it is useful 

to see one special situation: depending on H the whole plane »2» #4 is not accessible 

in the surface of section. For example, for θ = 0, any «2, «4 should satisfy: 

For the liomit case (=0) of eqn. 4 we define a new curve, the zero velocity 
curve (ZVC). When searching an analytical solution for the critical curve (CC), it 
is convenient to square eqn, 3. In this case, the squared equation may contain ZVC 
as a solution, which should not be confused with CC. 

Starting with 5:2 resonance let's call II the action of pendulum in the libration case. 

We are deep in libration region when II is small (Henrard and Lemaitre 1987). Fig.l 

shows (e, xcr)-curves obtained from eqn. 2 for II — 0. Comparing with Yoshikawa's 

case (fig.4 in his article of 1989),we see that our curves are flattened and squeezed 

in the vertical direction. The averaging methods are différents: Yoshikawa's curves 

are obtained fixing 5λ' — 2λ — Zw — 0 and taking the semi-major axis at the exact 

resonant point. If these conditions are taken in our case, we get fig.2. Then, a rough 

idea of the limit of validity of truncated model can be obtained: comparing fig.2 

with Yoshikawa's fig.4, agreement seems to be possible at most up to e = 0.4. 

Fig.l shows an interesting feature : values of e near 0.35 can be attained from 

very small values of e, even close to zero. Now, let's take some asteroids studied by 

Yoshikawa (1989). For asteroid B-l, energy is Η = -1.933472 χ 10 e . Fixing this 

H and taking several values of JT,guiding curves are drawn (fig.3) using eqn. 2. the 

large dot is B-l, the innermost curve is ZVC and inside it no motion is allowed. 

Equation 3 does not have solution and, in the absence of CC, no chaos appeared 

in the surface section for this H (fig.4). Although not shown here, fig.3, plotted in 

the variables (e, w), gives almost the same as fig.4. The smooth variation of e in 

Yoshikawa's fig.5 is, then, predicted by Wisdom method. Figs. 5 and 6 correspond 

to H = 4.384025 χ 10 e , asteroid B-3. CC is marked with thick line. It is clear that 

B-3 will collide with CC, but before, it will spend some short time in initial (low) 

eccentricity mode. After collision, it is reasonable to occur the jump in e and chaotic 

motion (see Yoshikawa's fig.5). Another typical asteroid is B-5. It lies inside CC, 

so that almost no big variation is expected as it is shown in Yoshikawa's numerical 

integration. Following this kind of analysis, many useful features of B-asteroids, 

given by Yoshikawa, can be predicted. 

For 7:3-commensurability, truncated model (4th order) is rather restricted. With 

IL = 0 in eqn. 2 we get fig.9. 

Now let's see figs 7 and 8 (Yoshikawa's model with e' — 0.027 and 0.048 respec-

tively). In the former, there is an equilibrium point for w — w' = 0, while for the 

(Wisdom, 1985): 

H = A(x,y) + F9{x,y) (3) 

H + A(x2, ΧΑ) - Ft{x2, χ A) > 0 (4) 

3 . Some Comparisons and Brief Results 
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Fig. 4. Surface of section for H = —1.933472 χ 10 6 in (e,w) plane, integrating Hamilto-

nian 1. Only regular motions were observed. 

Fig. 3. Guiding trajectories for H = —1.933472 x 1 0 - 6 (asteroid B- l ) in (χ,y)-plane. 

Empty central area, is the forbidden region. Innermost curve is the Z V C The dot is the 

initial position of the asteroid 
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Fig. 5. Guiding trajectories for Η = 4.384025 x 10 6 (asteroid B-3). The shaded area 

corresponds to the neighbourhood of C C . 
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Fig. (>. The same of fig.5 but in e, τσ variables. Thick curve is CO. 
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Fig. 8. The same of fig. 7 for e = 0.048. 
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Fig. 7. Yoshikawa's level curves in (β,τσ — τυ') plane for 7:3 resonance, for e' = 0.027. 
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Fig. 9. The same of fig. 1 for 7:3 resonance. 
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Fig. 10. The same of fig. 2 for 7:3 resonance and taking 7λ' — 3λ — 4w = π. 
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latter, it is not so clear, but if it exists, it occurs for e > 0.4. However, for e « 0.4,the 

truncated model is already not reliable, neither is the equilibrium point in fig.8. Us-

ing Yoshikawa's hypothesis 7λ' — 3λ — 4tx7 = π and taking semi-major axis at exact 

resonant point, we get fig. 10. Compared with fig.9 we can roughly estimate the limit 

of validity of the truncated model: agreement seems to be possible for e < 0.3 . In 

spite of this, if CC or Ζ VC lies in a reliable part of (e, xcr)-plane, useful informations 

can still be obtained. Indeed, like in 5:2-case,we tested some C-asteroids given by 

Yoshikawa and agreement was observed in the expected regions. 

4 . Conclusion 

Fig.l shows that even starting from very small values, e can reach values near to 0.4. 

Indeed, in Yoshikawa's numerical integration, eccentricity of B-3 varies from 0.04 to 

0.76.However for 7:3 case, fig.7 reveals that, if initial e is below a value around 0.1, 

no large variation is possible. Also, for this resonance, some calculations via surface 

of section showed the existence of chaotic zone trapped in regions of very small 

eccentricity. Details and other additional calculations should be reported elsewhere. 

Despite its limitations, the truncated model still gives useful informations and many 

qualitative features can be predicted. 
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Discussion 

G.Quinlan - You mentioned that Wisdom's perturbative method had some trouble 

at small eccentricities. Please explain this further. 

T. Yokoyama - When the eccentricity is very small, the basic assumption that two 

different time scales exist, is no more valid. On the other hand, when eccentricity 

is 0.064 (5:2 commensurability) and 0.0569 (7:3 commensurability), the canonical 

transformation is singular. 
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