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1. Introduction

This is a continuation of [5] and we begin by recalling two definitions
and a result of that paper which are needed here. Let & be a family of
functions with domains contained in a set X and ranges contained in a set
Y and let f be a function with domain 2(f) =Y and range Z(f) C X
with the property fofoge & for each pair of elements f and g of &.
Since the composition operation is associative, & is a semigroup if for f
and g in &, we define the product fg by fg =fofog.

DEFINITION 1.1. & is referred to as an &-semigroup ‘and is denoted
by &(X, Y, f) if the following two conditions are satisfied.

1.1.1. % is point-separating, i.e., for each pair , and z, of distinct
points of X, there exists a function f in &% whose domain contains both
z, and z, with the property that f(z;) # f(z,).

1.1.2. For each z in X and y in Y, there is a subset A of X containing
z such that 4, e &% (4, is the function whose domain is 4 and which is
defined by A4,(p) =y for all p e 4).

DEFINITION 1.2. An &-semigroup &(X, Y, f) is referred to as an &*-
semigroup and is denoted by ©*(X, Y, ) if f is a surjection onto X.
The main result we need from [5] is the following

THEOREM 1.3. A bijection ¢ from an &*-semigroup S*(X,Y,{) onto an
&*-semigroup S*(U, V, g) is an isomorphism if and only if there exist bijec-
tions §) and t from X onto U and Y onto V respectively such that for each f in
G*(X,Y, ), h maps D(f) bijectively onto D(p(f)) and the following diagram
commudtes.
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Moreover, the functions Yy and t are unique in the sense that if H* and t* are
two mappings from X into U and Y into V respectively with the property that
the resulting diagram commutes when Y is replaced by H* and t by t*, then
h=h* and t = t*.

Now suppose we let X and Y denote topological spaces and & the
collection of all continuous functions whose domains equal X and whose
ranges are subsets of Y. Suppose further that for any two distinct points
P and ¢ of X these exists a function f in & such that f(p) 5 f(g). Then if
X happens to be the image of Y under a continuous mapping f, & is an
©*-semigroup if we define fg = fo fog for all f, g in &. This particular
&*-semigroup will be denoted by €5 (X, Y, f) and will be referred to as a
@7-semigroup. Now, Theorem (1.3) implies that any isomorphism from a
€p-semigroup G7(X,Y,{) onto a €j-semigroup €X(U,V,g) uniquely
determines two bijections f) and t such that the diagram commutes. It is
quite natural to ask if these bijections must be homeomorphisms. The
answer is, in general, no. Section 2 is devoted to the task of finding con-
ditions which will insure that the functions § and t will be homeomorphisms.
These results are used in Section 3 to determine the automorphism groups
of @7-semigroups. It is shown for certain X, ¥ and f that the automorphism
group of &} (X, Y, f) is isomorphic to a certain subgroup of the group of
all homeomorphisms on Y. For example, if X = [0, 4+ 00) and R denotes
the space of real numbers and f is defined by f(x) = «2 for each in R, the
automorphism group of €(X, R, f) is isomorphic to the group of all
homeomorphisms on R which are symmetric about the origin. The results
of Section 3 are then applied in Section 4 to the near-ring of all continuous
functions from a topological space into a topological group. We recall that
a near-ring is a system with two operations, addition and multiplication,
which satisfies all the postulates for a ring with the possible exceptions
of the commutative law of addition and one of the distributive laws. We
construct near-rings of continuous functions as follows: let X denote a
topological space, G an additive topological group, and { a continuous func-
tion from G onto X. Let R} (X, G, ) denote the family of all continuous
mappings from X into G. For f and g in NG (X, G, f), we define

fe=fofog and
(f+g)(®) = f(x)+g() for all z in X.

Then N3 (X, G, §), along with these two binary operations is a near-ring.
Note that for any f, g, % in NF(X, G, f), we always have

(f+8)h = fh+gh
while it need not be true that

R{f+g) = hi+hg.
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If X = G and { is the identity mapping, R} (G, G, f) is the near-ring of all
continuous functions mapping G into G where multiplication is simply
composition. We shall use the simpler notation i3 (G) for such a near-ring.
It is shown in Section 4 (for certain X, G and f) that the automorphism
group of M} (X, G, f) is isomorphic to a certain subgroup of the automorphism
group of G. Applying this result, we obtain the fact that the automorphism
group of N} (R,) (R, denotes the additive group of real numbers) is isomor-
phic to the multiplicative group of non-zero real numbers. Certain semi-
groups of continuous functions whose domains are subsets of a given space
X are discussed in Section 5.

2. The semigroup €}(X, V,f)

Let ¢ be an isomorphism from the €}-semigroup €}(X,Y, f) onto
the €%-semigroup €3(U, V, g). According to Theorem (1.3), ¢ uniquely
determines two bijections §) and t from X onto U and Y onto V respectively
such that for every fin €}(X, Y, f), the following diagram is commutative.

X—f—> Y——f—-*X

Ll

Uw(/)V 8, U

As we mentioned in the introduction, it may happen that the mappings
h and t are not homeomorphisms. There exist infinite spaces with the
property that the only continuous functions mapping the space into itself
are the constant functions and the identity function. De Groot has shown
[2, p. 87, Theorem 3] that there are 2¢ such subspaces of the Euclidean
plane. Let X be such a space and let ¢ be the identity mapping from X
into X. Then €}(X, X, 1) is a €}-semigroup and the subsemigroup obtained
by subtracting the identity is referred to as a left zero semigroup [1]. It
has the property that fg = f for any two elements f and g. Consequently,
any bijection from €}(X, X, 7) onto itself which leaves the identity fixed
is an automorphism of €}(X, X, 7). There are infinitely many of these
automorphisms and each one uniquely determines a pair of bijections §
and t. However, only the identity automorphism determines bijections
which are homeomorphisms.

From this point on, we shall always assume that the topological spaces
discussed in this paper are T,. Let X and Y be topological spaces and let
f be a continuous function from Y onto X. The triple (X, Y, {) is said to be
admissible if for each closed subset H of X and each point p in X —H, there
exists a continuous function f mapping X into Y and a point q in X such
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that (fo f)(z) = q for x in H and (f o f)(p) # ¢. The following two theorems
indicate that admissible triples are reasonably abundant.

THEOREM 2.2. Suppose X is completely regular and Y contains two
points s and t joined by an arc such that §(s) # §(¢). Then (X,Y,f) is an
admissible triple.

ProoF. Let H be a closed subset of X and suppose p € X—H. Since
X is completely regular, there exists a continuous function f from X into
the closed unit interval I such that f(x) = 0 for z in H and f(p) = 1. Since
s and ¢ are joined by an arc, there exists a continuous function g from I
into Y such that g(0) = s and g(1) = ¢. Then g o { is a continuous function
from X into Y such that (fo (go/f))(z) =f(s) for z in H and

(fo(goN)(®) = i) #T(s).
THEOREM 2.3. If X s O-dimensional, (X,Y, |) s an admissible triple.

Proor. Suppose H is a closed subset of X and p belongs to X—H.
Since X is 0-dimensional, there exists a subset G of X which is both open
closed such that p e G and H C X —G. Choose any two points s and ¢ of
Y such that {(s) # f(f) and define a function f from X into Y by
f®) =s if xeG and f(x) =¢ if xe X—G. Then f is continuous and

(fof)(®) =) for = in H while (fo f)(p) # f()-

Note that if (X, Y, {) is an admissible triple, the family of all con-
tinuous functions mapping X into Y is point-separating and hence the
semigroup of all continuous functions mapping X into Y is a F-semigroup.
In the sequel, only admissible triples will be considered. For any two such
triples, we have the following

THEOREM 2.4. Let (X,Y,§) and (U, V, g) be admissible triples and let
@ be an isomorphism from CF(X,Y, ) onto €X(U,V,g). Then the bijection
§ from X onmto U determined by ¢ is a homeomorphism.

Proor. For each point pin X and f in C¥(X, Y, f), let
—fweX: (fof)a) = 4}
Similarly, for ¢ in U and & in €}(U, V, g), we let
H(g, h) = {zeU: (goh)(z) =g}

According to diagram 2.1, the following statements are successively
equivalent:

uwehlH(p, /)], u f)(x) and (f f( ) =1,

5(p) = (hofo @) = (goo(f) 0 b)) = (go p(f)) (w

u e H(H(p), (1)
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Therefore, H[H (p, )] = H(H(p), ¢(f)). In a similar manner, )= [H (g, #)] =
H(H"(¢g), ¢ (h)) for all ¢ in U and &4 in €F(U, V, g).

Since all spaces concerned are T, spaces, sets of the form H(p, f) are
closed. Our proof will be complete when we show that for an admissible
triple, (X, Y, f), the family of all such sets forms a basis for the closed
subsets of X. With this in mind, let ¥ be a nonempty closed subset of X
and z a point in X —F. Then there exists a point p, in X and a function
f,in GX(X, Y, f) such that (o ,)(y) =, for y in F and (f o £,) () # p,.

Hence,

F=n{H(p, f;):xe X—F}.

This proves the theorem.
The following example shows that the bijection { need not be a homeo-
morphism.

ExampLE 2.5. Let both X and U consist of the single point z. Let Y
and V be any two spaces with the same cardinality and define functions f{
and g from Y onto X and V onto U respectively by f(y) = « for all y in
Y and g(v) = « for all v in V. Then (X, Y, {) and (U, V, g) are both ad-
missible triples and €X(X, Y, f) and €X(U, V, g) are left zero semigroups,
i.e., the product of two elements is the element on the left. Since the two
semigroups have the same cardinality (which is the cardinality of ¥ and
V), there exist bijections from one onto the other and any such bijection
is an isomorphism. It follows that the bijection t from Y onto V' determined
by any such isomorphism need not be a homeomorphism since we can
choose Y and V to be non-homeomorphic spaces.

We say two admissible triples (X,Y,{) and (U,V,q) are isomorphic
if the semigroups €X(X, Y, f) and €F(U, V, g) are isomorphic. Two isomorphic
triples are said to be compatible if for any isomorphism ¢ from XX, Y, f)
onto €X(U, V, @), the bijection t from Y onto V determined by ¢ is a homeo-
morphism. With this convention, the following result is an immediate
consequence of Theorems 1.3 and 2.4.

THEOREM 2.6. Suppose (X,Y,§) and (U,V, q) are compatible triples.
Then a bijection ¢ from CX(X, Y, f) onto €X(U, V, q) is an isomorphism if
and only if there exists a unique homeomorphism Yy from X onto U and a unique
homeomorphism t from Y onto V such that for each f in CX(X, Y, ), the
following diagram is commutative.

/ f

X———>Y———+

o

U o(f) v _8
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The remainder of this section will be devoted to the task of finding con-
ditions under which two triples will be compatible.

TuEOREM 2.7. Let (X,Y,§) and (U,V,q) be two isomorphic triples
such that { and g are homeomorphisms onto X and U vespectively. Then
(X,Y,f) and (U, V, q) are compatible.

ProoF. Let @ be an isomorphism from €¥(X, Y, f) onto €X(U, V, g).
Then by diagram (2.1), { = g“ o) o §. Now g and { are homeomorphisms
by hypothesis and §) is a homeomorphism by Theorem 2.4. Thus t is a
homeomorphism.

Let us recall [3, page 230] that a space X is called a k-space if it satisfies
the condition: if a subset H of X intersects each closed, compact set in a
closed set, then H is closed. The class of k-spaces includes all locally com-
pact, Hausdorff spaces and all Hausdorff spaces which satisfy the first
axiom of countability. The important fact about k-spaces is that for any
bijection % from one such space into another, it is sufficient to show that
both 4 and A take closed, compact sets into closed, compact sets in order to
conclude 4 is a homeomorphism. Of course, for a Hausdorff space, the family
of all closed, compact subsets coincides with the family of all compact subsets.

THEOREM 2.8. Let (X,Y,{) and (U, V,q) be isomorphic triples and
suppose X and U are Hausdorff spaces and Y and V are Hausdorff, k-spaces.
Suppose further that for every compact subset K of Y, there exists a continuous
function f from X into Y such that K C f{X] and [~[K] is a compact subset
of X. Finally, suppose a similar condition holds for compact subsets of V.
Then the triples (X,Y,{) and (U, V,q) are compatible.

ProOF. Let K be a compact subset of Y. Then there exists a continuous
function f mapping X into Y such that K C f[X] and f~[K] is compact.
By Theorem 2.4, §) is a homeomorphism from X onto U and it follows that
@ (f)[Hf [K]]] is a compact subset of V. But it follows from diagram (2.1)
that this set is actually t[K]. Therefore t takes compact subsets into compact
subsets and, in a similar manner, t“ also takes compact subsets into compact
subsets. Since both ¥ and V' are Hausdorff 2-spaces, this implies t is a
homeomorphism.

Let us recall that a compact, connected, locally connected metric
space is referred to as a Peano space.

THEOREM 2.9. Let (X,Y,{) and (U,V,Qq) be isomorphic triples and
suppose X and U are completely regular, Hausdorff spaces each containing
a compact, connected subset with nonempty interior and more than one point.
Suppose also that Y and V are Hausdor[f k-spaces with the property that each
compact subspace is contained in a Peano subspace. Then (X,Y,§) and
(U, V,q) are compatible triples.
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Proor. Let us first consider the case where Y is compact. It follows
from the hypothesis that Y is a Peano space and is therefore a connected
space. X must also be compact and connected since it is the image of Y
under the continuous mapping . Choose any two distinct points p and
¢ in X. Since X is completely regular, there exists a continuous function f
mapping X into the closed unit interval I such that f(p) = 0 and f(g) = 1.
Since X is connected, it follows that f[X] = I. Since Y is a Peano space, it
follows from the Hahn-Mazurkiewicz Theorem that Y is the image of I
under some continuous function g. Then go f is a continuous function
from X onto Y with the property that (go f)"[K] is compact for each
compact subset of Y. Thus we have shown, in the case Y is compact, the
existence of a continuous function from X into Y satisfying the conditions
of Theorem 2.8.

Now suppose Y is not compact and let K be a nonempty compact
subset of Y. Choose g in Y —K. Then according to hypothesis, there exists
a Peano subspace K* which contains K u {g}. Also according to hypothesis,
there exists a point p of X, an open subset G of X and a compact, connected
subset W of X containing more than one point such that € G € W. Choose
re W—{p} and let G* = G—{r}. Since X is completely regular, there
exists a continuous function f mapping X into the closed unit interval I
such that f(p) = 1 and f(z) = 0 for  in X—G*. Since W is connected
and contains both p and 7, it follows that f[W] = I. Again we appeal to
the Hahn-Mazurkiewicz Theorem to conclude the existence of a continuous
function g mapping I onto K*. A check of the proof of that theorem will
convince one that g can be chosen such that g(0) = ¢. Therefore, go fisa
continuous mapping from X into Y such that K C (g o f)[X]. Now we want
to show that (g o f)*[K] is a compact subset of X. Since ¢ ¢ K, there exists
an opensubset H of Y containing g such that H n K = 0. Since 0 eg " [H], it
follows that there exists a number a between 0 and 1 such that [0, a) Cg"TH]
which implies g~ [K]C [, 1]. But then, (gof) [K]=/[g"[K1]Cf [a,1]CW.
That is, (g o /) [K] is a closed subset of a compact set W and is therefore
also compact. Thus, in this case also, there exists a continuous function
from X into Y satisfying the conditions of Theorem 2.8. Since the arguments
given here can be repeated for the spaces U and V, it follows from Theorem
2.8 that (X, Y, f) and (U, V, g) are compatible.

By a manifold, we mean a connected metric space with the property
that for some positive integer N, each point of the space is contained in
an open subset which is homeomorphic to the Euclidean N-space E¥.
Suppose K is a compact subset of a manifold X. Then there exists a finite
collection {B,}Y¥, of subsets of X, each homeomorphic to the closed
unit ball in E¥, with the property that K C u {B,}¥,. Choose a point

n=1"

P in B, for each ». Since a manifold is arcwise connected (see [6], page 55,
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Theorem 2—17 for a proof of the 2-dimensional case which generalizes
easily), we may join p, to p,, by means of an arc 4, ,,. Since there are only
a finite number of such arcs, the subspace K* consisting of U {B,}*,
along with the arcs 4, ,, is compact. In addition, K* is connected (in fact,
arcwise connected), locally connected and metric, i.e., K* is a Peano space.
Thus, every compact subspace of X is contained in a Peano subspace and

we may apply Theorem 2.9 to obtain the following

CoROLLARY 2.10. Let (X, Y, ) and (U,V, g) be isomorphic triples and
suppose X and U are completely regular, Hausdorff spaces, each containing
a compact, connected subset with nonempty interior and more than one point.
Then if Y and V are either manifolds or Peano spaces, (X, Y, f) and (U, V, g)
are compatible triples.

3. The automorphism groups of €}-semigroups

In this section, we determine the automorphism group of €¥(X, Y, f)
whenever (X,7Y,f) is a strongly admissible triple. 4 #triple (X,Y,§) s
said to be strongly admissible if it is admissible, compatible with itself, and §
1s either a closed or an open mapping. Concerning strongly admissible triples,
we have the following three results.

TueOREM 3.1. Suppose X is either O-dimensional or completely regular
with two distinct points joined by an arc. Then for any homeomorphism f
from'Y onto X, (X,Y,{) ts a strongly admissible triple.

THEOREM 3.2. Suppose X and Y are Peano spaces and X has more than
one point. Then, for any continuous mapping f from Y onto X, (X, Y, f)
is a strongly admissible triple.

THEOREM 3.3. Suppose X is a completely regular, Hausdorff space which
contains a compact, connected subset with nonempty interior and more than
one point. Suppose also that Y is a manifold and that § is a continuous, closed
or open function from Y onto X with the property §(p) # f(q) for two points
p and g of Y which are joined by an arc. Then (X, Y, ) is a strongly admissible
triple.

Theorem 3.1 is an immediate consequence of Theorems 2.2, 2.3, and
2.7. To prove Theorem 3.2, we first recall that any Peano space is arcwise
connected. It follows from this fact and Theorem 2.2 that (X, Y, {) is
admissible. Corollary 2.10 implies that (X, Y, ) is compatible with itself.
Finally, since any continuous mapping from a compact space into a Hausdorff
space is a closed mapping, it follows that (X, Y, f) is strongly admissible.
Theorem 3.2 is an immediate consequence of Theorem 2.2 and Corollary
2.10.
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Now let (X, Y, f) be any strongly admissible triple and let ® denote
the family of all point inverses of f, i.e.,

D5 = {{"{=} :x e X}.

Dj is a family of mutually disjoint nonempty subsets of ¥ whose union
is all of Y. We let G(®5) denote the group of all homeomorphisms %4 on Y
(where the binary operation is composition) with the property A[4] € s
for each 4 € ®j. The main result of this section concerns this group and
is the following

TueoreM 3.4. If (X,Y,{) is strongly admissible, the automorphism
group of CX(X, Y, ) is isomorphic to G(Dy).
Before proving this result, it will be convenient to have a lemma.

LEMMA 3.5. Suppose | is a continuous mapping which is either open or
closed from 'Y onto X and t is a homeomorphism from Y onto Y. Then there
exists a homeomorphism Yy from X omto X such that o §f = fot if and only
if t[4] e Dy for each A e Py.

Proor. We make use of Lemma 3.2 of [5] which is stated there as
follows:

3.5.1. Suppose f maps Y onto X, g maps Y onto Z and t is a bijection
from Y onto Y. Then there exsists a bijection §) from X onto Z such that
hof=gotif and only if t{4] € Dy for each 4 e Dj.

First suppose t is a homeomorphism from Y onto Y such that {[4] e Dj
for each 4 € ®j. Taking X = Z and { = g in 3.5.1, it follows that there
exists a bijection §) from X onto X such that hof= fot. Now suppose
f is a closed mapping and let H be any closed subset of X. Then, since §
is continuous and closed, f[t[§~[H]]] is a closed subset of X. But this latter
set is equal to H[H]. In a similar manner, §*“ takes closed sets into closed
sets and §) is a homeomorphism. One uses open sets for the proof if f is an
open mapping. The remaining portion of the proof is an immediate con-
sequence of 3.5.1.

Now let us proceed with the proof of Theorem 3.4. Let ¥ denote the
automorphism group of €F(X,Y,f) and let ¢ denote an element of .
Then, according to Theorem 2.6, there exists a unique homeomorphism
§) from X onto X and a unique homeomorphism t from Y onto Y such that
for each f in €}(X,Y, {), the following diagram is commutative.

xt,y T .x

Lt L

e (/) v X
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Thenfof = jotand teG(Dy) by the previous lemma. Since t is uniquely
determined by ¢, we can define 2 mapping @ from % into G (®y) by ®(¢) = t.
It can be verified in a straightforward manner that @ is a homomorphism.
Now if t is any element in G(Dg), it follows from Lemma 3.5 that there
exists a homeomorphism § from X onto X such that o §f= fot. Then
Theorem 2.6 implies that the bijection ¢ from €¥(X, Y, f) onto itself
defined by ¢(f) =tofo}*" is an automorphism. This implies @ is an
epimorphism onto &(®y). Finally, suppose ®(p) = #, the identity mapping
on Y. Then there is a homeomorphism ) from X onto X such that the
resulting diagram commutes when t is replaced by ¢ in diagram 3.6. For
every z in X, there exists a y in Y such that {(y) = «. Then j(z) =)(f(y)) =
f(i(y)) = f(y) = =, i.e. § is the identity mapping on X. This implies that
¢ is the identity automorphism. Hence, the kernel of @ consists of the
identity and we conclude @ is an isomorphism.

ExaMPLE 3.7. Let X = [0, + ), let R denote the space of real numbers
and define a mapping f from R onto X by f(x) = «2 for each z in R. Since
f is a closed mapping from R onto X, it follows from Theorem 3.3 that
(X, R, f) is a strongly admissible triple. Now ®j = {{z, —z}:0 < z} and
it follows that a homeomorphism t from Y onto Y belongs to G(®y) if
and only if {(—#) = —t(x) for each z in R. G(®y) is the group of all homeo-
morphisms mapping R onto R which are symmetric about the origin. By
Theorem (3.4), this group is isomorphic to the automorphism group of
CH(X, Y, ).

4. Applications to near-rings

Let us recall once again that a near-ring ¢ is a system with two binary
operations, addition and multiplication, such that R is a group under
addition, a semigroup under multiplication and (a+b)c = ac+bc for all
a, b, c in M. Now let G be a topological group and let | be a continuous
mapping from G onto a topological space X. We recall from the introduction
that N%(X, G, f), the family of all continuous functions mapping X into
G is a near-ring when addition is defined pointwise and multiplicatiort is
defined by fg = fo fo g for all f and g in NF(X, G, ). By an isomorphism
from one topological group onto another, we mean a mapping that is both
an algebraic isomorphism and a homeomorphism. Qur first result is an easy
consequence of Theorem 2.6.

THEOREM 4.1. Let X and Y be topological spaces, G and H topological
groups and suppose (X, G, §) and (Y, H, g) are compatible. Then a bijection
@ from the near-ring N} (X, G, §) onto the near-ring WE(Y, H, g) is an isomor-
phism if and only if there exists a homeomorphism ¥ from X onto Y and an
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isomorphism t from G onto H such that for every f in Ry (X, G, §), the following
diagram commutes.

f

x_ 1,1,

LI

y 2D o Y
Moreover, the homeomorphism Yy and the isomorphism t are unique.

ProOF. Suppose ¢ is an isomorphism from NE (X, G, f) onto NE(Y, H, g).
Then according to Theorem 2.6, there exist homeomorphisms §) and t
such that the diagram above commutes. Now for an arbitrary element a
of G, let {a) denote the constant function of N¥(X, G, {) which is defined
by {(a)(z) = a for each z in X. It follows that for any pair of elements a
and b of G, we have {a+b>=<{ad+<b). Thus, using the diagram and the
fact that ¢ is additive, we get

(ta+d)) = e(Ka+b)) = p(<a>+<b3)
= ¢(<a))+9(Kb3) = <ta)>+<t(%)).

From this it follows that t(a+5) = t(a)41t(b) and hence that t is an isomor-
phism from G onto H.

Now suppose ¢ is a bijection from R¥(X, G, ) onto NE(Y, H, g) and
that there exists a homeomorphism §) from X onto Y and an isomorphism
t from G onto H such that the diagram above commutes. By previous
considerations, ¢(fg) = ¢(f)p(g) for all f and g in NF(X, G, f). Using the
fact that t is an isomorphism, we also have

p(f+g) =to (f+g)oh” = (tofoh )+ (togo ) = o()+o(g).

Hence, ¢ is a near-ring isomorphism.

Now let G,(Dj) denote the group of all automorphisms of G with the
property t{A] e Dj for each 4 in P;. Then using Theorem 4.1, the proof
of Theorem 3.4 can be modified to yield a proof of the following

THEOREM 4.2. If (X, G,{) is strongly admissible, the automorphism
group of N¥(X, G, §) is isomorphic to G 4(Dy).
By taking X = G and f to be a homeomorphism, we immediately get

CoROLLARY 4.3. If (G, G, {) s strongly admissible, the automorphism
group of the near-ring WX (G, G, §) is isomorphic to the automorphism group
of the group G.

ExaMpPLE 4.4. Let us take G to be R,, the additive group of real
numbers. Then N} (R,) is the near-ring of all continuous functions mapping
R into R where addition is defined pointwise and multiplication is com-
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position. According to Theorem 3.1, (R, R,7) is a strongly admissible
triple (where ¢ denotes the identity mapping). Hence, it follows from
Corollary 4.3 that the automorphism group of ¥ (R,) is isomorphic to the
group of all (homeomorphic) additive automorphisms on R. But it is well
known that any such automorphism t is given by

t(x) = ax for all z in R (a # 0).

From this it follows that the automorphism group of %¥(R,) is isomorphic
to the multiplicative group of all non-zero real numbers.

ExamMPLE 4.5. Again take G to be R,. Let X = [0, +00) and define
a mapping | from R, onto X by f(x) = 2 for all z in R,. Then, as we
noted in Example 3.7, (X, Ry, {) is a strongly admissible triple and
D = {{z, —=} : 0 < z}. It follows from Theorem 4.2 that the automorphism
group of M*(X, R, {) is isomorphic to G ,(Dj). But G 4(Dj) coincides with
the automorphism group of R, which, as we noted previously, is isomorphic
to the multiplicative group of non-zero real numbers. Then the near-rings
RNE(X, Ry, |) and NF(R,) have isomorphic automorphism groups but are
not isomorphic themselves since X and R are not homeomorphic.

5. Remarks on some other semigroups of continuous functions

Results analogous to those we have obtained for €3(X, Y, f) can be
obtained for other semigroups of continuous functions. Since one may use
techniques similar to those used previously in this paper to obtain these
other results, we will not prove them but merely discuss them in a somewhat
informal manner. Let { be a continuous mapping from a topological space Y
onto a topological space X and let €%(X, Y, f) denote the collection of all
functions f such that D(f), the domain of f, is a closed subset of X, the
range of f is a subset of Y, and f is continuous on ®(f). Note that for any
two functions f and g of X, Y, ), D(fofog) = (fog) " [D(f)]. Now
f o g is a continuous mapping from D(g) into X and since D(f) is a closed
subset of X, (fog) " [®D(f)] is a closed subset of D(g). But this implies
(fog) [D(f)] is a closed subset of X since D(g) is a closed subset of X.
Thus, f o f o g is also an element of €¥(X, Y, §). Suppose p and g are distinct
points of X. Since X is the image of Y under the mapping f, ¥ must also
contain two distinct points » and s. Define a function f with D(f) = {p, ¢}
by f(p) = r and f(¢) = s. Then f e €}(X, Y, f) and we see that €}(X, Y, f)
is point-separating. Thus €}(X, Y, f) is an €*-semigroup.

The notion of an admissible triple was introduced in Section 2 to insure
that the mapping §) from X onto Y determined by an isomorphism ¢ from
CX(X,Y, f) onto €X(U, V, g) be a homeomorphism. For semigroups of the
form €%(X.Y.f). no such restriction need be placed on the triples to
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insure that f) be a homeomorphism. This is due to the fact that §(D(f)] =
D(p(f)) for every fin €} (X, Y, f) and every closed subset of X is the domain
of a function in €¥(X, Y, ). Just as in the case of €¥-semigroups, however,
the mapping t from Y onto ¥V determined by ¢ need not be a homeomorphism.
Example 2.5 serves to establish this fact. Thus, further restrictions must be
placed on the triples in order that the mapping t be a homeomorphism.

We conclude by mentioning that results analogous to those we have
obtained for €%(X, Y, f) can also be obtained for €%(X, Y, {), the semigroup
of all continuous functions whose domains are open subsets of X and whose
ranges are contained in Y.
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