A Note on Convergence Factors

By C. E. WALSH

(Received 22nd May, 1950.)

Suppose that $u_n \ge u_{n+1} > 0$, for n = 1, 2, ... and that $e_1, e_2, ...$ are factors which make $\sum e_n u_n$ convergent.

Let $\sum_{r=1}^{n} a_r = A_n$, where all the *a*'s are positive, $\sum a_n$ diverges, and $A_{n+1} = O(A_n)$. Define E_n by the equation

$$A_n E_n = \sum_{1}^{n} e_r.$$

For the case where $a_n = 1$ it has been shewn by Fuchs¹ and Karamata¹ that, under various conditions, $E_n = o(1)$. The object of this note is to extend some of their results.

Let $S_n = \sum_{1}^{n-1} e_r u_r = S + \theta_n k_n$, where $k_n > 0$, $S_i = 0$.

With the above notation

$$e_n u_n = S_{n+1} - S_n,$$

and so

$$E_n = \frac{1}{A_n} \sum_{1}^{n-1} \left(\frac{1}{u_r} - \frac{1}{u_{r+1}} \right) k_{r+1} \theta_{r+1} + \frac{k_{n+1} \theta_{n+1}}{A_n u_n}.$$

Hence by the Toeplitz-Schur theorem we have

Let $k_n > 0$ (n = 1, 2, ...). Then in order that $E_n = o(1)$ for every sequence (e_n) for which $\theta_n = o(1)$ [or O(1)] it is necessary and sufficient that

$$\frac{1}{A_n} \sum_{1}^{n-1} \left(\frac{1}{u_{r+1}} - \frac{1}{u_r} \right) k_{r+1} + \frac{k_{n+1}}{A_n u_n} = O(1) \text{ [or } o(1)].$$
(1)

It follows immediately from this that if

$$\gamma_n = \frac{k_n}{A_n} \left(\frac{1}{u_n} - \frac{1}{u_{n-1}} \right) \leqslant B_n - \frac{A_{n-1}}{A_n} B_{n-1} \tag{2}$$

¹ W. H. J. Fuchs, Proc. Edinburgh Math. Soc. (2), 7 (1942), 27-30; J. Karamata Journal London Math. Soc., 21 (1946), 162-166.

where $0 < B_n < \infty$, and if in addition

$$\frac{k_{n+1}}{A_n u_n} = O(1), (3)$$

then $E_n = o(1)$. Since $A_{n+1} = O(A_n)$, (3) is true if

$$\frac{k_n}{A_n u_n} = O(1). \tag{4}$$

We now enumerate three choices of k_n which will satisfy (2) and (4), and for which, accordingly, $E_n = o(1)$.

[A]. Assume that k_n satisfies (4) and also

$$1 - \frac{u_n}{u_{n-1}} \leqslant \lambda \left(1 - \frac{k_{n-1}}{k_n} \frac{u_n}{u_{n-1}} \right), \tag{5}$$

 λ being a positive constant.

Then
$$\gamma_n \leqslant \lambda \left(\frac{k_n}{A_n u_n} - \frac{A_{n-1}}{A_n} \cdot \frac{k_{n-1}}{A_{n-1} u_{n-1}} \right),$$

and so (2) is also satisfied.

A case of this kind occurs when $k_n = v_n u^{\alpha}_n$ where $v_n \leq v_{n+1}$ for $n = 1, 2, ..., 0 \leq \alpha < 1$ (the inequality (5) being satisfied with $\lambda = 1/(1-\alpha)$), and $v_n u_n^{\alpha-1}/(A_n) = O(1)$.

The special case where $v_n = (n-1)^{\beta}$, $0 \leq \beta < 1$, was proved by Karamata.

[B]. Let us assume now that $k_n/(A_n u_n) < K$, a constant, and that

$$\frac{k_n}{A_{n-1}A_n \cdot u_{n-1}u_n}$$

steadily decreases.

This gives

$$\begin{split} \gamma_n &< \frac{k_n}{A_n u_n} - \frac{A_{n-1}}{A_n} \frac{k_{n+1}}{A_{n+1} u_{n+1}} \\ &< \left(2K - \frac{k_{n+1}}{A_{n+1} u_{n+1}} \right) - \frac{A_{n-1}}{A_n} \left(2K - \frac{k_n}{A_n u_n} \right) \end{split}$$

and so (2), also, holds good.

The conditions required here are fulfilled if, e.g.,

$$k_n = A_{n-1} A_n u_{n-1} u_n \Big/ \sum_{1}^{n-1} a_r u_r.$$

Karamata proved this with $a_n = 1$.

[C]. Let
$$k_n = A_{n-1}u_{n-1}$$
, where $u_{n-1}/u_n < K$, a constant.

Then (4) is satisfied, and

$$\gamma_n = \frac{A_{n-1}}{A_n} \left(\frac{u_{n-1}}{u_n} - 1 \right)$$

Using an inequality employed by Karamata we have

$$\frac{u_{n-1}}{u_n} - 1 < \frac{u_{n-1}}{u_n} \log \frac{u_{n-1}}{u_n} < K \log \frac{u_{n-1}}{u_n}.$$

Consequently

$$\gamma_n < K \frac{A_{n-1}}{A_n} \log \frac{u_{n-1}}{u_n} = K \left(\frac{\log \alpha_n}{A_n} - \frac{A_{n-1}}{A_n} \frac{\log \alpha_{n-1}}{A_{n-1}} \right)$$

where $\alpha_1 = 1$, $\alpha_n = u_1^{a_1} u_2^{a_2} \dots u_{n-1}^{a_{n-1}} u_n^{-A_{n-1}}$, n > 1.

Accordingly (2), also, will be satisfied if

$$\alpha_n^{1/A_{n-1}}=O(1).$$

When $a_n = 1$ this is so if $u_n = O(u_{2n})$ [when, a fortiori, $u_{n-1} = O(u_n)$, as is easily shewn]. This case was given by Karamata.

Finally, let $k_n = a_n u_n$, where $u_n > 0$ still, but no longer necessarily decreases.

Let $\theta_n = O(1)$ and

$$1-u_n/(u_{n-1})=b_n\,\epsilon_n$$

where $b_n > 0$ (n = 2, 3, ...) and $\epsilon_n \rightarrow 0, b_n \epsilon_n = O(1)$.

Assume now that $A_n = \sum_{r=1}^{n} a_r b_r \rightarrow \infty$, and that

$$A_{n+1} = O(A_n), \quad a_{n+1} = o(A_n). \tag{6}$$
$$\gamma_n = \frac{a_n b_n}{A_n} \epsilon_n.$$

Then

$$\frac{k_{n+1}}{A_n u_n} = \frac{a_{n+1}}{A_n} (1 - b_{n+1} \epsilon_{n+1}) = o(1) \text{ from (6)}$$

since $b_{n+1} \epsilon_{n+1}$ is bounded.

The conditions of (1), for the case where $\theta_n = O(1)$, are now easily seen to be fulfilled, and so $E_n = o(1)$.

If $u_n \ge u_{n+1}$ always, the restriction $A_{n+1} = O(A_n)$ can be dispensed with here.

Writing $a_n = b_n = 1$ we obtain a result given by Fuchs.

I am indebted to the referee for several suggestions.

TRINITY COLLEGE, DUBLIN.

156