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For a large class of C'-algebras including all von Neumann algebras, the central Haagerup tensor product of
the multiplier algebra with itself has an isometric representation as completely bounded operators.
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1. Introduction

In an unpublished paper [25], Haagerup introduced a cross-norm on the algebraic
tensor product of C*-algebras which was named the Haagerup norm \\-\\h by Effros and
Kishimoto in [17]. During the elaboration of the theory of (multilinear) completely
bounded operators on operator spaces, this norm emerged to be a fundamental device,
in particular in cohomology theory, and it is distinguished by several extraordinary
features amongst them the injectivity of the Haagerup norm and the commutant
theorem for the Haagerup tensor product; see e.g. [1, 7, 8, 9, 12, 13, 14, 17, 18, 38, 40],
as well as the recent work on Morita theory for operator algebras by Blecher, Muhly
and Paulsen.

The Haagerup norm is designed to allow a canonical representation of the tensor
product as completely bounded operators. It is shown in [25] that the mapping

9: B(H) ®hB(H) -> CB(K{H)), 9{a ®b) = LaRb

is an isometry, where K(H) and B(H) denote the C*-algebras of compact and all
bounded linear operators on a Hilbert space H, respectively, and CB(K(H)) is the
Banach algebra of all completely bounded linear operators on K(H). When K(H) and
B(H) are replaced by an arbitrary C*-algebra A and its multiplier algebra M(A),
respectively, 6 need no longer be injective, but it was observed in [32], see also [30],
that ker 9 = {0} if and only if A is prime. In fact, in this case 9 still is an isometry which
was proved by the second-named author, but again not published, cf. [31]. Recently,
Smith rediscovered Haagerup's result independently [39], and Chatterjee and Sinclair
obtained the isometric property of 9 for von Neumann factors on separable Hilbert
spaces using several non-trivial results on injective subfactors [10]. In the sequel,
Chatterjee and Smith introduced the notion of a central Haagerup tensor product and
showed that 9 induces an isometry 9Z on this one, if A is a von Neumann algebra or a
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162 P. ARA AND M. MATHIEU

unital C*-algebra with Hausdorff spectrum [11]. They also provided an example of a
C*-algebra such that 6Z is injective, but not isometric.

If we aim for an isometric representation of the central Haagerup tensor product, we
first of all, of course, have to guarantee that 0Z is injective. This amounts to solving
operator equations of the form £" = 1 LajRbj = 0 with al,...,an,bl,...,bn'm M(A). To do
this, we appeal to the C*-algebra Mloc(A) of local multipliers of A since this is the
C*-analogue of the symmetric ring of quotients QS(R) of a semiprime ring R, studied
and used in particular by Kharchenko [26, 27] and Passman [34], whose elements can
be viewed as 'generalised fractions'. With their aid we can determine the kernel of 9 for
an arbitrary C*-algebra.

Like in ring theory, it often suffices to add the central elements of Mioc(A) to the
C*-algebra A by passing to the bounded central closure CA. This, for example, has
fruitfully been exploited in obtaining a complete description of all centralising additive
mappings on C*-algebras [5]. If A is boundedly centrally closed, that is CA = A, then
everything takes place within the C*-algebra itself (or rather the multiplier algebra, if A
is non-unital). For these C*-algebras, we therefore obtain the isometric representation of
the central Haagerup tensor product (Theorem 3.7). Since von Neumann algebras are
very easily seen to be in this class of C*-algebras, we recover the result by Chatterjee
and Smith without further effort.

2. Prerequisites

Throughout A will be a C*-algebra and A ® A denotes the algebraic tensor product
of A with itself. We start by compiling a few facts on the Haagerup norm. If u e A <g> A,
then

= inf Z _ *
j=i

1/2 • ' I

where the infimum is taken over all representations of u. From now on, we shall
consider each tensor product (over C) of a C*-algebra with itself as a normed space
endowed with |-||h.

Let n be a (non-degenerate) representation of A in B(H). By abuse of notation, we
write 7t for the representation n ® n of A ® A in B(H <§ H), too. Since || • ||*^ || • m , , the
maximal C*-tensor norm [25], we have that ||ti||k^||n(u)||. Another easy computation
shows that ||u||h^||7t(«)||h, whence n is a contraction from A ® A into B{H)®B(H).
(Note that, by the injectivity of the Haagerup norm [35, Theorem 4.4], see also [7,
Theorem 3.6], ||rc(")||* is the same in n(A) <g> n(A) and in B(H) <g> B(H).) This leads to the
following observation.

Lemma 2.1. / / J is a closed ideal in A® A such that J £ kern, then the induced
homomorphism %y.A ® A/J ->B(H) ® B(H) is a contraction.

In the sequel, J will always denote the ideal generated by az<g)b — a®zb, a, be A,
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zeZ(A) (the centre of A). Then, the tensor product A®Z{A)A as Z(i4)-bimodules is
nothing but A <8> A/J. If J is closed, we define the central Haagerup tensor norm on
A®ZiA)Aby

1/2 11/2

= 1
u=

where the infimum is taken over all representations of ueA®Z(A)A in A®Z(A)A. A
moment's reflection yields the following, which in particular implies that ||-||z* is a
norm.

Proposition 2.2. The central Haagerup norm coincides with the quotient norm in
A <g> A/J.

Let n be an irreducible representation of A. Since n(Z(A)) £ C, we clearly have
rc. Consequently, from Lemma 2.1 and Proposition 2.2 we conclude:

Proposition 23. For each ueA®Z{A)A we have \^zh^sapK\(ii{u)^h, where the supre-
mum is taken over the set lrr(A) of all irreducible representations of A and, in order to
simplify the notation, we write n instead ofnj=(n® n)j.

One of the main goals of the next section will be to establish the reverse inequality for a
large class of C*-algebras, including all von Neumann algebras.

Remark. In [11], Chatterjee and Smith define the central Haagerup tensor product
A®ZhA by first completing the tensor product with respect to the Haagerup norm ||||fc

and then taking the quotient by the closed ideal generated by az®b — a®zb. If J is
closed in A® A, then the completion of A®ZiA)A is clearly isomorphic to A®zhA
wherefore we will identify these two spaces henceforth. Generally, it suffices and may be
simpler to work in the uncompleted space.

We extract the following important observation from Lemma 2.3 and the proof of
Theorem 2.4 of [11].

Lemma 2.4. Let A be a C*-algebra and u = £ " = 1 a,- ® bs,e A ® A. For each e>0,
there exist invertible nxn-matrices Sl,...,Sp such that for every nelrr(A) with \\ii(u)\\h^
1, there is i e {1,..., p} satisfying .

max \\\(n(al),...,n(an))Sr1\\,

Recall that a linear operator T:A-*A is called completely bounded, if there is a real
number majorising each of the norms ||Tt||, fceN where

Tk: A (g) Mk -+ A <g> M k , Tk = T ® 1;

in this case, ||r|L()=supt||Ttll is the completely bounded norm of T. (Here, of course,
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A ® Mk is endowed with its unique C*-norm.) The Banach algebra of all completely
bounded operators on A will be denoted by CB(A).

Let M(A) be the multiplier algebra of A. There is a canonical way to consider the
elements of M(A) ® M(A) as completely bounded operators on A via

6:M(A)®M(A)^CB(A), 0(a®b) = LaRb

where La, Rb is the left resp. right multiplication by a resp. b. Let u = £"= t a,- ® bj. Then

(aj®l)x(bj®l)\\

11/2n

=
n

V *
7 d -d-

i—t J J

1/2 n

•?i b*

1/2

1/2

for all xeA ® Mt. Hence, ||0(u)[|cb^||u||k and since ./Skerfl, we have an induced map 9Z

on M(A)®Z(mA))M(A), whenever the ideal J is closed. We summarise this in the
following statement.

Proposition 2.5. For every C*-algebra A such that J £ M(A) ® M(A) is closed, the
Z(M(A))-bimodule homomorphism 9Z: M(A) ®ZiM(A)) M(A) -* CBZ(A) is a contraction,
where CBZ(A) denotes the completely bounded Z(M(A))-bimodule maps on A.

Remarks. 1. Replacing M{A)®M(A) by M(A) ® M(A)op, where op denotes the
opposite algebra, we have an algebra homomorphism 6Z into CB(A). However, this
additional structure will not be needed in the following.
2. Dropping the assumtion that J is closed, we, of course, still have a contraction
0z:M(A)®ZhM(A)^CBz(A).

The special case A = B(H) was first treated in [25, Theorem 6], and independently
rediscovered in [39, Theorem 4.3]; see also [10, Corollary 2] and [13, Corollary 6.2].

Proposition 2.6. If A = B(H), then 9 = 6Z is an isometry.

In the next section, we will reduce the general case to this particular situation, and to
this end we need the notion of the local multiplier algebra and the bounded extended
centroid. Recall that M(A) is the largest C*-algebra in which A is an essential closed
ideal. Hence, if / , , / 2 are essential closed ideals in A and / 2 S / i , we get an embedding
of Af(/J into M(/2) by "restricting the multipliers". The algebraic inductive limit of this
directed system of C*-algebras and "-isomorphisms is denoted by Qb(A) and called the
bounded symmetric algebra of quotients of A. Its completion, Qb(A) ='™ M(/) is the local
multiplier algebra Mloc(A) of A. This construction, under the name "essential multip-
liers", apparently was first pursued by Pedersen and Elliott who used it to obtain
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innerness of derivations and *-automorphisms [36, 19]. Recently, a thorough investi-
gation of its structure was started by the present authors [2, 3, 4, 33] leading to the
fundamental result that Z: = Z(Mloc(X)) is the closure of Cb: = Z{Qb(A)), the latter being
called the bounded extended centroid of A [4, Theorem 1]. One of the useful properties
of Z is that it is an A W*-algebra [4, Corollary 1].

We define the bounded central closure CA of A by cA = ACb, which is a C*-subalgebra
of Mloc(y4). This is the C*-analogue of the central closure of a semiprime ring (cf. e.g.
[34]). The C*-algebra A is boundedly centrally closed if CA = A. These C*-algebras will
be of the main interest to us, and therefore we give a number of equivalent
characterisations as follows.

Proposition 2.7. The following conditions on a C*-algebra A are equivalent.

(a)
(b)

(c)

(d)

(e)

(0

CA = A;
ACb = A;
CM (A) = M

M(A)Cb =.

Z(M(A)) =

Z(M(A)) =

Proof. Note at first that, since A is an essential ideal of M(A), Qb(M(A)) = Qb(A)
whence Mloc(M(A)) = Mloc(A) and Cb(M(A)) = Cb{A) = Cb. Also, Cb £ Z(M{A)Cb) always
holds, wherefore Z £ Z(CM(A)) by the local Dauns-Hofmann theorem [4, Theorem 1].

Trivially, (b)=>(a) and (d)=>(c), and (f)o(e) follows from Z = Cb. If
 CM(A) = M{A),

then Z(cM(A))=Z(M(A))zCb which proves (c)=>(f). It is clear that (f)=>(d) and
(f)=>(b). In order to obtain the final implication (a)=>(c), we use that CA is an essential
ideal in CM(A) proved below (Lemma 2.8). Consequently, CM(A) £ M(CA) but CA = A
implies then that CM{A) £ M(A) and the reverse inclusion is obvious. •

Lemma 2.8. For every C*-algebra A, CA is an essential closed ideal in CM(A).

Proof. Clearly, cA is a closed ideal in CM(A). If L is a non-zero ideal in CM(A) and
ZBL, ||Z|| = 1, then there is yeM(A)Cb such that \\z —y\\<i- Write y=Y,ixici with
XieM(A) and Cj€Z(M(K)) for some essential closed ideal K of A (using that
Cb=2!iii5Z(M(/)) [2, Proposition 2.2]). Then yeM(K) and ||.y||^i yield an element
xeK, \\x\\ = l such that ||xj>||^i From | |xz-xy | |< i it follows that | |xz| |^i and,
moreover,

xzeLn KM(A)Cb ^Ln KM{A)Cb c

finally shows that L intersects CA non-trivially. •

We write A for the primitive spectrum of A endowed with its natural topology. In
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addition to the algebraic descriptions above, we have the following topological
characterisation of boundedly centrally closed C*-algebras.

Proposition 2.9. A C*-algebra A is boundedly centrally closed if and only if A is
extremally disconnected.

Proof. It is well-known that a topological space is extremally disconnected if and
only if every bounded continuous complex-valued function on a dense open subset can
be uniquely extended to a bounded continuous function on the whole space (see, e.g.
[23, 1.H.6]). The dense open subsets of A are of the form /, where / is an essential
closed ideal of A. Thus, using the Dauns-Hofmann theorem, A is extremally discon-
nected if and only if Z(M(I)) = <gb(f)=Vb(A) = Z(M(A)) for all essential closed ideals,
which in turn is equivalent to Cb=Z(M(A)) by [2, Proposition 2.2]. From Proposition
2.7 we therefore conclude that A is extremally disconnected if and only if CA = A. •

Remark. If Z(M(A)) = Z, then the Stone-Cech compactification /L4 of A is extre-
mally disconnected since Z is an AW*-algebr&. However, this is not sufficient for A
being boundedly centrally closed, cf. [4].

The following examples illustrate that a boundedly centrally closed C*-algebra is
either rich in central projections or is very non-commutative.

Examples 2.10. (a) Every /4W*-algebra A is boundedly centrally closed, in fact
A = Mloc(A) [5, Proposition 3.3].

(b) Mloc(A) is boundedly centrally closed [4, Theorem 2].

(c) CA is boundedly centrally closed (Proposition 3.10 below).
(d) Every prime C*-algebra is boundedly centrally closed; in this case, Cb^C [32,

Proposition 2.5].

3. Main results

Our first aim in this section is to determine the kernel of 6 for an arbitrary
C*-algebra A. As pointed out in the Introduction, ker 6 = {0} if and only if A is prime
[32, Corollary 4.4]. The special cases A = B(H) and A = C(H), the Calkin algebra on a
separable Hilbert space H, had been treated before in [22]. Our main tool here is the
bounded extended centroid Cb of A (this is already reminiscent in [32]), which is the
C*-analogue of the extended centroid C of a semiprime ring (see [27]).

The following lemma, known in the case of von Neumann algebras, see, e.g. [28,
Lemma 2.1], requires some technical, but purely algebraic effort (mainly a thorough
study of the /1-subbimodules of A"), and we therefore merely cite it from [6]. For
a1,...,an,b1 bneM(A) we will use the following notation

A<
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and u=YJ= i Oj ® bj will be abbreviated as u=a ® 'b.

Lemma 3.1. An element u=a® 'beM(A) ® M(A) belongs to ker# if and only if there
exists a projection p e Mn(Cb) such that ap = a and p'b = 0.

We may consider CM{A) as a Z-bimodule since ZCM(A) = CbM(A)Cb £
 CM(A). If

ueM(A) <g> M(A), then uz denotes its image in CM(A) ®Z
CM(A).

Proposition 3.2. For every C*-algebra A we have ker0 = {u|uz=O}.

Proof. If u = a®% then, by Lemma 3.1, 0(u) = O if and only if ap=a, p'b = O for
some projection p e Mn(Cb). As a result, uz = a <g)z 'b = ap ® z 'b = a ® z p'b = 0.

Conversely, we can extend 0 to ce:cM(A)®cM(A)-*CB(cA), since CM(X)£M(CA) by
Lemma 2.8, such that 0(u)=O if and only if c0(u) = 0. Thus, uz = 0 implies that
0=C0z(uz)=

C0(u), i.e. u e ker 6. •

Since Z is an /4W*-algebra, every normal element in Mn{Z) can be diagonalised by
[16, Corollary 3.3], see also [24, Theorem 3.2]. We therefore can describe elements in
ker0 in more detail. If peMn(Cb) is a projection with ap = a and p'b=O, there exists a
unitary veMn(Z) such that p' = i>*pi>=diag(pi p'n) where p}eZ are projections.
Putting a' = av, 'b' = v*'beMn(

cM(A)) we have a'p' = a' and p"b'=0, that is, p'ja'j=a'j and
p}b} = 0 for all l^j^n. Moreover,

a' <g>z 'b' = au ® z J;* 'b = aw* ® z 'b = a ® z 'b.

Hence, if YJ=I ajxbj=0 for all x (i.e. u = a <g> 'fe e ker 6), then a and 'b, respectively, can
be written as a=a'v* and 'b = v'b', respectively, for some unitary veMn(Z) such that
a'jXb'j=0 for all x and all 1 g j^ / i .

Corollary 3 J. Letu = a®'be M(A) <g) M (/4) fee such that {bu...,bn} is Z-independent.
Then 0(u) = O if and only if a, = 0 for all 1 g ; gfi.

Proof. If p=(pl7)eMn(Z) is a projection such that ap = a and p'b=0, then
Z"=iPiA=0 f°r a " I g ' g " together with the Z-independence yields that p,v=0 for all
i,j. Hence, aj=0. D

Corollary 3.4. Let A be boundedly centrally closed. Then ker0=J and therefore 6Z is
injective.

Proof. The assertion is immediate from Proposition 3.2 since Z(M(A)) = Z by
Proposition 2.7. •

As a consequence, the ideal J is closed for boundedly centrally closed C*-algebras so
that Proposition 2.5 applies.
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Our next aim is to show that 9Z is in fact an isometry, if A is boundedly centrally
closed. This will be done in two steps.

Theorem 3.5. Let A be a boundedly centrally closed C*-algebra. For every ueM(A) ® z

M(A) we have \\u\\Zh=supn\\n(u)\\h, where the supremum is taken over all irreducible
representations of A.

Proof. Every nelrr(A) can be extended to an irreducible representation of M(A),
again denoted by n (since all extensions are equivalent [37, 4.1.11], it is irrelevant in the
following which extension we take). By Proposition 2.3, ||u||2h^supn||7t(u)||A whence it
suffices to conclude from SUPK||TI(U)||A^ 1 that, for every e>0, there is a representation of
u in M(A) <S>z M(A) whose norm is at most (1 +e)2.

Let e>0 and u = a®z'b. By Lemma 2.4, there exist invertible matrices Sl,...,SpeMn

such that for each n there is ie{l,...,p} satisfying maxll^cS,"1)!!, ||7tn(S,'fe)||}gl +e.
Define £,:i->R+ by gI(O = max{||7rn(aSr1)||,||7rn(S1'fc)||} if t = kernnA. Then, g, is
lower semi-continuous [37, 4.4.6 and 4.4.7], hence Ui=gi'l(l +e, oo) is open. Since
f]f=i Uj = Q and A is extremally disconnected by Proposition 2.9, f)i=lOi = Q wherefore
{Vi\l^i = P} with V^AXUi forms a covering of A by closed and open subsets. Put
W1 = V1 and Wj=K,n f)!=i 0, for 2g igp . Then {W;| l ^ i g p } is a family of pairwise
disjoint closed and open subsets such that Wt £ Vt and A = \Jf=1 W{ as

A = Vt u U1 = Vx u (Ut n (V2 u U2))

= F 1 u ( F 2 n i 7 1 ) u ( i 7 1 n 0 2 )

Let /,- be the closed ideal of A corresponding to W{; these are pairwise orthogonal,
and It+ ••• +IP = A. Denoting by e, = c(/,) the central supports of/, in Cb, we thus have
£f=i e, = 1, and efeZ(M(y4)) since >4 is boundedly centrally closed. Hence

p p p

u = u £ e, = X aSf * c.- ®z e,S,'b= X aSf' c, ® z e*Vfc

yields a representation u = a '®z 'b ' with a' = J]f=1 aSf 1eI,'ft'=^f=1clkSk'fc. Denoting the
entries in the first row of a' by a\,...,a'n we have

I a'ja'j*

= sup X
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where ker n n A e Wi{n)

since Wi(n) £ Vi(n) ^gi(^[0,1 +e] by construction.
Similarly, ||'b'||gl + e and thus ||a'||||'ft'||^(l + e)2, i.e. u = a'®z'b' is the desired

representation of u. •

In the second step we will now describe the cb-norm of the operators in
6(M(A) ® M(A)) via irreducible representations. We denote this subalgebra of CB(A) by
8t{A); its elements are called elementary operators on A. Both spectral and structural
properties of elementary operators have been thoroughly studied during the past
decades, cf. [15] and [21], but little seems to be known on the norm of such operators.
As a consequence of our results, we will obtain a description of the cb-norm of an
elementary operator on an arbitrary C*-algebra. The ideas exploited follow the same
lines as in calculating the norm of a two-sided multiplication MaJ>: = LaRb in [29,
Corollary 4.9].

Let Se$((A\ Since S = YJ=i Majibj for some au...,an,bu...,bneM(A), for each keN
we have that Sk=Yj=iM(aj)Abj)e&J(Mk(A)) where (a,) respectively (bj) denote the /cxfc
diagonal matrices with ai respectively bj along the diagonal. If (n,H) is a (non-
degenerate) representation of A, then (n, H) denotes its ultraweakly continuous extension
to A** [41, III.2.2]. Since kern is S-invariant, we obtain an elementary operator S, on
n(A) via Sn o 7t = 7t o S. This one can be extended to the ultra weak closure K(A)" to obtain
SK satisfying Snoji = noS**; simplifying the notation we write Ss instead. As a
consequence of the Kaplansky density theorem, one has equality of the unit balls
n(A)'l = n(Ar). Consequently, ||Sn||g||S,||g||S**|| = ||S||.

In extending this to k x fc-matrices we use the identifications Mk(M(A)) = M(Mk(A)),
Mk{A**) = Mk(A)**, (n)k = rk = :nk, and

Mk(n(A)") = Mk(n(A**)) = nk(Mk(A**)) = nk(Mk(A))"

from which (Sn)k=(Sk)nk = :SKk and (5,)4=(5»)^ = :Sfc follow. Consequently, H S J I ^ H S J
^||Sf*|| = ||Sk|| forallfceN.

Finally, we appeal to the fact that the reduced atomic representation (nf, H") of A is
faithful [37, 4.3.11], whence HS^I^ I IS^I^ I ISJ I I for all k. Taking all this together yields
the following result.

Theorem 3.6. For each elementary operator S on a C*'-algebra A and all fceN we
have that ||St|| = supK||SSlc|| and hence ||S||(.6=suplt||Si||cl,, where the supremum is taken
over all irreducible representations of A.

Proof. The second statement is immediate from the first. By the above inequalities,
we obtain ||Sfc|| ̂  sup,, HŜ IJ. For the reverse inequality note that in order to calculate the

https://doi.org/10.1017/S0013091500018782 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018782


170 P. ARA AND M. MATHIEU

norm of a k x fc-matrix via irreducible representations, it suffices to use the irreducible
representations of A, since nj is faithful. Therefore, for each (xu) e Mk(A),

= SUP||Snko7tJk((Xy)

which gives ||Sik||gsupn||SS)[||. D

Remark. Note that, by Theorem 3.6, it in particular suffices to calculate the norm of
an elementary operator on B(H) in order to determine it in general.

Putting together Theorems 3.5 and 3.6 with Proposition 2.6 now yields the main
result of this paper.

Theorem 3.7. For every boundedly centrally closed C*-algebra A the canonical
homomorphism 6Z is an isometry from M{A) (g)zh M(A) into CBZ(A).

Proof. If ueM(A)®zM(A) has a pre-image £j=1a,®fcjeM(/l) ® M(A), then, for
each irreducible representation n of A, by Proposition 2.6 we have that

cb
n(aj)®n(bj) =IM«)

where S = 9(Jj= Y as <g) bj) e 8£(A). Consequently,

whence 8Z extends to an isometry on M(A) ®Zh M(A).

Corollary 3.8. For every AW*-algebra, dz is an isometry.

D

This was obtained for von Neumann algebras by Chatterjee and Smith in [11, Theorem
2.4].

Corollary 3.9. For every prime C*-algebra, 6 is an isometry.

This, in particular, covers the case of von Neumann factors treated by Chatterjee and
Sinclair in [10, Theorem 3]. Note that Corollary 3.9 is also directly deduced from
Haagerup's result (Proposition 2.6) using arguments as in Theorem 3.6 and one faithful
irreducible representation of an S-invariant primitive C*-subalgebra, which exists by
[20, Proposition 3.1] and [37, 4.3.6.].
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Remark. In [11], Chatteijee and Smith provide an example of a unital C*-algebra B
such that 0Z is not isometric. It is easily seen that Z(fl)^C while Ct(B)sC2, whence B
is not boundedly centrally closed.

In order to treat the case of a general C*-algebra we need the following important
stability property of the bounded central closure.

Proposition 3.10. For every C*-algebra A, the bounded central closure CA of A is
boundedly centrally closed, and the centre of CM(A) coincides with Z, the centre of
Mloc(A).

Proof. We prove the second assertion first. We already observed in the proof of
Proposition 2.7 that Z £ Z(CM(A)). Hence, it suffices to show that xy=yx for all
yeQb(A) whenever xeZfM(A)), as this implies Z^Z(CM(A)).

Let yeM(I) for some essential closed ideal / of A, and for xeZ(cM(A)) choose a
sequence (xn)neN in Qb{A) with x=limn_0Oxn. Take essential closed ideals /„ of A such
that xn e M(Ia) and suppose, without loss of generality, that /„ £ / whence y e M(In) for
all neN. Then, for each ze/ n with ||z||^ 1, we have

\\(xny-yxn)z\\^\\xn-x\\\\yz\\

where we used that xyz=yzx=yxz since yz, z e/„ £ X £ CM(4). As /„ is essential in
M(/B), it follows that

I k v - y x J k sup ||(xn>'-yx,I)z||
*<=/»

whence by the above lim,,.,,,, ||xny—yxn)j=0, which yields finally that xy=yx as desired.
Towards the first assertion, "A=CA, note that it suffices to prove "M(A)=CM(A). In

fact, by Lemma 2.8, eA is essential in CM(A) wherefore Z(cA) = Z(eM(A))ncA, CM(A) £
M(eA) as well as Z(CM(A)) £ Z(M(CA)). As a result,

Cb('A) = Cb(
cM(A))=Z('M(A)) £ Z(M(CA)) £ Cb('A) (1)

by Proposition 2.7(0- Therefore. Cb(
cA) = Z(M(CA)) which, again by Proposition 2.7,

implies that aA=cA.
However, cM(A) = l2£B, where for each essential closed ideal / of A, B, denotes the

C*-algebra generated by M(A) and Z(Af(/)). Consequently, the proof of the fact that
Mloc(A) is boundedly centrally closed [4, Theorem 2] immediately adopts to the present
situation and may hence be omitted. Q

Corollary 3.11. For every C*-algebra A we have Cb(
cA) = Z.
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Proof. By(l), Cb(
cA) = Z(cM(A)) = Z. D

We can now combine Theorem 3.7 with Proposition 3.10 to obtain our final result.

Theorem 3.12. For every C*-algebra A, the Z-bimodule homomorphism
C6Z:'M(A) ®zh

cM(A) -+ CBZ(CA)

is an isometry.

Remark. The above isomorphism may be exploited to further investigate the central
Haagerup tensor product, for example its centre. If ueZ(M(A)®zM(A)), then 8z(u) is
the multiplication by some yeZ(M(A)) since 0z(u) commutes with all left and all right
multiplications by elements in A. As Oz(y®zl) = dz(u), y®z\=u if A is boundedly
centrally closed by Corollary 3.4, whence Z(M(A) ®ZM(A))^Z(M(A)) = Z by
Proposition 2.7. Observing that 9Z is multiplicative (respectively anti-multiplicative) if
one of the factors is in M(A)®Z\ (respectively 1 ®ZM(A)), a similar reasoning applies
to M(A) ®Zh M(A), from which we obtain that

Z(M(A) ®Zh M(A)) s Z(M(A)) (2)

for boundedly centrally closed C*-algebras. In the general case, Theorem 3.12 together
with Proposition 3.10 yields

Z(cM(A)®Zh
cM(A))^Z (3)

isometrically, since the cb-norm of a (one-sided) multiplication coincides with the norm
of the multiplying element. As Z ®ZhZ^Z, we thus obtain an analogue of a property
noted in [1, Theorem 2.13], see also [39, Corollary 4.7], namely that Z(A®hB) =
Z(A) ®hZ{B) for arbitrary C*-algebras A and B.
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