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Examining the genetic architecture of relationships between internal plant anatomic structures, ecophysiological 

function, and organismal morphology promises to reveal new avenues for plant breeding and modeling complex 

ecological/evolutionary dynamics in natural systems (He et al., 2017; Baker et al., 2017). However, high-throughput 
methods for assessing internal anatomy remain elusive, precluding the widespread inclusion of internal anatomy in 

many modern ‘omics level studies. Internal anatomy remains difficult to assess for several reasons. First, most 

techniques involve destructively sampling from the plant. Live-imaging techniques exist (Fang & Spector, 2010; 
Mathers et al., 2018); however, these can be cost prohibitive, are often low throughput, and require that plants are 

grown in artificial conditions. Second, although it is possible to reconstruct internal anatomy at fairly high resolution 

after destructive sampling (Miki et al., 2020), this method is time-consuming due to lengthy fixation, embedding, 

sectioning, and staining steps. In this project, we present minimal sample preparation and microscopy protocols that 
utilize inherent autofluorescence in plant internal structures for markedly increased throughput in cellular and 

ultrastructural visualization. 

In our experimental design we selected eleven species to demonstrate the applicability of our protocol across a 
phylogenetically broad range of plant taxa (Fig. 1): Brassicaceae Arabidopsis thaliana (L.), Poaceae Zea mays (L.), 

Fabaceae Glycine max (L.), Brassicaceae Brassica rapa (L.), Pinaceae Pinus strobus (L.), Volvocaceae Volvox sp 

(L.), Ulvaceae Ulva sp. (L.), Marchantiaceae Marchantia sp. (L.), Polyphysaceae Acetabularia sp., 

Coleochaetaceae Coleochaete sp., and Selaginellaceae Selaginella sp. Five samples from each species were 
collected and placed separately into the following solutions: 2% paraformaldehyde in 0.1M sodium cacodylate 

buffer (pH 7.4), 2% glutaraldehyde in sodium cacodylate buffer (pH 7.4), 1% paraformaldehyde and 2% 

glutaraldehyde in 0.1M sodium cacodylate buffer (pH 7.4), Formalin-acid-alcohol (Ruzin, 1999), or 70% ethanol. 
Samples were then mounted in glycerol and imaged on an Olympus FV500 Confocal Laser Scanning system. Three 

channels were recorded for each sample, representing aldehyde-induced fluorescence (Alexa Fluor 405 and FITC 

and filters) and chlorophyll autofluorescence (Texas Red filter). Enhancement of micrographs was performed using 
FIJI imaging software (Schindelin et al., 2012) to adjust contrast/brightness and assign green, blue and red LUTs 

for image channels corresponding to fluorescence in the 405nm, 433nm and 647nm ranges, respectively. Image 

channels were then overlaid to form a composite image for each sample. 

Trends in fluorescence were examined among treatments and species with the goal of clearly identifying cellular 
structures. Samples preserved with PFA, Glut and PFA/Glut demonstrated notable fluorescence of cell walls across 

all taxa (Fig. 2). Plants belonging to the tracheophytes showed consistent fluorescence with leaf tissue from Zea 

mays (Fig. 2, F-H) representing excellent examples of clear cell wall, xylem, phloem, nuclei, and chloroplast 
definition. Samples preserved with FAA demonstrated poor/mottled chlorophyll fluorescence patterns in taxa 

belonging to the Chlorophytes (Ulva, Acetabularia, and Volvox) (Fig. 2D) and Charophytes (Coleochaete and 

Chara). By contrast, taxa belonging to the Tracheophytes displayed adequate definition of cell walls, but similar 
loss of chlorophyll fluorescence (Fig. 2I). Zea mays, Glycine max, Marchantia and several green algae samples 

demonstrated similar patterns of fluorescence when fixed with 70% ethanol, suggesting native cell wall 

autofluorescence emission wavelengths partially overlap with those of aldehyde-induced fluorescence (Fig. 2J). By 

comparison Volvox and most of the Tracheophytes show little cell wall fluorescence in samples preserved with 70% 

ethanol (Fig. 1E, J). 

Trends in taxa structural preservation due to fixative treatments were also evaluated. Tracheophyte samples 

demonstrated little change in structural quality across treatments, with clearly delineated regions of mesophyll, 
epidermal and vascular tissues in many samples (Fig. 2F-J). However, fixatives containing alcohol caused 

substantial damage in tissues belonging to aquatic plants, or those with thinner cell walls. For example, FAA fixation 
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resulted in minimal damage to tracheophyte samples, but caused cell shrinkage and lysis in Chlorophycean and 
Streptophycean green algae and Marchantia. FAA-induced cell damage was prominent in Chara, Ulva, Volvox and 

Acetabularia. Poor structural preservation of FAA–treated samples may be the result of rapid infiltration with 

ethanol, since similar cell damage was also observed when these samples were preserved with 70% ethanol. In 

addition, ethanol content leached chlorophyll from numerous samples, resulting in damage to chloroplasts (Fig 2E, 

J). 

Historically, plant cell morphology research relied on time consuming techniques such as histological staining, 

immunolabeling, electron microscopy preparations, or limitations in bright field microscopy resolution. Integrating 
internal anatomy with modern molecular and morphological datasets requires quickly/easily generating anatomical 

information (Li & Chen, 2014). Here, we demonstrate how simple fixation protocols and confocal light microscopy 

may be used to rapidly observe aldehyde-induced fluorescence to gather cellular structure data from multiple plant 
phyla. Our protocols serve as a guide for proper plant fixative selection for a given taxa and an illustration of 

possible preservation artifacts. Using thee protocols to increase throughput for anatomical studies may improve our 

understanding of plant evolutionary biology and the precision of plant breeding programs. 

 
Figure 1. Phylogenetic tree representing evolutionary relationships between twelve species utilized in this 

protocol, adapted from Leebens-Mack et al., 2019. 
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Figure 2. Images of Volvox colonies (A-E) and Zea mays leaf cross-sections (F-J). Each image 

demonstrates fluorescence of tissues subjected to different fixation treatments. Fixatives represented are 
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(A, F) 1% Paraformaldehyde and 2% glutaraldehyde, (B, G) 2% Paraformaldehyde, (C, H) 2% 

Glutaraldehyde, (D, I) Formalin-Acetic Acid (FAA), and (E, J) 70% ethanol treatment. False-color 

represents fluorescence through Alexa Fluor 405 (green), FITC (blue) and Texas Red (red) bandpass 

filters. Cell walls, nuclei and chlorophyll are indicated by yellow wedges, white wedges, and white 

brackets, respectively. Scales bars = 50 µm. 
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