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ABSTRACT

The paper extends earlier results by demonstrating that there is an optimal range of
values for the period for amortizing valuation surpluses or deficiencies, in the case
when there is a one year time delay between fixing a contribution rate and the
accounting information about current fund levels. The optimal range is compared
for the cases where there is no time delay and there is a one year time delay.
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INTRODUCTION

We shall consider the financial structure of a defined benefit pension scheme, as
represented by a simple mathematical model, which can be regarded as an extension
to that originally proposed by TROWBRIDGE (1952). We focus on the effect of
varying investment returns on the contribution rate and fund level for the scheme
and consider possible choices of two important control parameters: the spread
period and the delay in fixing contribution rates.

We consider defined benefit pension schemes where the benefits promised in the
event of various contingencies are defined by a formula while the contributions are
to be determined by the actuary by means of the valuation process. The funding
method then represents the means by which the contribution rate is fixed at each
valuation. We shall consider the case of annual valuations: at which the actuary
values the prospective liabilities, allowing for future contributions to be paid, and
compares this result with the value of the assets currently held.

The paper provides a natural follow-up to the earlier work of DUFRESNE (1988)
and HABERMAN (1992) and gives a comparison with these earlier results.

As in these earlier papers, we shall consider the funding methods described by
the following pairs of equations :

(1) C(t) = NC(t)+ADJ(t)

where C(t) is the contribution rate at time t, NC(t) is the normal cost at time t and
ADJ(t) is an adjustment to the contribution rate at time t, represented by the
liquidation of the unfunded liability, UL(t). UL(t) is defined by:

(2) UL{t)=AL(t)-F(t)
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where AL(t) is the total actuarial liability in terms of all members at time t and F(t)
is the fund level at time f, measured in terms of the market value of the underlying
assets.

We are using a discrete time approach with t taking integer values 0, 1, 2 and so on.
At each time t, a valuation is carried out to estimate C(t) and F(t) based on the

membership of the scheme at that time. As t changes, however, we allow for new
entrants to the membership so that the population remains stationary. See the
assumptions listed below.

In the ensuing mathematical discussion, we make the following assumptions:
1. All actuarial assumptions are consistently borne out by experience, except for

investment returns.
2. The population is stationary in size and structure from the start.
3. Salaries increase at a deterministic rate of inflation. For simplicity, each active

member's annual salary is set at 1 unit at the minimum age at entry. There is no
promotional salary scale. We allow for salary inflation by considering the real
rate of investment return i.e. the rate in excess of salary inflation. In parallel, we
assume that benefits in payment increase at the same rate of salary inflation.

4. The real interest rate assumption for valuation purposes is fixed.
5. It is assumed that the contribution income and benefit outgo occur at the start of

each scheme year.
It is straightforward to relax some of these assumptions e.g. replace 2 by allowing

the population to grow at a fixed compound rate (i.e. be stable in the sense of
KEYFITZ (1985)); include a promotion salary scale in 3; use a different timing
assumption in 5.

Assumptions 1.-4. imply that the following are constants with respect to time, t
(after rescaling to allow for the predetermined growth in line with salary
inflation):
NC: the total normal cost.
AL : the total actuarial liability.
B : the overall benefit outgo per unit time.

Also, assumptions 1., 2., 4. and 5. imply that the following equation of
equilibrium holds:

(3) AL = (\+i)(AL + NC-B)

or equivalently

B = d.AL + NC where d = /(I + / ) " ' ,

the compound interest discount rate.
This equation of equilibrium can be also found in the earlier papers of

TROWBRIDGE (1952) and BOWERS et al. (1976).
We make the following further assumptions regarding the real interest rate earned

on the fund and the stochastic nature of F(t):
6. The real interest rate earned on the fund during the period (t, t+ 1) is / (t+ 1),

where Ei(t+ 1) = i, the real valuation rate of interest. Thus, the valuation rate is
correct "on average". This assumption is not essential mathematically but is in
agreement with classical ideas on pension fund valuation. We further define a2 =
Var/(?+ 1).
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7. It is assumed that the earned real rates of return i(t) for t> 1 are independent,
identically distributed random variables (with i(t) > - 1 with probability 1).

8. Pmb [F(O) = Fo] = 1 for some Fo.
Given these assumptions, the random variable i{t) leads to F(t) being a random

variable and hence UL(t), ADJ(t) and C(t) being random variables.
A continuous time formulation would be possible, in which case stochastic

differential equations wold be utilised in the mathematical discussion rather than
difference equations.

We are not suggesting (through assumption 7) that the rates of return actually
achieved by pension funds form an independent and identically distributed
sequence. Indeed, rates of return are more generally viewed as autoregressive-
moving average processes (for example, PANJER and BELLHOUSE (1980)). In parallel
work, HABERMAN (1991, 1993) has investigated the effect of using dependent
investment return models, in particular autoregressive models of low order. These
more sophisticated models are not pursued here. It is only because it keeps the
mathematical discussion tractable that assumption 7 is imposed here.

CHOICE OF ADJ: SPREAD PERIOD AND DELAY

We consider a particular method for defining the contribution adjustment term
ADJ (t) which is an approach widely used in the U.K. and involves putting ADJ(t)
equal to the overall unfunded liability divided by the present value of an annuity for
a term of M years, calculated at the valuation rate of interest /. It is common
practice to use values of M in the range 20-25 years, on the grounds that this would
represent the average remaining active lifetime within the scheme of the current
membership.

As in HABERMAN (1992), we shall allow for delays in the collection and
processing of data and the preparation of the accounts, and assume that the
adjustment term at time / depends on UL(t— 1). Thus, with k= l/aM],

(4) ADJ(t) = k . UL(t-q) where q = 0 or q= 1.

q = 0 co r r e sponds to the ana lys i s of D U F R E S N E (1988) a n d q=l c o r r e s p o n d s to
H A B E R M A N (1992) . T h e n :

(5) C(t) = NC + k. (AL - F(t-q)) where q = 0 or q= 1.

We shall now view k (and hence M) and q as being control parameters which the
actuary may choose with the objective of meeting certain specified criteria (see
later) connected with controlling the behaviour of C(t) or F(t) over time. The
choice of M would not be completely free: M would probably have a lower bound
to limit the income tax deductibility of contributions and an upper bound to prevent
large increases in UL(t).

Equation (5) includes a negative feedback component, whereby the current status
is compared with a target and corrective action is taken to deal with the
discrepancy.

With q = 1 in equation (4) we see that an element of delay is introduced into the
way that changes in F(.) feed back into changes in C(.) .
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Other values of q are considered in detail in ZIMBIDIS and HABERMAN (1993) and
are not discussed here.

We note that this choice of ADJ(t) uses the same fraction of the unfunded
liability regardless of the latter's sign, so surpluses and deficiencies are treated in
the same way, which would not always be the case in practice.

MOMENTS OF F (t) and C (t)

In the case of q = 0, we repeat from DUFRESNE (1988) the recurrence relation for
F(t):

(6) F(t+ l) = [u(t+l)/ u\{pF{t) + r)

and from HABERMAN (1992) the corresponding relation when q= 1

(7) F(t+\) = [u{t+\)lu](uF(t)-uk F(t-\) + r)

where we have introduced the subsidiary parameters

u = (\ + i), p = (I + i)(l -k), r = (] + i)(NC -B + k AL)

and

u{t+ 1) = 1 + i(t+ 1).

Using conditional expectation and variance based methods, DUFRESNE (1988)
obtains explicit equations for the expectation and variance of F(t) and C(t) for
finite t when q = Q. In the limit as t —> =°, he demonstrates that, providing that
M>\,

lim EF(t) - AL

and

lim EC(t) = NC
i —> •'-

and that providing that y(\-k)2 < 1

(8)

where y

(9)

lim

= a2 + a2, and

lim

VarF(f) =

Var C{t) =

«2(

«2(1

a

;i -

a2*

2AL2

>'(1-*)2)

2AL2

; ( l - £ ) 2 )

In this discussion, we exclude pay-as-you-go funding and terminal funding for
which AL - 0 and initial funding.
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Using conditional expectation and generating function based methods, HABER-

MAN (1992) similarly obtain equations for the first two moments of F(t) and C(t)
when q = 1. In the limit as t —»=°, he demonstrates that

lim EF{t) = AL
1 —> -r-

lim EC(t) = NC
I - » -x.

providing that /W>2 and aM\> 1.
Under more complex restrictions on the parameters (Appendix I), HABERMAN

(1992) obtains, for the case q=\, that

(10a) lim Varf(/) =

and

o2AL2(\+uk)

u2(\ + ku - y(l-uk

a2k2AL2{\ +uk)
(10b) lim VarC(?) = —

• • MZ(1 + ku - y{\ -uk + k2

[Note that there is a typographical error in equations (14), (15) and (B.6) in
HABERMAN (1992)].

TRADE OFF IN VARIANCES

We introduce the following notation for the scaled variances

lim VarF(f)
a.j(M) = for q = i where / = 0 or 1

(lim EF(t)f

and

lim VarC(f)(11) Pi(M) =
(\im EC(t))2

Then Dufresne has shown that, if y> 1, then there exists M* such that
i) for M<M*, ao(M) increases and P0(M) decreases with increasing M,
ii) for M>M*, both ao(M) and fio(M) increase with increasing M and that

«M*1 = —where k* = 1 - — .
k* y

In a sense, the choice of M in the range of (1, M*) is "optimal". If our objective
in choosing M is to reduce uncertainty and to keep the limiting variances of F (i)
and C(t) to a minimum, then any M>M* is to be discarded since clearly some
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other M<M* would at least reduce ao(M) while keeping po(M) the same. For
most pension funds, it is likely that the variance of C(t) will be the principal
criterion of interest.

We shall now consider the extent to which similar properties hold for the case
q=\.

We firstly note that, for M> 1,

ao(M) < a, (M)

(12) and

po(M)<pl(M),J

(as demonstrated in the numerical examples in HABERMAN (1992)).
The proof is straightforward. We consider

at(M) _ P,(M) (l+uk)(l -y{\ -kf)

ao(M) po(M) 1 + uk

I - y d

1 -

-y{

l -

-ku

•yd

•yd

+ k2

+ k2

u + k2 + u

-k)2

+ uk3)/d

-2k)

k*)

+ uk)

1 - y(l+k2-2uk/(\ +uk))

The difference between the terms in the numerator and denominator is the
coefficient of "2k". Now, if M> 1,

u 1
< 1 because 1 + uk - u = — - i > 0.

1 + uk aM-\

a,(M) fa(M)
Hence = > 1.

ao(M) fio(M)

(HABERMAN and ZIMBIDIS (1993) show that these inequalities hold for higher values
of q). This result is intuitive: the introduction of a one year time delay means that
we have lost information about the fund since time t - 1 and we would expect the
resulting variances to be increased.

We consider the behaviour of ax (M) as M varies. It is convenient to view a, ( )
as a function of k and then use the 1-1 correspondence between values of k
and M.

We can show that

d o22y(k{\+ku)2-u)
(13) — ax(k) =11 Z/1 1 /1 j i Z i 1 \\Z

dk u (1 + ku - y (1 - uk + k + uk'))
We are interested in the turning points of a, (k) in the range for k of (d, 1),

corresponding to values of M in the range (1, o°).
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The cubic equation p(k) = k(\ +ku)2-u has only one real root since

D = — (27M2 + 4 ) > 0

(see Appendix II). We let k{ be this real root.
We note that p (d) = u (i - 1) < 0 (if \i\ < 100%) and p (1) = 1 + u + u2 > 0.
Then p(k)<0 for d<k<kt and p(k)>0 for k^<k<\.
k\ depends on the value of u and numerical experiments indicate the following

values:

i

0
1%
5%

10%
20%

u

1
1.01
1.05
1.10
1.20

k\

0.4656
0.4666
0.4704
0.4707
0.4818

In each of the cases, £, approximately corresponds to M, =2.
Hence

d
— a,Ofc)<0 for d<k<kx
dk

and

d
— a,Ot )>0 for kt<k<\
dk

(subject to k satisfying the constraints implied by Appendix I) which are equivalent
to

d
a, (M) < 0 for 1 <M<M} = 2

dM

and

d
a, (M) > 0 for M,

dM
We now consider the behaviour of /3| (k), viewed initially as a function of k. We

can show that

B (k) 2 22
B (k)

dk ' M2(1 + ku -
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We are interested in the turning points of /?, (k) in the feasible range k of (d, 1),
again subject to the constraints implied by Appendix I, corresponding to values of
M in the range (1, °°).

The quadratic equation s (k) = 1 - y + ku (2 - y) + u2 k2 (1 + y) has one real root
in the specified range since y>0.8. We let k2 be this real root.

We note that s{0)=\-y<0

and s(\)=l- y + u(2-y) + u2(l+y) =
u\u-]) + 2u + 1 + o2(u2-u- 1)

so .s(1)>0 if i>61.8%, given that u>0

7 u3(u- 1) + 2 M + 1 ,
or s(l)>0 if a < = a,, say.

1 +u-u2

[This restriction on a2 is not too onerous! It would correspond to the following
values:

0
1%
5%

10%
20%

2

300%
306%
333%
375%
493%]

Clearly k2 corresponds to a minimum value of /? (k).
The explicit value of k2 is

Thus

— j8,(*)<0 for d<k<k2
dk

and

— 0,Ofc)>O for k2<k<\.
dk

If ^2 corresponds to M2 we can translate this statement into

j 8 , (M)<0 for 1 < M < M 2

M
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and

d
— /?, (M) > 0 for M2<M<™.
dM

Given the restrictions on the parameters mentioned in the above discussion, we
see that for the case of q = 1 that is also a trade off between variability in C(t) and
variability in F{t) and that there is an optimal choice of M, and hence of k, if our
objective is to keep the limiting variances to a minimum. The optimal spread period
in this case is (1, M2).

A comparison of the optimal periods defined by M* and M2 (for the cases q = 0
and q=\) would be useful. Again it is convenient to examine the corresponding
annuity values, as represented by k.

We note that

s'(k*) = u(2-y) + 2u2(l+y)^

= — [2(o2 + u2-u) + r ( 2 M - l ) ] .
y

The sign of s'{k*) depends on the values of u and a. Clearly, if « > 1 (i.e. /&0)
then s'(k*)>0. Since s(k) is a quadratic, with minimum at k = k2, this implies that
k*>k2 and hence that M2>M* (for />0) .

This is confirmed by the numerical example given in HABERMAN (1992). As
Table 1 illustrates, the values of M2 and M* are numerically close.

TABLE 1

NUMERICAL VALUES OF M* AND M7

a

0.05
0.10
0.25
0.20
0.25

0

M* and M-,
401
101
45
26
17

0.01

M* and M,
60
42
28
19
14

i

Real valuation rate

0.03

M*
23
20
16
13
10

of interest

M2
24
20
17
13
11

M*
14
13
11
10
8

0.05

M2

15
14
12
10
9

CONCLUSIONS

A simple stochastic model is used to represent the real investment returns for a
defined benefit pension scheme.

https://doi.org/10.2143/AST.25.2.563246 Published online by Cambridge University Press

https://doi.org/10.2143/AST.25.2.563246


186 STEVEN HABERMAN

The paper shows that in the presence of a one year time delay between fixing a
contribution rate and the information about current fund levels, it is possible to set
up formulae for studying the limiting behaviour of the expected values and
variances of the contributions and fund levels. The paper demonstrates that, as with
the case when there is no time delay, there is an optimum range of values for the
spread period, M (for amortizing valuation surpluses or deficiencies). The relation-
ship between the optimum range of values of M in the case of no time delay (q = 0)
and with a one year time delay (q = 1) is investigated.
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Appendix I

Based on HABERMAN (1992) Appendix C, we require the following conditions for
the convergence of equations (10):

With b = o2 + u2-uk

c = (o2 + u2)k(u-k)

e = (a2 + u2)uk3

D = 2 i 2 2 i

we require
i) \+c>\b + e\
ii) (a) if D>0, e3 - be + c - l < 0

(b) if D<0, \b\ < — (3 + c).
2

i) and ii) can be considered to provide restrictions on k (and hence M) or on a2.

Appendix II - Roots of a cubic equation

In general, the roots of the cubic equation

p (x) = x3 - bx2 + ex - e

are

Xx = _ b + U + V
3

1 1 A/3
x2,x3 = - b - - (U+V) ± -L-i(U-V)

3 2 2
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where

[ b3 be e 1 /-
_ - _ +_ ±—= v
27 6 2 6 ^

and

D = 27e2 + 4c3 - 18bee - b2c2 + 4 b3e.
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