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Smooth, anisotropic etching of InN and GaN is obtained jn@1BBrs-based Inductively Coupled
Plasmas. Etch selectivities of 100:1 were achieved for InN over both GaN and AIN i the Bl
mixtures, while for BBg discharges values of 100:1 for InN over AIN and 25:1 for InN over GaN
were measured. The etched surface morphologies of INN and GaN with both mixtures are similar or
better than those of control samples.

1 Introduction ing of group llI-nitrides in BGJ and C) mixtures with

The predominant plasma chemistries for dry etching ofiddition of Ar, N, SR and H, and found selectivities
[ll-nitrides are based on &I [a] [2] [3] [4] [5] [6] [7] as high as 8 for GaN/AIN and 6.5 for GaN/InN under
[8]. These have worked well for fabrication of laser andoptimum conditions. Our new results forzBind BBg
light-emitting diodes where the etching is non-selectivemean that there are now available chemistries that will
[9] [10]. As attention turns to application of nitride allow the full range of desired etching properties, i.e.
materials in high power, high temperature electronicsnon-selective, selective for In-based nitrides over GaN
there is increasing need for plasma chemistries that wilkind AIN, and selective for GaN over AIN and In-based
remove In-based nitrides from underlying AlGaN alloy materials. We also find that fland BBg produce
layers with high selectivity. It is expected that INN orsmooth surface morphologies and anisotropic etched
InGaN contact layers will be necessary to produceidewalls.

acceptable contact resistance in transistor or thyristor

devices. Besides gbased mixtures, there have been2 Experimental

some reports of B(in the form of HBr) [11] [12] and The epitaxial films were grown on c-planeAl ,O3 by
I5(in the form of HI) [12] plasma etching of nitrides. In either Metal Organic Chemical Vapor Deposition(GaN)
particular it has long been recognized that, latch ~ at 1040C, or by Metal Organic Molecular Beam Epit-
products have higher volatility than the corresponding®y [16] (InN and AIN) at 60T and 800C, respec-
InCl,, species, making iodine an attractive etchant fofively. The layers were 1.2-3utn thick and were

InGaN alloys. nominally undoped(nd 6x10cm™ for GaN, n O
In this paper we describe use of two new dry etchl0?%m3 for InN and resistive, > f0-cm, for AIN).
chemistries for nitrides, namely $8&nd BBg. Both are Bl; is a white crystalline solid with a melting point

found to provide high etch selectivity for INN over both of ~4¢°C, while BB is a red liquid with a boiling point
GaN and AIN. Vartuli et al. [13] previously reported 4 91 2C. Approximately 50g of each was placed in a
selectivities oL for InN over GaN in CifH, Electron  qyartz container within a stainless steel vacuum vessel
Cyclotron Resonance(ECR) plasmas, wheregéAC|  heated to ~4% to increase the vapor pressure of the
ICI/Ar and IBr/Ar chemistries all showed values lessreactants. The resultant flow rates were in the range of 5-
than unity. Subsequently, Shul et al. [14] [15] investi-10 standard cubic centimeters per minute(sccm). Etch-
gated selective Inductively Coupled Plasma(ICP) etching was performed in a Plasma Therm 790 system in
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which the samples are thermally bonded to a Si carriesmum. Note however that selectivities of > 100 can be
wafer mechanically clamped to an rf-biased(13.56MHzachieved for both INN/AIN and InN/GaN.
450W), He backside cooled chuck. The 3 turn coil ICP  Similar data is shown in Figure 3 for BfAr dis-

source operates at 2MHz and powers up to 1500W. Thgharges with fixed source power(750W) and rf chuck
process pressure was held constant at 5mTorr. Typica'Bower(SSOW). We needed higher rf powers to initiate
Ar was added to the gas flow to facilitate plasma ignigtching with BBg than with Bk. Another difference is
tion and enhance the physical component of the etchinghat now dc self-bias increases with BBontent, indi-

Etch rates were obtained from stylus profilometrycating that it is less readily ionized than Ar. The etch
measurements of the features, while scanning electramte of InN again increases with boron halide content,
microscopy(SEM) and atomic force microscopy(AFM) \while GaN shows significant raté&@00A-minl) only
were used to examine surface morphology. for pure BBg discharges. By contrast, AIN shows very

low etch rates over the whole range of conditions inves-
tigated. Maximum selectivities dfiLl00:1 for INN/AIN

Discharges were readily sustained with bot Bhd ~ @nd7.5:1 for InN/GaN are obtained.

BBrs. Pure Bk plasmas were blue-white, and optical One feature of the etching with these two new chem-

S . . icals was the good surface morphologies obtained. Fig-
emission spectra revealed many strong transitions in theé

range 380-440nm(Figure 1, top), which are related t§'® 4 shows examples of AFM SC?‘”S(_lq‘mé) of
atomic iodine. Similarly, pure BBrdischarges were GaN before and after BfAr etching with different Bj

slightly darker in appearance, but also showed man€rcentages, while Figure 5 shows similar data for
atomic transitions dominated by lines at 484nm, 658nnBBr/Ar etched samples. While there are clearly differ-
and 826nm(Figure 1, bottom). ences in the resulting surfaces, with pits or hillocks evi-
) ) dent in some cases, the most important result is that all
Figure 2 shows etch rates(top), etch yields(centery¢ o etched surfaces have lower root-mean-
and selectivities for InN over both GaN and AIN(bot- 5,5re(RMS) roughness than the control value. Figure 6
tom) as a function of Bl percentage in BIAr dis-  ghqys the dependence of RMS values for both chemis-
charges with fixed source power(750W) and rf chuckries as a function of discharge composition. This type
power(150W). Note that dc chuck self-bias decreases &§ surface smoothing has been reported previously for
Bl3 content increases, indicating that the ion density inggN [18], and ascribed to the angular dependence of
the plasma is increasing under these conditions, and thiain milling rates producing faster removal of sharp fea-
Bl3 is therefore more easily ionized than Ar. The InNtures. We were able to obtain AFM data over a much
etch rate is monotonically dependent ory Bontent, narrower range of conditions for InN because of the
indicating the presence of a strong chemical componerﬁ‘E‘UCh higher etch rqtes and consequent difficulty in etch-
to its etching. By contrast AIN and GaN show insignifi- INd to & pre-determinant depth for AFM measurements,

cant rates until ~50% Biwhere values of ~500A.11ifh but the_surfaces.were also quite gooq for this _ma_terial._
In high density plasma sources, ion density is basi-
for AIN and ~1700A-miff for GaN are obtained. Fur- cally controlled by the power applied to the source,
ther increasing the Blcontent in discharges actually \yhile ion energy is mostly dependent on applied rf
leads to a reduction in etch rate for those two materialghuck power. If the latter is fixed, then increasing the
There are at least two possible explanations for thisource power will reduce the chuck self-bias. Figure 7
result. First, the corresponding fall-off in chuck self-biasshows that source power had a significant effect only on
and hence ion energy under these conditions may motaN etch rate for 4By6Ar discharges at fixed rf
than compensate for the increased active iodine aVaibower(lSOW). Etch vyields are quite low, even for InN,
able. Second, since Gadnd All, etch products are not and under the best conditions about 9 incident ions on
that volatile, a selvedge or reaction layer may formaverage are required to remove one In and one N atom.
involving these species that quenches further etching. Ahe etch selectivity for INN/AIN and InN/GaN increases
precedent for the latter mechanism is reactive ion etctwith source power and reacHeg00 at 750W.
ing of InP in C} plasmas, where etching does not pro-  Basically similar trends were observed for 4§Br
ceed unless elevated sample temperatures or high @@r discharges as a function of source power, as shown
biases are used to facilitate removal of the 4n@th  in Figure 8. InN etch rates and etch yields are lower than
product [17]. Due to the behavior of GaN and AIN etchwith Bls/Ar, and therefore selectivities B0 for InN/
rates with B} percentage, the InN selectivity to both AIN and (40 for InNN/GaN were obtained. There is a
materials initially increases but also goes through a minminimum in the InN/GaN data around 750W source

3 Results and Discussion

2 MRS Internet J. Nitride Semicond. Res. 3, 5 (1998).
© 1998-1999 The Materials Research Society

https://doi.org/10.1557/51092578300000776 Published online by Cambridge University Press


https://doi.org/10.1557/S1092578300000776

power, which may result from a competition betweenetched in either BIAr or BBry/Ar, using a Sily mask.
increased etch rate of GaN due to higher flux, and desthe striations on the feature sidewalls originate from
orption of the active bromine by ion-assistance at stilkoughness on the initial photoresist mask used to pattern
higher fluxes. the SiN,, and then this is replicated into the GaN.

As mentioned above, incident ion energy in high _
density plasmas can be controlled by the rf chuck poweft Summary and Conclusions
The resultant dc self-bias is the potential through whicltwo new plasma chemistries have been examined for
ions are accelerated as they cross the plasma sheath. ighing lll-nitrides. B4 produces etch rates for InN as
energy is then the sum of plasma po_tentlal (typically 20high as 7,500 A-mith under ICP conditions, whereas
30eV), plus the dc chuck bias. Figure 9 shows the ) _ ) 1
dependence of etch rate, etch yield and InN/AIN andn€ maximum rate with BRris (5,500 A-mint. The
INN/GaN selectivity on rf chuck power for 4@6Ar  rate for AIN are low under all conditions, while GaN

discharges at fixed source power(750W). While GaNates up to 1700-1800 A-milncan be obtained in both
and AIN etch rates increase only at the highest chuckiixtures. Under optimum conditions etch selectivities
powers investigated, the InN etch rate increases rapidigf [IL0O for InN over AIN and GaN were achieved i Bl
to 250W, indicating a strong ion-assisted component tehemistries, while in BBrmaximum values af.00 for

the etching, and then decreases at higher powers. Thign/AIN and 25 for INN/GaN were obtained. These are
behavior produces corresponding maxima in both etckhe highest values reported for high density conditions,
yield and selectivity. This type of behavior is quite com-5n result from the good volatility of ipetch products.
mon to high density plasma etching of llI-V materials,The etched surface morphologies of GaN and InN were
where the etching is predominantly ion-assisted desorpa-ISO very good, having similar or even lower RMS
tion of somewhat volatile products, with insignificant roughness than,control samples. Both of these plasma

rates qnd(_ar |on—freg condmon; [19]. 'T‘ this scenario, alpemistries appear useful for selective etch processes in
very high ion energies, the active etching spemes(lodmcramnde electronic device fabrication
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Figure 1. Optical emission spectra from pure(®p) or
BBr3(bottom) discharges under ICP conditions.
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Figure 4. AFM scans of GaN surfaces before and after etchingjgyre 5. AFM scans of GaN surfaces before and after etching
in 750W source power, 150W rf chuck powergBf  in 750w source power, 350W rf chuck power BBr

discharges as a function ofAiontent. discharges as a function of Brontent.
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Figure 14. SEM micrographs of features etched into GaN using eithfér Br BBry/Ar discharges. The SiNmasks are still in
place.
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