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Abstract

A strictly physically based design theory of a new class of Spatial Harmonic Magnetrons
(SHM) is thoroughly derived which leads to analytically evaluable expressions. Thus two
advantages are obtained: (1) The design parameters appear grouped into two separate categor-
ies – one just containing geometrical and material parameters, the other one exclusively con-
taining beam current-related ones, which are in product-form determining performance. The
influence of each parameter can thus easily be discovered and investigated. (2) Numerical
efforts for any new design will be reduced by at least one order of magnitude.
Subsequently and based on feature (1) it is derived that loading the anode structure by a suit-
ably selected meta-material will increase output power and efficiency, will pave the way to CW
operation, and can extend oscillation frequency well into the sub-THz range. Finally, it is
shown that the Rising Sun Magnetron is a first step toward a meta-material loaded SHM offer-
ing the same but quantitatively reduced features and less stringent requirements to fabrication
technology.

Vacuum electron devices and meta-materials

Veselago in his 1968 paper [1] predicted the reversal of conventional Cerenkov radiation in
left-handed (LH) media. Since the introduction of the unit cells of an LH medium [2–4],
reversed Cerenkov radiation (RCR) resulting from particle motion in such a medium attracted
a lot of interest (for example see [5–12]), and in fact became the first research topic in the field
of interaction of electron beams with meta-material. A backward radiation (backward with
respect to the direction of motion of charged particles) from a transmission line based meta-
material presented in [5] in 2002 was the first indirect experimental observation of RCR. Then
in the next seven years, in a series of papers [6–9] by Kong and his team various aspects of
these phenomena in meta-material have been extensively examined. In [6, 7], Cerenkov radi-
ation in both isotropic and anisotropic LH media has been treated analytically. In [6], the
effect of losses and dispersion has been thoroughly examined by considering a Drude-type
permeability and permittivity, and it has been shown that in such a dispersive lossy medium
both forward radiation (corresponding to conventional Cerenkov radiation) and backward
radiation (corresponding to RCR) may exist. It has also been shown that the losses can affect
the radiation angle. The realization of an appropriate 2D-DNG medium for experimental
observation and verification of these phenomena has been presented in [8, 9].

The intrinsic relation between Cerenkov radiation and the fundamentals of operation of
several classes of vacuum electronic devices (VEDs), including TWTs and BWOs, triggered
another topic of research in the field of interaction of electron beams with meta-material
(MTM), namely the application of meta-material in VEDs. This field of research which is
less explored than RCR in meta-material, can be divided into three categories. The first cat-
egory encompasses studies devoted to an investigation of instabilities which result from elec-
tron beams passing through meta-material slabs, and the effect of meta-material loading on
the dispersion relation of VEDs. The second category deals with the implementation of meta-
material as an effective medium in the slow wave structure (SWS) of VEDs. Advances in these
two research categories paved the way for the third category of research, namely VEDs based
on real meta-material unit-cells.

This paper can be associated with all these fields. It consists of two different parts: Its first,
purely theoretical part deals with investigating an MTM loaded Spatial Harmonic Magnetron
(SHM). It can be considered as an example of the first and the second category as defined
above. We will hence briefly describe here the state-of-the-art of these two research categories.
The second part of the present paper is a physical discussion of the consequences following
from theory of the first part. From its nature, it belongs to the third category. Some results
have already been sketched in a conference contribution [13] which deals with unit-cell
based MTM loaded SHMs including realization and Particle-In-Cell (PIC) simulation.
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The focus of the present discussion will be on the potentials of
SHMs with MTM loading to offer stable operation at very low
cathode current density. If this mode can be achieved with accept-
able margins for output power and efficiency, CW operation will
be possible. In this context, the Rising Sun Magnetron (RSM) will
be investigated.

Examples of the first category of research can be found in [14–
16]. In [14], it has been shown that the instabilities resulting from
two electron beams passing through a hypothetical isotropic LH
medium originate from RCR and that these instabilities can result
in the self-modulation of the beam and radiation of electro-
magnetic waves, the phenomenon which is in fact quite similar
to the process occurring in BWOs. The analysis of [14] is limited
to the observation of these instabilities and does not include the
implementation of these instabilities in a BWO. In [15], the hypo-
thetical isotropic LH medium of [14] is replaced by two CSRR
loaded parallel plates supporting a negative refractive index
(NRI) TM mode. The interaction of this NRI TM mode with
an electron beam passing through the parallel plates has been
examined by modeling the electron beam by a dispersive permit-
tivity and then extracting the dispersion relation of the structure.
A similar approach has been implemented in [16] in order to
model the interaction of an electron beam with a coaxial NRI
transmission line based on meta-material. Implementing the pro-
posed NRI structure in both a BWO or a TWT and investigating
output power and efficiency of the structure in the presence of an
electron beam have, however, not been treated in [15, 16].

Examples of the second category of research can be found in
[17, 18]. In [17], which is among the first publications in the
field of meta-material based VEDs, wave amplification in a
DNG loaded folded waveguide traveling wave tube (FWTWT)
has been examined using Madey’s theorem [19]. Analytical calcu-
lations confirm the possibility of wave amplification in such a
structure, however, a comparison between this structure and its
conventional counterpart in terms of important factors like e.g.
gain has not been presented. In [18], an ENG loaded FWTWT
has been examined. It has been shown that, at the cost of a
reduced bandwidth, an ENG loading can considerably enhance
the interaction impedance. PIC simulations confirm the superior-
ity of the ENG loaded FWTWT to its conventional counterpart. It
should be mentioned that in these simulations, the ENG medium
is of Drude type and the effect of losses is neglected. In [20] as
well as in [21], we have briefly reported that loading the SWS
of a conventional SHM with an ENZ layer can improve the per-
formance of these devices in terms of output power and efficiency.

The main purpose of this paper is presenting the detailed ana-
lysis that led us to the conclusion that ENZ loading of SHMs can
provide the above mentioned advantages. In contrast to the clas-
sical magnetron, the operation conditions (operation mode, cho-
sen harmonic, DC voltage, and magnetic field strength) in SHMs
are selected in a way that the operation frequency of these sources
can be easily extended into the mm-wave band, and even recently
also into the sub-THz range [22–24]. With this goal in mind, in
[20, 21], and also in this report, we have investigated this specific
class of magnetrons. Several results have already been published
in our paper [25] which is an extension of the conference paper
[13], however, because of limited space, just gross results without
any detailed derivation have been summarized and partially also
discussed. There are two reasons for justifying the present publi-
cation: (1) Just by a detailed mathematical derivation, the decisive
ideas and approximations can be made obvious which have led to
an almost unique design theory implying surprising results, and

which ask for an extension to other VEDs. And (2), theory and
conclusions have – for the first time – been extended to encom-
pass the RSM. This technologically less ambitious alternative to
the SHM with meta-material loading is thoroughly investigated
and compared to the latter. Hence we do propose to study the pre-
sent report in close relation to paper [25].

The paper is organized as follows: In its second section, the
so-called “cold” analysis of a SHM loaded with a generally aniso-
tropic medium is presented. The purpose of the “cold” analysis in
which the effect of an electron beam is neglected, is calculating
the resonant frequencies (i.e. the possible operation modes) and
the amplitude and velocity of different Floquet harmonics of its
SWS. The third section presents the so-called “hot” analysis (an
analysis in the presence of the electron beam) of this novel
SHM. This analysis shows the effect of employing ENZ layers
in the SWS on both output power and efficiency of SHMs. The
fourth and fifth sections deal with a thorough discussion of stabil-
ity and a design example based on the effective medium approach.
This study provides the guidelines for the unit-cell based realiza-
tion of ENZ-loaded SHMs which had been presented in [13].
Finally, it will be pointed out in the sixth section that the RSM
in principle also contains an inherent feature of an ENZ-loaded
SHM or – generalized – of an SHM with meta-material loading:
stable operation at extremely low current but still with high out-
put power and efficiency. Hence CW operation should be possible
at almost arbitrarily high frequency which is just limited by
technological, but not by electro-magnetic requirements. Finally,
a brief conclusion with an outlook will be presented.

“Cold” analysis of the meta-material loaded SHM

The SWS under consideration (Fig. 1(a)) consists of a cathode
(radius rc) and an anode (radius ra) with N rectangular-type
side resonators filled with an anisotropic medium with the follow-
ing constitutive parameters:

1s = 10

1x 0 0
0 1y 0
0 0 1z

⎡
⎣

⎤
⎦, ms = m0

mx 0 0
0 my 0
0 0 mz

⎡
⎣

⎤
⎦. (1)

The SWS height is h, and the resonator width and depth are d
and l, respectively. The resonator opening angle is 2θ.

Fig. 1. (a) SWS structure of a SHM with side resonators filled with layers of an aniso-
tropic medium and (b) equivalent circuit of the side resonators.
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Field components in the side resonators

Important magnetron modes are TE modes without axial vari-
ation of the field. Due to the small width of the side resonators,
the field variation in y-direction is also neglected in these resona-
tors. The scalar and vector wave equations for these TE modes
read:

∂2HqC
z

∂x2
+ k2xH

qC
z = 0; k2x = k201ymz , (2)

EqC
y = jvm0

k201y

∂HqC
z

∂x
, HqC

x = HqC
y = EqC

z = EqC
x = 0, (3)

where superscript q denotes the number that is devoted to each
side resonator (see Fig. 1) and the superscript C shows that the
fields are related to the cold analysis. The field components in
each side resonator differ from those in the adjacent side
resonator only by a constant phase difference which is equal
to 2πn/N, where n is an integer in between 0 and N/2. The
operational mode of the magnetron is represented by either
this phase difference or by n. Classical magnetrons operate
at the π-mode (or the n = N/2 mode) while SHMs usually oper-
ate at the π/2-mode (or the n = N/4 mode) or at one of its
neighboring modes. As can be expected, among the different
elements of 1s and μs, only 1y and μz appear in the wave equa-
tions. Therefore we will assume that 1x = 1z = mx = my = 1.
Considering (2), (3), and the boundary conditions, the field
components are determined by using (4.a) and (4.b) for the
cases where εyμz > 0 (i.e. DNG, DPS, ENZ (εy → 0+) and
MNZ (μz → 0+) layers) and by using (5.a) and (5.b) for the
cases where εw μz < 0 (i.e. ENG, MNG, ENZ (εy → 0−) and
MNZ (μz → 0−) layers):

HqC
z (x, t) = jCe j(vt−(2pn/N)q) cos (kx(l − x))

sin (kxl)
, (4.a)

EqC
w (x, t) = h0hrCe

j(vt−(2pn/N)q) sin (kx(l − x))
sin (kxl)

, (4.b)

HqC
z (x, t) = −jCe j(vt−(2pn/N)q) cosh (|kx|(l − x))

sinh (|kx|l) , (5.a)

EqC
w (x, t) = h0|hr|Ce j(vt−(2pn/N)q) sinh (|kx|(l − x))

sinh (|kx|l) , (5.b)

where η0 is the free space impedance and hr =
�������
mz/1y

√( )
.

In (4.b) and (5.b), η0|ηr|C is the amplitude of the electric field
at the aperture of the side resonators. Here, similar to the
approach used in some of the full wave simulators, C is deter-
mined in a way that the stored energy in that specific mode
(U) be equal to 1J, i.e.:

UC = 1
2
FC2 = 1 (6)

where F is the form factor of the SWS which is formulated in
terms of the equivalent circuit parameters of the SWS.

Field components in the interaction space

The solution of the wave equation in the interaction space is a lin-
ear combination of Floquet harmonics (also called space harmo-
nics) [26]:

Hic
z (r, w, t) =

∑1
m=−1

Hic
zm,n

(r, w, t)

= −jC
∑1

m=−1
Am

Zgm (kr)

Z′
gm (kra)

e j(vnt−gmw),

(7.a)

Eic
r (r, w, t) =

∑1
m=−1

Eic
rm,n

(r, w, t)

= jh0C
kr

∑1
m=−1

Amgm
Zgm(kr)
Z′

gm (kra)
e j(vnt−gmw),

(7.b)

Eic
w(r, w, t) =

∑1
m=−1

Eic
wm,n

(r, w, t)

= Ch0

∑1
m=−1

Am
Z′

gm (kr)

Z′
gm (kra)

e j(vnt−gmw),

(7.c)

where the superscript iC refers to the fact that the fields are the
interaction space fields resulting from cold analysis. In the rest
of the equations of this report, subscripts m and n refer to the
mth space harmonic and to mode number n, respectively, and
Zgm (kr) and Z′

gm (kr) are:

Zgm (kr) = Jgm (kr)−
J ′gm (krc)
Y ′

gm (krc)
Ygm (kr), k = vn

������
m010

√
,

Z′
gm (kr) = J ′gm (kr)−

J ′gm (krc)
Y ′

gm (krc)
Y ′

gm (kr).

(8)

J, J′, and Y, Y′ are Bessel functions and their derivatives. As can be
seen from (7.a) to (7.c), each space harmonic is characterized by a
specific amplitude (Am) and a specific phase velocity around the
interaction space (ẇ = v/gm). The boundary condition for the
electric field at the interface between the side resonators and
the interaction space determines these amplitudes and also the
propagation constant γm:

Am =
�����
mz

1y

∣∣∣∣
∣∣∣∣

√
Nu

p

sin gmu
gmu

,

gm = mN + n m = . . . , − 1, 0, 1, . . . ; n = 0, 1, . . .
N
2
.

(9)

Since we have neglected the higher order modes in the side
resonators, the boundary condition for the magnetic field can
only approximately be satisfied:

∫(2pq/N)+u

(2pq/N)−u

HI
Z(ra, w)radw =

∫−d/2

d/2
Hq

Z(ra)dy. (10)
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Equation (10) results in the following expression which deter-
mines the resonant frequencies of different modes:

∑1
m=−1

Nu

p

sin gmu
gmu

( )2 Zgm (kra)

Z′
gm (kra)

=
������������������
(1y/mz) cot (kxl)

√
if k2x . 0����������������������|(1y/mz)| coth (|kx|l)

√
if k2x , 0

{ (11)

In the next section, an approximate expression for the output
power in SHMs in terms of the EM fields calculated in this section
will be presented.

Formulation of the output power for the meta-material
loaded SHM

Since an effective interaction mainly occurs between the rotating
electrons and the space harmonic which is in synchronism with
these electrons, only this harmonic of the field will be considered
in the beam wave interaction equations. It should be mentioned
that the synchronous harmonic in SHMs is the first backward
harmonic (m =−1), while in classical magnetrons the fundamen-
tal harmonic (m = 0) is the synchronous one. When a convection
current of density �JCm,n flows in an electric field of �Eih

m,n
(superscript

i.e. refers to the fact that the fields are the interaction space fields
and they are resulted from the analysis which takes the presence
of the electron beam into account) with the same frequency
and spatial periodicity (i.e. the same m and n), the complex
power transferred from the electrons to the electric field will be:

Pc = Pe + jPr

= 1
2

∫∫ ∫
�Jcm,n (r, w, t)�E

ie
m,n

∗
(r, w, t)rdrdwdz,

(12)

where Pe means real power that is transferred to the field. It shall
be called the electron power. Pr is the reactive power which flows
back and forth between field and electrons and �Eih

m,n and �JCm,n are:

�Eie
m,n(r, w, t)= Eie

wm,n(r, w, t)âw + Eie
rm,n(r, w, t)âr

= a(t)e j(wf (t)−gmw)(Eic
wm,n(r, w, t)âw + Eic

rm,n(r, w, t)âr),

(13.a)

�Jcm,n (r, w, t)= Jcwm,n
(r, w, t)âw + Jcrm,n

(r, w, t)âr

= a(t)e j(wJ (t)−gmw)(J ′cwm,n
(r, w, t)âw + J ′crm,n

(r, w, t)âr).

(13.b)

In (13.a) and (13.b), a(t), wf(t), wC(t), Jcwm,n
(w, r), Jcrm,n

(w, r),
J ′cwm,n

(w, r), and J ′crm,n
(w, r) are slowly varying functions of time,

and Eic
wm,n

(w, r) and Eic
rm,n

(w, r) are determined using (7.b) and

(7.c). In a similar way, the field components of the side resonators
in the presence of the electron beam can also be written in terms
of the field components resulting from the cold analysis ((4) and
(5)) as follows:

Hqe
z (x, t) = a(t)e jwf (t)HqC

z (x, t), (14.a)

Eqe
w (x, t) = a(t)e jwf (t)EqC

w (x, t), (14.b)

where superscript qe refers to the fact that the fields of the qth side
resonator result from the analysis in the presence of the electron
beam.

Considering the continuity equation for the convection cur-
rent, we have:

∂rJCrm,n
(r, w, t)

∂r
+ ∂JCwm,n

(r, w, t)

∂w
= −r

∂r

∂t
. (15)

Combining (7.b), (7.c), (13.a), (13.b), and (15) with (12) yields

Pc = Pe + jPr

= A−1Ca(t)
2

h0X( cosDw(t)+ j sinDw(t)),
(16)

where Δw(t) is the phase difference between the w-directed elec-
tric field and the convection current, and

X =
∫

g2mZgm (kr)

krZ′
gm (kra)

Jrcm,n
(r, w, t)+ Z′

gm (kr)

Z′
gm (kra)

Jwcm,n
(r, w, t)

( )
dn.

(17)

Considering the energy conservation equation, it can be con-
cluded that [23]:

dUe

dt
= Pe − Ploss − Pout , (18)

where dUe/dt is the time rate of the potential energy variations,
Ploss is the sum of the losses, and Pout means output power.
Since Ploss + Pout = ωnU

e/Ql, where Ql is the loaded quality factor,
relation (18) can be further simplified to read:

dUe

dt
= Pe − vUe

Ql
. (19)

On the other hand, Pr which appears as result of the phase dif-
ference between the electric field and the convection current, con-
tributes to a frequency shift as follows:

Dv = dc
dt

= −Pr
2U

. (20)

From (14), the amplitude of the voltage at the aperture of the
side resonators in the presence of an electron beam is

Ve = h0hrCa(t)d, (21)

where d means width of the side resonators (see Fig. 1(a)).
Considering (6) and (14), Ue reads

Ue = a2(t)UC = a2(t). (22)

Then combining (16) and (22) with (19) results in

2a(t)
da(t)
dt

= A−1Ca(t)h0X cosDw
2

− vna2(t)
Ql

. (23)
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The value of a(t) in the steady state condition (a) can be
calculated from:

a = A−1Xh0QlC cos Dw
2vn

, (24)

where Δw is the steady state value of the phase difference between
the w- directed electric field and the convection current.

Considering the steady state condition (du/dt→ 0) and using
(16) and (24), Pe can be calculated from

Pe = (A−1Ch0X cosDw)2Ql

4vn

= (A−1Ch0X cosDw)2QuQext

4vn(Qu + Qext)
,

(25)

where Qext and Qu are the external and unloaded quality factor,
respectively.

For the non-π operation modes, the stored energy and the
losses in the interaction space are negligible in comparison to
the stored energy and the losses in the side resonators [22].
Therefore the side resonators of the SHM π are modeled with par-
allel resonant circuits as is shown in Fig. 1(b). The stored energy
(U), losses (Ploss), and the unloaded quality factor of the SWS of a
SHM can be calculated using [22]:

Ue = N
2v2

Ve2

L
, (26)

Ploss = N
2
Ve2

R
, (27)

Qu = R
Lvn

, (28)

where L and R are the equivalent inductance and resistance,
respectively, of the side resonators, and Ve is determined using (21).

By combining (26) with (22) and (21), C can be calculated
yielding:

C2 = 2v2
n

N
Lh−2

r h−2
0 d−2. (29)

For the DPS, ENZ (εy→ 0+) and MNZ (μz→ 0+) layers for
which εy and μz are slowly varying function of frequency, the
equivalent inductance and resistance of the side resonators can
be determined using (30) and (31):

L = Ve2

v2
nm0mz

� |Hqe
z |2dn

(30)

Rr = Ve2������������
(vnm0/2s)

√ � |Hqe
z |2ds

(31)

where σ is the conductivity of metal and Hqe
z is the magnetic field

in the side resonators which can be determined from (14.a) under
steady state conditions.

It should be noted that for other types of meta-material which
have been mentioned in the second section, the dispersion effects
cannot be neglected, so that relations (30) and (31) cannot be
used for calculating the equivalent L and Rr.

Evaluating the integrals in (30) and (31) yields:

L = 2dsin2(kxl∂)
v21w10Hl(1+ ( sin (2kxl)/2kxl))

, (32)

Rr = mzm0/1w10d
2sin2(kxl)������������

(vnm0/2s)
√

Hl(1+ ( sin (2kxl)/2kxl)+ (d/l))
. (33)

From (28), (32), and (33), Qu can be calculated:

Qu = vmzm0d(1+ ( sin (2kl)/2kl))

2
������������
(vnm0/2s)

√
(1+ ( sin (2kl)/2kl)+ (d/l))

. (34)

Now using (21), (24), (28), and (29), Ve can be simplified to

Ve = A−1Rt

Nhrd
X cos Dw, (35)

where Rt is calculated from:

Rt = R
Qext

Qext + Qu
. (36)

Now combining (25) with (33), (29), and (28) results in:

Pe = NVe2

2Rt
. (37)

Considering (36) and Qext→∞, the electron power for the
unloaded case PU

e can be calculated using:

PU
e = NVeU2

2Rt
, (38)

where VeU is:

VeU = A−1X
hrd

R
N
cos Dw. (39)

Relation (37) allows a very simple interpretation: the electron
power in the magnetron is equal to the sum of the dissipated
power in the side resonators with an equivalent resistance of Rt.
Although to the best of our knowledge, a detailed extraction of
(37) has not yet been presented in literature, its accuracy in the
case of conventional magnetrons has been examined by numerical
simulations [27].

Now considering (18) and (19) at the steady state condition,
the output power can be calculated:

Pout = 1− Ql

Qu

( )
Pe, (40)

where Pe is calculated using (37).
As is explained in the next section, the bunching process in

magnetrons is governed by the synchronous harmonic of the
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radially directed electric field (Eie
rm,n(r, w, t)). Considering (7.b),

(13.a), (21), and the fact that γm is a large value in SHMs, it
can be concluded that this component is equal to:

Eie
rm,n(r, w, t) =

A−1

hr
Vee j(wf (t)−gmw)

1− (rc/r)
2gm

1+ (rc/r)
2gm

. (41)

From (41) and (39), it can be derived that the maximum ampli-
tude of Eie

m,n is proportional to the product of a term Tg that con-
tains all geometrical and constitutive parameters related to the
SHM, and a term TJ just related to the current flow in the inter-
action space, i.e.:

|Eie
rm,n(r, w, t)|/ TgTJ , (42)

where Tg and TJ are defined by:

Tg = A2
−1Rt

Nh2
r d

, TJ = X cosDw. (43)

This separation of dependencies is of prominent importance
for practical SHM design.

Bunching process and the relation between geometrical
parameters and the current flow

We are in a position now to investigate in detail the dynamics of
bunching and hence of power generation in a magnetron. To this
end we regard an electron beam flowing through the interaction
space, and specify the situation in an arbitrary cross-section. In
this two-dimensional space, the electron beam appears as an
ensemble of spokes due to the effect of bunching. The power gen-
eration procedure reflects itself in the relative positions of e.g. a
single bunch of a clockwise rotating electron spoke-like beam
with respect to the synchronous harmonic of the electric field,
when the phase difference between the current and the electric
field is equal to zero (Δw = 0) so that the magnetron generates
its maximum output power. At this condition, the electrons at
the right and left-hand side of the bunch are affected by equal
but oppositely directed radial components of the synchronous
harmonic of the electric field( + α,− α) and by an equally directed
DC field EDC. Any electron that precedes the bunch due to an

excess in its velocity (υ) will be slowed down according to υ =
(EDC− α)/B, where B is the magnetic field. On the other hand,
any electron that lags the bunch due to its smaller velocity will
experience an increase in velocity according to υ = (EDC + α)/B.
The process of slowing down the fast electrons at the right edge
of the bunch and accelerating the slow electrons at the left edge
explains the formation of the electron bunch. As far as the average
value �E of the electric field which is experienced by the electrons
at the center of the bunch �E (for Dw = 0, it is equal to EDC) is
in appropriate proportion to the maximum variation of the
electric field, which is affecting the electrons 2Ẽ (for Δw = 0, it
is equal to 2α), the electron bunch preserves its phase difference
with the electric field. Now if we increase Ẽ (for example by
increasing the geometrical term Tg), the appropriate proportion
between �E and Ẽ will not exist any longer. A magnetron responds
to this situation by increasing Δw which results in increasing �E to
EDC + (α′ + β′/2) (where α′ and β′ are radially directed compo-
nents of the synchronous harmonic of the electric field). On the
other hand, if we decrease Ẽ (for example by decreasing the
geometrical term Tg), the magnetron restores the appropriate
proportion between �E and Ẽ by decreasing Δw which results in
decreasing �E to Ẽ − (a′ + b′)/2 and effective bunching of the
electrons.

Thus it is shown by an imaginary experiment that tuning the
SHM for optimum output power, simultaneously means estab-
lishing stable operation. Another conclusion is that according to
relations (42) and (43), any change in e.g. one of the geometrical
(or current) parameters can be compensated by an appropriate
change in one of the current (or geometrical) parameters. This
result is of paramount importance for both magnetron design
(namely optimization of the various parameters w.r.t. output
power) and operation. While the former procedure is drastically
simplified (by reducing the simulation work from weeks to days
– or at least from days to hours, if useful initial values are at
hand), the latter feature (i.e. the separation of geometrical from
current parameters within the criterion of stable operation)
shall open a completely new field for magnetron operation: It
seems to be possible to reduce the minimum required cathode
current density down to values which do not mean an appreciable
thermal load for the tube. Hence even CW operation at up to THz
frequencies should be possible for meta-material loaded SHMs,
thus enabling completely new fields of applications: non-pulsed
= CW systems for remote sensing (radars) and communications
(micro-cell radio) etc.

Design examples

The main purpose of this part is showing the positive effect of
loading the side resonators of a magnetron with a large���������
(mz/1y)

√
, i.e., either an ENZ medium or a medium with a large

μz. For this purpose we consider an n = 4 (or π/2)-mode 35 GHz
SHM with ra = 2.25mm, rc = 1.3mm, N = 16, Nθ/π = 0.5. The
length of the side resonators (l ) has been calculated using (11).
Accuracy of this equation has been examined in [28] (Fig. 2)

Combining (37) with (39), and (43), we have:

Pe/(TgTf )
2 (44)

Now the ratio of geometrical term Tg for a conventional magne-
tron versus a metamaterial loaded one Tg(μz, εy)/Tg (1,1) can be
calculated using (43), (36), (34), (33), (9) for the magnetron

Fig. 2. Length of the side resonators for different values of μz and 1y .
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dimensions given in the beginning of this section and for different
pairs of μz, εy as shown in Fig. 3.

As seen in this figure, Tg and as a result the PU
e of an ENZ

loaded SHM can be much larger than that of a conventional
SHM. The positive effect of increasing μz on the electron power
for a tube with normal SWS can also be deduced from this figure.

Future investigations should hence try to explain the mechan-
ism by which the “hot” term part and the “cold” term part of the
electron power will affect each other. Such (possible) effect will
probably establish an upper limit for PU

e (1y , mz)/P
U
e (1, 1). To pre-

pare for corresponding future investigations, the necessary formu-
las have been summarized in the Appendix.

For a complete design of a MTM-loaded SHM, the reader is
referred to [25], the source of the present report. According to
relation (42), the output power can be enhanced by increasing
the factor Tg of the geometrical and constitutive parameters.
This leads to loading the side resonators with an ENZ medium
which in case of a SHM can e.g. be realized by unit cells from
complementary square open loop resonators (CSOLRs). This is
illustrated by a longitudinal section through a 42 GHz magnetron
block depicted in Fig. 4. In total, 16 side resonators are formed by
8 vanes representing CSOLRs and another 8 solid vanes.

All details about design, calculations of resonant frequencies
and effective permittivity and permeability, about the excellent
validity of the effective medium approach, about mode competi-
tion and bandwidth broadening, and about fabrication are dis-
cussed in [25]. In the context of the present paper, a special
discovery is of particular importance: Stable oscillations of this
class of MTM loaded SHMs do even occur at especially low cath-
ode current densities although output power and efficiency
remain on high level. This feature seems to be a unique one. It
cannot be achieved with the conventional SHM, because just
the MTM loaded SHM offers a way to decrease (even drastically)
cathode current and thus the factor TJ in (42), too. Following the
discussion in Sec. IV about how to establish stable oscillations,
such decrease must and can be compensated by an appropriate
increase of factor Tg. This is an inherent feature of MTM loaded
SHMs leading to powerful (and unique) consequences:
Continuous wave (CW) operation should be possible at simultan-
eously interesting (competitive) margins for power and efficiency
whereas any limitation in frequency is just imposed by techno-
logical but not by electro-magnetic requirements. Hence

sub-THz CW sources with power and efficiency well above
those of a BWO seem to be in reach. They had apparently the
potentials to revolutionize many actual and important applica-
tions in various commercial, technical, and scientific fields.

Thus this new class of SHMs defines a new independent class
of high frequency devices which could be called “MTM-SHMs”.

The rising sun-structure alternative

The preceding discussions of MTM-SHM performance have
shown that there do exist stable oscillation regimes at very small
cathode current density so that even CW operation with still
high output power should be possible. One should hence com-
plete the 3 operation scenarios which have been defined and dis-
cussed by McDowell in [27, 29] and in the context of our SHM
investigations in [28] by adding a fourth one. Then they read

(1) Space charge limited operation: Primary emission with max-
imum current, mainly used for industrial heating
applications.

(2) Secondary emission dominated operation: Large current from
cold cathode, very high pulsed power; alternatively, SHM
mode for high frequencies.

(3) Emission limited operation: Small current from a thermionic
cathode, no secondary emission cathode, CW mode just at
low frequencies.

(4) Secondary emission limited operation: Very small current
from cold cathode, potentials for CW mode at even very
high frequencies.

The MTM-SHM is belonging to the fourth scenario. To realize
this mode of operation, the geometrical factor in (42) or – in gen-
eral words – a suitable design of the anode structure have been
utilized to minimize beam current without affecting stability of
oscillations at still high output power. Such a means is not offered
by the conventional SHM in which there is an upper numerical
limit for the synchronous spatial harmonic. (A rigorous analysis
of its SWS yields a limit of <0.42.) Hence conventional SHMs
can only be operated in high current, i.e. in pulsed mode.
However, such limit does not exist in case of a RSM. Invoking
the cathode emission model (see [29]) into Microwave Studio pro-
gram package, it could be shown by simulations that again output
power is proportional to the synchronous Floquet amplitude, but
that there does not exist an upper limit for this amplitude. This is
a first hint that small enough beam current values should be

Fig. 3. Ratio of geometrical term for a conventional and a metamaterial loaded
magnetron.

Fig. 4. Section through a MTM loaded 42 GHz SHM.
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achievable, and that thus CW operation might be in reach with a
RSM, too.

The physical model of the MTM-SHM has explained bunch-
ing process and stability as result of a delicate balance between
the radially directed components of both the electric DC and
the AC field of the first backward harmonic, which must be estab-
lished by “tuning” the geometrical and the current parameters in
(42). Strongly decreasing cathode current in order to establish
CW operation conditions, directly leads to MTM anode structures
which can show high values for both geometrical parameter and
output power. As “soft” alternative to such SWS – although its
positive effect on output power seems to be less strong -, a
rising-sun-like anode also offers the potential for low-current
operation, but at reduced technological complexity. Compared
to the MTM-SHM, the RSM presents a trade-off between high
performance and severe fabrication problems. It is technologically
less challenging.

Hence it is worth investigating theory and features of a RSM in
depth inasmuch as it is an interesting alternative to the SHM. Up
to now, it has just been shown that the RSM output power is lar-
ger than that of the SHM. However, analyzing the known experi-
mental data augmented by simulations by applying the basic ideas
which have been developed in the MTM-SHM model, one can
detect several hints about more and interesting differences to
SHM performance. This is mainly the feature that there seems
to exist kind of a geometrical factor which can be increased with-
out deteriorating stability of oscillations. Instead one observes
maximizing of the synchronous and minimizing of the funda-
mental spatial harmonic at reduced beam current.

The analytical description of the RSM closely follows the
scheme of sections ‘“Cold” analysis of the meta-material loaded
SHM’ and ‘Formulation of the output power for the meta-
material loaded SHM’. The anode block is modeled by an equiva-
lent network in which the side resonators are represented by two
RLC circuits due to that a RSM anode consists of two sets of side
resonators of different radial extension. Their parameters are
determined from both the energy stored and the Ohmic losses.
This means solving Maxwell’s equations for the EM field in the
side resonators and in the interaction space. This analysis also

delivers the amplitudes of the different Floquet harmonics. Both
the equivalent resistance of the side resonators and the amplitude
of the synchronous Floquet harmonic contribute to the geomet-
rical factor of the RSM. The anode model is then used to calculate
the resonant frequencies and to maximize the geometrical term of
the rising sun anode in order to minimize the required cathode
current. The individual terms are expressed by the equivalent
admittance, the Q-factor, the time-dependent electric field ampli-
tude, and the current density of the interaction space, so that the
power balance relation can be solved for the output power.
Prescribing frequency and the dimensions of the interaction
space finally allows to maximize output power with respect to
the dimensions of the anode structure, which is thus optimized.
This analysis finally provides the basis for designing the RSM.

As example, we will search for a secondary emission limited
mode with potential for CW operation. Moreover, we will apply
de-miniaturization in order to meet the requirements of EDM
(Electron Discharge Machining) technology even at frequencies
above 100 GHz, which have up to today just been reached by
the conventional SHM. (In [24], a SHM for 210 GHz has been
described.)

Comparing a RSM with a conventional SHM for equal DC
beam voltage and magnetic guiding field, the RSM shows higher
output power at the sacrifice of doubling the number of side reso-
nators. This disadvantage becomes more and more important for
frequencies beyond 100 GHz as can be concluded from the fol-
lowing estimate: The Hartree Resonance Curve defines the rela-
tion between magnetic field and the beam voltage, which is
directly proportional to the difference between the squared values
of anode and cathode diameters. Furthermore, it is inversely pro-
portional to a wave number g = |mN/x + n| with m denoting the
number of the space harmonic utilized (SHM: m =−1), N
means total number of side resonators, n number of the mode
of operation, and x is a constant (SHM: x = 1; RSM: x = 2).
Mode number n is an integer with value in between 0 and N/x.
Comparison between RSM and SHM for equal dimensions of
cathode and anode (and for the same beam voltage) then yields
that the number of side resonators of the RSM is doubled with
respect to that of the SHM.

Fig. 5. Beam voltage versus magnetic field with boundary curves for a magnetron at 35 GHz for an (a) conventional SHM (left) and (b) RSM with enlarged anode
(right).

1315International Journal of Microwave and Wireless Technologies

https://doi.org/10.1017/S1759078723000065 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078723000065


As numerical example, let us choose a frequency of operation
of 95 GHz. The optimum anode diameter then is 3.8 mm and the
number of side resonators of the SHM is N = 28, leading to an
opening width of the side resonators of 0.3 mm. For the RSM
then holds N = 56 and opening width equal to 0.15 mm. This
value is still within the scope of the usual technological tool of
EDM. However, at still higher values of the frequency, e.g. at
140 GHz, electric field breakdown in vacuum and the necessity
to change the method of fabrication are slowly arising and should
influence design and technology. As a consequence, it is desirable
– if not even necessary – to find solutions which counteract the
problems of miniaturization which arise at increased frequencies.
This is of special importance for the RSM with its large number of
side resonators. A suitable means for de-miniaturization is enlar-
ging the dimensions in a way that the opening width of the side
resonators of the RSM equals that of the SHM.

The number of side resonators of the RSM is twice that of the
SHM. If the following parameters of both are kept equal: opening
width at the periphery of the interaction space, frequency, mode
of operation, and space harmonic, then both the cathode and
anode diameters which define the interaction space, must be
doubled. Because of the quadratic dependence between beam
voltage and both diameters, this means a fourfold increase of
that voltage.

To illustrate the situation by an example, let us regard a con-
ventional SHM at frequency of 35 GHz, an anode diameter of
4.5 mm, and a cathode diameter of 2.6 mm. The corresponding
relation between beam voltage and magnetic guiding field has
been depicted in Fig. 5(a). Stable operation ranges are limited
by the regime between the Hartree Resonance Curve and the
Hull Cut-Off Parabola. A typical operation point has been
denoted by a black square (at a beam voltage of about 11 kV).
Next, we will regard an RSM designed for same mode of oper-
ation, space harmonic, and frequency but with both the anode
and the cathode diameters doubled (which now are 9 and 5.2
mm, respectively). The opening width of the side resonators is
still the same, but the necessary beam voltage has to be increased
by a factor of 4. This has been illustrated by Fig. 5(b) showing a
voltage value of the operation point (square) of almost 45 kV.
Such high value will exclude this magnetron oscillator from
many technical applications. However, there seems to exist a
way out of such dilemma. One could look for an operation
point in the lower part of the regime between both limiting
curves. An example has been marked in Fig. 5(b) by a red dot.
If such operation point at beam voltage of just 6–7 kV and a mag-
netic field of just 200 kG allows stable operation, an important
step toward realization of a sub-THz magnetron has been done.

Another means for de-miniaturization is operating the RSM at
a forward harmonic, for instance at the first one. Starting point of
a discussion is the formula for the wave number: g = |mN/x + n|
which is evaluated for a SHM with m = −1 and n =N/4 and an
RSM with m = +1 and the same n =N/4. The wave numbers for
both devices then are identical: g = 3N/4. Hence operating the
RSM at the first forward harmonic would avoid doubling the
number of side resonators. It is hence worth to investigate its fea-
tures in more detail.

In summary: Both means proposed above – widening the res-
onance structure and operating at a forward harmonic – show a
realistic potential for very low current CW operation. They will
probably present a “soft” (with respect to both electrical perform-
ance and technological requirements) alternative to the more
complex MTM-SHM. Two steps are still to be done: theoretical

investigations and fabrication of prototypes. The tools – the phys-
ical description of secs. II and III and EDM technology – are at
hand.

Conclusion

This paper is an extension and a generalization of studies about
the meta-material loaded SHM – called MTM-SHM -, which
had been published in [25]. A physical design theory is thor-
oughly derived which – besides showing excellent accuracy
w.r.t. simulations with CST Microwave Studio – offers two
important advantages: Most of its results are presented by analyt-
ical closed-form expressions, and the basic design criterion, for
instance maximized output power, appears as product of two fac-
tors: one of them just containing geometry and constitutive para-
meters, the second one just beam current parameters. Hence any
design procedure can be based on direct physical insight and on
easy and fast evaluations of formulas. Thus the design effort will
greatly be reduced in comparison with today’s commercial tools.
This feature is demonstrated with several examples taking e.g.
mode competition or broadening of the frequency range into
account.

Special focus is put on a deep discussion of stability of the
oscillations, in particular with respect to lowering the beam cur-
rent density and thus the thermal loading of the device. Totally
different from the conventional SHM (and from the classical
magnetron), the MTM-SHM offers stable oscillations with still
interesting (probably even superior) margins for output power
and efficiency because of the consequences of the product relation
described above: Increasing the “geometry factor” for maintaining
high output power can be compensated by decreasing the “current
factor” appropriately thus re-establishing stability. Moreover, this
low-current efficient operation mode is almost independent of
frequency so that any upper bound in frequency is exclusively
defined by the limits of fabrication technology. The existence of
this low-current mode most probably means that a MTM-SHM
shows potential for CW operation, a unique feature of this class
of magnetrons.

Finally, the investigations are extended to encompass the RSM.
It is characterized as “soft alternative” to the MTM-SHM. Instead
of MTM loading, it shows twice as many side resonators com-
pared to a conventional SHM. To counteract this feature in
order to arrive at almost equal technological requirements for
both conventional SHM and RSM, two means are briefly dis-
cussed: an RSM employing the first forward spatial harmonic
and an RSM with an appropriately widened resonance structure.
Interestingly both versions allow low-current and thus CW oper-
ation but with reduced output power compared with the
MTM-SHM. Hence such a RSM can be regarded as first step
toward a MTM-SHM showing similar performance but at a quan-
titatively reduced level, however, associated with soft requirements
to technology.

In summary: A new class of SHMs with the potentials to CW
and sub-THz operation has been described, and a physically lucid
design theory has been derived. Several interesting and unique
features have been outlined. The device is waiting now for deeper
investigations.
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Appendix

Here is a list of formulas for studying the interdependence between “hot” and
“cold” term parts of the electron power.

Vcold = C|hr |h0d

Vhot = C|hr |h0da

= |hr|h2
0d

A−1XQlC2 cosDw
2vn

= |hr|h2
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0 d−2 cosDw
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n
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L cosDw
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Hl(1+ ( sin (2kxl)/2kxl)+ (d/l))

(A.2)
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