THE STEINITZ-GROSS THEOREM ON SUMS OF VECTORS

F. A. BEHREND

1. Introduction. $\alpha_1, \alpha_2, \ldots, \alpha_p$ are *n*-dimensional vectors,

$$\sum_{\pi=1}^{p} \alpha_{\pi} = 0, \qquad |\alpha_{\pi}| \leqslant 1 \quad (1 \leqslant \pi \leqslant p);$$

they are arranged to form a closed polygon

$$OA_1A_2\ldots A_{p-1}O(\overrightarrow{OA}_1 = \alpha_1,\ldots,\overrightarrow{A_{\pi-1}A_{\pi}} = \alpha_{\pi},\ldots,\overrightarrow{A_{p-1}O} = \alpha_p).$$

Denote by $R(\alpha_1, \alpha_2, \ldots, \alpha_p)$ the radius of the smallest circumscribed hypersphere with centre at O; by $\overline{R}(\alpha_1, \alpha_2, \ldots, \alpha_p)$ the minimum of

$$R(\alpha_1, \alpha_{\pi_1}, \ldots, \alpha_{\pi_{p-1}}, \alpha_p)$$

for all possible reorderings

 $\alpha_{\pi_1},\ldots,\alpha_{\pi_{p-1}}$

of $\alpha_2, \ldots, \alpha_{p-1}$; and by c_n the least possible constant such that

$$\bar{R}(\alpha_1, \alpha_2, \ldots, \alpha_p) \leqslant c_n$$

for all possible choices of p and $\alpha_1, \alpha_2, \ldots, \alpha_p$.

Steinitz (1) proved that $c_n \leq 2(n + 1)$; using induction with respect to n, Gross (2) obtained the weaker estimate $c_n \leq 2^n - 1$; by the same method Bergström (3) obtained the result $c_n^2 \leq 4c_{n-1}^2 + 1$. Trivially, $c_1 = 1$. $c_2 = \sqrt{2}$ was proved independently by Gross (2), Bergström (4), and Damsteeg and Halperin (5). For $n \geq 3$ the exact values of c_n are not known; from Bergström's estimate it follows that $c_3 \leq 3$, $c_4 \leq \sqrt{37}$; for $n \geq 5$, Steinitz's estimate gives the best result.

By a refinement of Steinitz's original method it will be shown in this paper that, for $n \ge 3$, $c_n < n$ (Theorem 1), and particularly, $c_3 \le (5 + 2\sqrt{3})^{\frac{1}{2}} = 2.90 \dots$ (Theorem 2).

The lower estimate $c_n \ge \frac{1}{2}(n+6)^{\frac{1}{2}}$ given by Damsteeg and Halperin (5), and other examples make it likely that the true order of c_n is $n^{\frac{1}{2}}$.

2. Notation. Greek letters except κ , λ , μ , ν , π denote *n*-dimensional vectors $(n \ge 3)$; *a*, *b*, *c*, *d*, *e*, *f*, *g*, *x*, *y*, *z* real numbers; *i*, *j*, *k*, *l*, *m*, *n*, *p*, *q*, *r*, *s*, *t*, κ , λ , μ , ν , π natural numbers.

 $|\alpha|$ denotes the length of α ; $\alpha\beta$ the scalar product of α , β .

The vectors $\theta_1, \theta_2, \ldots, \theta_m$ will be called *positively dependent* (p.d.) if they are linearly dependent with non-negative coefficients; *positively independent* (p.i.) means not p.d.

Received March 12, 1953.

3. Lemmas.

(I) From any m(> n + 1) p.d. vectors $\theta_1, \theta_2, \ldots, \theta_m, n + 1$ p.d. vectors $\theta_{\mu_1}, \theta_{\mu_2}, \ldots, \theta_{\mu_{n+1}}$ can be selected.

Proof. It is sufficient to show that m - 1 of the given vectors are p.d. If, in the given relation

$$\sum_{\mu=1}^m d_\mu \theta_\mu = 0 \qquad \qquad d_\mu \geqslant 0,$$

(at least one d_{μ} being positive), one d_{μ} is zero, this is trivial. If all $d_{\mu} > 0$, choose any linear relation between $\theta_1, \ldots, \theta_{n+1}$,

$$\sum_{\nu=1}^{n+1} a_{\nu} \theta_{\nu} = 0 \qquad (\text{not all } a_{\nu} = 0),$$

and consider the relation

$$\sum_{\nu=1}^{n+1} (d_{\nu} - x a_{\nu}) \theta_{\nu} + \sum_{\nu=n+2}^{m} d_{\nu} \theta_{\nu} = 0.$$

For x = 0 all coefficients are positive; hence x can be chosen such that one coefficient vanishes, the others remaining non-negative (and d_m positive); the ensuing relation expresses the p.d. of m - 1 of the vectors.

(I.1)

$$\theta_{\mu_1},\ldots,\theta_{\mu_{n+1}}$$

in (I) may be prescribed to include θ_1 .

Proof. Suppose θ_1 is not already included. Let

$$\sum_{i=1}^{n+1} b_i \theta_{\mu_i} = 0$$

be the relation expressing the p.d. of

$$\theta_{\mu_1},\ldots,\theta_{\mu_{n+1}}.$$

If one $b_i = 0$, the term $0.\theta_1$ may be substituted for $b_i\theta_{\mu_i}$. If all $b_i > 0$, consider any linear relation between $\theta_{\mu_1}, \ldots, \theta_{\mu_n}, \theta_1$:

$$\sum_{i=1}^{n} e_{i}\theta_{\mu_{i}} + e_{n+1}\theta_{1} = 0 \qquad (\text{not all } e_{i} = 0).$$

It may be assumed that $e_{n+1} \ge 0$. If all $e_i \ge 0$,

$$\theta_{\mu_1},\ldots,\theta_{\mu_n},\theta_1$$

are p.d. If one $e_i < 0$, consider the relation

$$\sum_{i=1}^{n} (b_i + xe_i) \theta_{\mu_i} + b_{n+1} \theta_{\mu_{n+1}} + xe_{n+1} \theta_1 = 0.$$

For x = 0 all coefficients in the first sum are positive; hence x > 0 can be determined so that one coefficient vanishes, the others remaining non-negative (and b_{n+1} positive). The following corollary is obvious:

(I.2) In (I) and (I.1) θ_m may be excluded from

$$\theta_{\mu_1},\ldots,\theta_{\mu_{n+1}}$$

unless $\theta_1, \ldots, \theta_{m-1}$ are p.i.

(II) If m > n,

$$\theta = \sum_{\mu=1}^{m} d_{\mu} \theta_{\mu} \neq 0, \qquad \qquad 0 \leqslant d_{\mu} \leqslant 1,$$

then θ can be expressed in the form

$$\theta = \sum_{\mu=l}^{m} d_{\mu}' \theta_{\mu}', \qquad \begin{cases} 0 < d_{\mu}' \leqslant 1, \ \mu < l + n, \\ d_{\mu}' = 1, \ \mu \geqslant l + n, \end{cases}$$

where $1 \leq l \leq m$, and the θ_{μ}' are a rearrangement of the θ_{μ} .

Proof. Let r be the number of d_{μ} 's with $0 < d_{\mu} < 1$. If $r \leq n$, then the required relation is obtained from the given one by omitting the terms with coefficient 0. It is therefore sufficient to show that, for $r \geq n + 1$, the value of r can be diminished. Suppose that $0 < d_{\mu} < 1$ for $1 \leq \mu \leq n + 1$; using a linear relation

$$\sum_{\mu=1}^{n+1} a_{\mu} \theta_{\mu} = 0 \qquad (\text{not all } a_{\mu} = 0),$$

form

$$\theta = \sum_{\mu=1}^{n+1} (d_{\mu} - xa_{\mu}) \theta_{\mu} + \sum_{\mu=n+2}^{m} d_{\mu}\theta_{\mu}.$$

For x = 0 the first n + 1 coefficients lie between 0 and 1; hence x can be chosen such that one coefficient becomes equal to 0 or 1, the others remaining ≥ 0 , ≤ 1 . As $\theta \ne 0$, the final representation of θ contains at least one term, i.e., $l \le m$.

(II.1) The representation

$$\theta = \sum_{\mu=1}^{m} d_{\mu}' \theta_{\mu}$$

in (II) may be so chosen that either $\theta_1 = \theta_1'$ or θ_1 does not occur at all.

Proof. Suppose θ_1 occurs in the relation obtained. (II.1) is obvious if the coefficient of θ_1 is less than 1 or if fewer than *n* coefficients are less than 1 (only a trivial reordering of the θ_{μ}' being required). If the coefficient of θ_1 is 1, and exactly *n* coefficients are less than 1, i.e.,

$$0 < d_{\mu}' < 1 \text{ for } \mu = l, \dots, l+n-1,$$

$$\theta_1 = \theta_s', \quad s \ge l+n, \quad d_s = 1,$$

$$\sum_{l=n-1}^{l+n-1} h |\theta_1| = 0, \quad (h-h) |n| < l$$

use a linear relation

$$\sum_{\mu=l}^{l+n-1} b_{\mu}\theta_{\mu} + b_{s}\theta_{s}' = 0 \qquad (b_{\mu}, b_{s} \text{ not all } 0),$$

to form

$$\theta = \sum_{\mu=l}^{l+n-1} (d_{\mu}' - xb_{\mu}) \ \theta_{\mu}' + (1 - xb_s) \ \theta_1 + \sum_{\substack{\mu=l+n \\ \mu \neq s}}^m d_{\mu}' \theta_{\mu}'.$$

It may be assumed that $b_s \ge 0$; letting x increase from 0, either θ_1 can be eliminated from the relation, or one of the first n coefficients can be made equal to 0 or 1 (the others remaining ≥ 0 , ≤ 1); in this case θ_1 can be incorporated in the first n terms and be renamed θ_i' .

(III) If
$$k \ge 2$$
, $|\theta_{\kappa}| \le 1$
 $\eta = d_1 \theta_1 - \sum_{\kappa=2}^k d_{\kappa} \theta_{\kappa}$, $0 \le d_1 \le 1, 0 \le d_{\kappa} < 1 \ (\kappa > 1)$,
then
 $|\theta_1 + \theta_{\kappa}| > 1$, $1 < \kappa < k$
implies

 $\begin{aligned} |\eta| &< \sqrt{(k^2 - 3k + 3)} + 1. \\ Proof. \text{ For } k &= 2, \ |\eta| \leq |d_1\theta_1| + |d_2\theta_2| < 2 = \sqrt{1} + 1; \text{ for } k \ge 3, \\ (\theta_1 + \theta_{\kappa})^2 &= \theta_1^2 + 2\theta_1\theta_{\kappa} + \theta_{\kappa}^2 > 1, \\ 1 &< \kappa < k, \end{aligned}$

implies

$$-2\theta_1\theta_{\kappa} < \theta_1^2 + \theta_{\kappa}^2 - 1 \leqslant 1,$$

whence

$$\begin{aligned} |\eta| &\leq \left| d_1 \theta_1 - \sum_{\kappa=2}^{k-1} d_\kappa \theta_\kappa \right| + |d_k \theta_k| \\ &< \left\{ d_1^2 \theta_1^2 - \sum_{\kappa=2}^{k-1} d_1 d_\kappa 2 \theta_1 \theta_\kappa + \left(\sum_{\kappa=2}^{k-1} d_\kappa \theta_\kappa \right)^2 \right\}^{\frac{1}{2}} + 1 \\ &< \{ 1 + (k-2) + (k-2)^2 \}^{\frac{1}{2}} + 1 = (k^2 - 3k + 3)^{\frac{1}{2}} + 1. \end{aligned}$$

(III.1) If the condition $|\theta_1 + \theta_k| > 1$ is added in (III), then

.

$$|\eta| < (k^2 - k + 1)^{\frac{1}{2}}.$$

Proof. By obvious modification of the proof of (III).

(IV) If
$$k \ge 2$$
, $|\theta_{\kappa}| \le 1$
 $\eta' = \sum_{\kappa=2}^{k} d_{\kappa} \theta_{\kappa}, \quad \zeta' = \sum_{\kappa=2}^{k} (1 - d_{\kappa}) \theta_{\kappa}, \quad 0 \le d_{\kappa} \le 1,$
 $\eta = \theta_{1} + \eta', \quad \zeta = -\theta_{1} + \zeta',$

then $|\zeta| > 1$, implies

$$|\eta| < k - (2 - \sqrt{2}).$$

Proof. For
$$k = 2$$
,

$$\zeta^{2} = (-\theta_{1} + (1 - d_{2})\theta_{2})^{2} = \theta_{1}^{2} - 2(1 - d_{2})\theta_{1}\theta_{2} + (1 - d_{2})^{2}\theta_{2}^{2} > 1$$

implies $1 - d_2 > 0$ and

$$2\theta_1\theta_2 < \frac{\theta_1^2 - 1}{1 - d_2} + (1 - d_2) \theta_2^2 \leqslant (1 - d_2) \theta_2^2,$$

whence

$$\eta_{1}^{2} = \theta_{1}^{2} + 2d_{2}\theta_{1}\theta_{2} + d_{2}^{2}\theta_{2}^{2} < \theta_{1}^{2} + d_{2}\theta_{2}^{2} \leq 2,$$

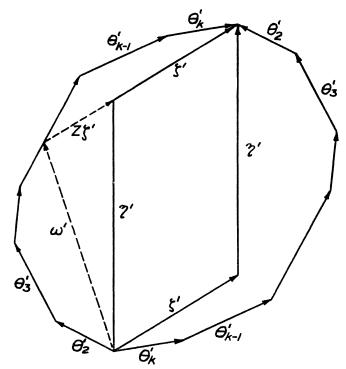
i.e.,

$$|\eta| < \sqrt{2} = 2 - (2 - \sqrt{2})$$

Let $k \ge 3$. As $\eta' = 0$ would imply $|\eta| = |\theta_1| \le 1$, it may be assumed that $\eta' \ne 0$. Similarly, $|\zeta| > 1$, implies $\zeta' \ne 0$. Let $\theta_2', \ldots, \theta_k'$ be the projections of $\theta_2, \ldots, \theta_k$ into a plane containing η' and ζ' . Then

$$\eta' = \sum_{\kappa=2}^{k} d_{\kappa} \theta_{\kappa}', \quad \zeta' = \sum_{\kappa=2}^{k} (1 - d_{\kappa}) \theta_{\kappa}', \quad \eta' + \zeta' = \sum_{\kappa=2}^{k} \theta_{\kappa}', \quad |\theta_{\kappa}'| \leq 1.$$

It may be assumed that the component of every θ_{κ}' $(2 \leq \kappa \leq k)$, and hence the component of ζ' , in the η' -direction is positive, as otherwise $|\eta'| \leq k-2$ and $|\eta| = |\theta_1 + \eta'| \leq k - 1 < k - (2 - \sqrt{2})$. The θ_{κ}' may then be so renumbered



that they form a convex polygon which encloses the parallelogram formed by η' , ζ' . Defining ω' as shown in the Figure,

(1)
$$\eta' = \omega' + z\zeta', \qquad z \ge 0,$$

where

(3)

(2)
$$|\omega'| \leqslant \sum_{\kappa=2}^{k-1} |\theta_{\kappa}'| \leqslant k-2,$$

$$|\omega'|+(z+1)|\zeta'|\leqslant \sum_{\kappa=2}^k | heta_\kappa'|\leqslant k-1$$

By assumption,

$$\zeta^{2} = (-\theta_{1} + \zeta')^{2} = \theta_{1}^{2} - 2\theta_{1}\zeta' + \zeta'^{2} > 1,$$

whence

$$2\theta_1\zeta' < \theta_1^2 + {\zeta'}^2 - 1 \leqslant {\zeta'}^2,$$

and

(4)
$$(z\zeta' + \theta_1)^2 = z^2\zeta'^2 + 2z\zeta'\theta_1 + \theta_1^2 < (z^2 + z)\zeta'^2 + 1$$
$$< (z + 1)^2\zeta'^2 + 1 \le (k - 1 - |\omega'|)^2 + 1,$$

by (3). By (1), (4),

$$\begin{aligned} |\eta| &= |\eta' + \theta_1| = |\omega' + z\zeta' + \theta_1| \\ &\leq |\omega'| + |z\zeta' + \theta_1| < |\omega'| + ((k - 1 - |\omega'|)^2 + 1)^{\frac{1}{2}}. \end{aligned}$$

The last expression increases with $|\omega'|$ and takes its greatest value, by (2), for $|\omega'| = k - 2$, i.e.,

$$|\eta| < k - 2 + \sqrt{2}.$$

$$(V)$$
 If

$$\eta = \xi + \sum_{\mu=1}^{m} \theta_{\mu}, |\xi| < a, \quad |\eta| \leq b, b > 0, |\theta_{\mu}| \leq 1 \ (1 \leq \mu \leq m),$$
$$1 \leq m \leq 2a(a-b)$$

(which implies a > b), then $\theta_r = \theta_1'$ can be selected such that $|\xi + \theta_1'| < a$.

Proof. Select $\theta_1' = \theta_r$ such that $(\xi + \theta_r)^2 \leq (\xi + \theta_\mu)^2$ for $1 \leq \mu \leq m$; then

$$\begin{aligned} \left(\xi + \theta_{1}'\right)^{2} &\leq \frac{1}{m} \sum_{\mu=1}^{m} \left(\xi + \theta_{\mu}\right)^{2} = \frac{1}{m} \left(m\xi^{2} + 2\xi(\eta - \xi) + \sum_{\mu=1}^{m} \theta_{\mu}^{2}\right) \\ &\leq \left(1 - \frac{2}{m}\right)\xi^{2} + \frac{2}{m}\xi\eta + 1 < \left(1 - \frac{2}{m}\right)a^{2} + \frac{2}{m}ab + 1 \\ &= a^{2} - \frac{2a(a - b) - m}{m} \leqslant a^{2}, \end{aligned}$$

provided that $m \ge 2$. For m = 1, $\theta_1' = \theta_1$, $|\xi + \theta_1'| = |\eta| \le b < a$.

(V.1) Under the conditions of (V) a rearrangement $\theta_1', \ldots, \theta_m'$ of $\theta_1, \ldots, \theta_m$ exists such that

$$\left|\xi + \sum_{\mu=1}^{q} \theta_{\mu}'\right| < a, \qquad \qquad 1 \leqslant q \leqslant m.$$

Proof. Successive application of (V).

It can easily be verified that the conditions of (V) and (V.1) are satisfied in the following two cases:

$$\begin{array}{ll} (\mathrm{V.2}) & a = (n^2 - 3n + 3)^{\frac{1}{2}} + 1, & b = (k^2 - 3k + 3)^{\frac{1}{2}} + 1, \\ & 2 \leqslant k \leqslant n - 1, & 1 \leqslant m \leqslant 2n - k. \end{array} \\ (\mathrm{V.3}) & a = (n^2 - 3n + 3)^{\frac{1}{2}} + 1, & b = 1, & 1 \leqslant m \leqslant 2n^2 - 4n + 3. \end{array} \\ (\mathrm{VI}) & If \ m \geqslant 1, \ \left|\theta_{\mu}\right| \leqslant 1 \ (1 \leqslant \mu \leqslant m), \ a > 0, \ b \geqslant 0, \\ & \eta = \xi + \sum_{\mu = 1}^{m} \theta_{\mu}, \quad \eta^2 < a^2, \quad \xi^2 < a^2 + b^2, \end{array}$$

then $\theta_{\nu} = \theta_1'$ can be selected such that

$$(\xi + \theta_1')^2 < a^2 + b_1^2, \quad b_1^2 = \frac{m-1}{m}b^2 + 1.$$

Proof. For m = 1, $(\xi + \theta_1')^2 = (\xi + \theta_1)^2 = \eta^2 < a^2 < a^2 + 1 = a^2 + b_1^2$. If $m \ge 2$, select $\theta_1' = \theta_{\nu}$ as in (V); then

$$\begin{aligned} \left(\xi + \theta_1'\right)^2 &\leqslant \left(1 - \frac{2}{m}\right)\xi^2 + \frac{2}{m}\xi\eta + 1 \\ &< \left(1 - \frac{2}{m}\right)(a^2 + b^2) + \frac{2}{m}a(a^2 + b^2)^{\frac{1}{2}} + 1 \\ &\leqslant \left(1 - \frac{2}{m}\right)(a^2 + b^2) + \frac{2}{m}(a^2 + \frac{1}{2}b^2) + 1 \\ &= a^2 + \frac{m-1}{m}b^2 + 1 = a^2 + b_1^2. \end{aligned}$$

(VII) If $m \ge 1$, $|\theta_{\mu}| \le 1$

$$\eta = \xi + \sum_{\mu=1}^{m} \theta_{\mu}, \quad |\eta| < a, \quad |\xi| < a,$$

then a rearrangement $\theta_1', \ldots, \theta_m'$ of $\theta_1, \ldots, \theta_m$ exists such that

$$f(m)^{2} = \max_{1 \le q \le m} \left(\xi + \sum_{\mu=1}^{q} \theta_{\mu}' \right)^{2} < a^{2} + \frac{3}{2} + e^{-1}(m - \frac{1}{2}),$$

for $m \ge 1$, and in particular,
 $f(1)^{2} < a^{2}, \qquad f(2)^{2} < a^{2} + 1,$

$$f(1)^{2} < a^{2}, \qquad f(2)^{2} < a^{2} + 1,$$

$$f(3)^{2} < a^{2} + \frac{3}{2}, \quad f(4)^{2} < a^{2} + \frac{11}{5}.$$

Proof. Applying (VI), with $b = 0, \theta_1'$ can be selected such that

$$\xi_1^2 = (\xi + \theta_1')^2 < a^2 + b_1^2, \qquad b_1^2 = 1;$$

 $(1 \leq \mu \leq m),$

applying (VI) again, θ_2' can be selected such that

$$\xi_2^2 = (\xi_1 + \theta_2')^2 = \left(\xi + \sum_{\mu=1}^2 \theta_{\mu'}\right)^2 < a^2 + b_2^2, \qquad b_2^2 = \frac{m-2}{m-1} b_1^2 + 1;$$

and continued application of (VI) will lead to

 $\xi_{q}^{2} = (\xi_{q-1} + \theta_{q}')^{2} = \left(\xi + \sum_{\mu=1}^{q} \theta_{\mu}'\right)^{2} < a^{2} + b_{q}^{2}, \quad b_{q}^{2} = \frac{m-q}{m-q+1} b_{q-1}^{2} + 1,$

 $f(m)^2 < a^2 + b_r^2,$ $b_r^2 = \max_{r \to 0} b_q^2.$

Now
(5)
$$b_q^2 = (m-q) \sum_{\kappa=1}^q \frac{1}{m-\kappa}$$
,
and

$$b_{q+1}^{2} - b_{q}^{2} = 1 - \frac{b_{q}^{2}}{m-q} = 1 - \sum_{\kappa=1}^{q} \frac{1}{m-\kappa},$$

i.e., b_q^2 first increases, then decreases, and reaches its maximum b_r^2 when

$$1 - \sum_{\kappa=1}^{r} \frac{1}{m-\kappa} \leq 0 \leq 1 - \sum_{\kappa=1}^{r-1} \frac{1}{m-\kappa},$$

i.e.

(6)
$$\sum_{\kappa=1}^{\tau-1} \frac{1}{m-\kappa} \le 1 \le \sum_{\kappa=1}^{\tau} \frac{1}{m-\kappa}$$

Now

$$\sum_{\lambda=s}^{t} \frac{1}{\lambda} < \int_{s-\frac{1}{2}}^{t+\frac{1}{2}} \frac{dx}{x} = \log \frac{t+\frac{1}{2}}{s-\frac{1}{2}},$$

hence, by (6),

for $q \leq m$. Hence,

$$1 < \log \frac{m - \frac{1}{2}}{m - r - \frac{1}{2}},$$

whence

(7)
$$m-r < e^{-1}(m-\frac{1}{2}) + \frac{1}{2},$$

and

$$f(m)^{2} < a^{2} + b_{r}^{2} = a^{2} + 1 + (m - r) \sum_{\kappa=1}^{r-1} \frac{1}{m - \kappa}$$

$$< a^{2} + 1 + (e^{-1}(m - \frac{1}{2}) + \frac{1}{2}) 1 = a^{2} + \frac{3}{2} + e^{-1}(m - \frac{1}{2})$$

by (5), (6), (7). The relation $f(1)^2 < a^2$ is trivial. For

$$m = 2, b_1^2 = b_2^2 = 1, \qquad \text{whence } f(2)^2 < a^2 + 1;$$

$$m = 3, b_1^2 = 1, b_2^2 = \frac{3}{2}, b_3^2 = 1, \qquad \text{whence } f(3)^2 < a^2 + \frac{3}{2};$$

$$m = 4, b_1^2 = 1, b_2^2 = \frac{5}{3}, b_3^2 = \frac{11}{6}, b_4^2 = 1, \text{ whence } f(4)^2 < a^2 + \frac{11}{6}.$$

(VII.1) If, in (VII),

$$a = (n^2 - 3n + 3)^{\frac{1}{2}} + 1, \qquad n \ge 3, \quad m \le n,$$

then

$$\left| \xi + \sum_{\mu=1}^{q} \theta_{\mu'} \right| < g(n) < n, \qquad 1 \leq q \leq m,$$

where g(n) is defined in the following proof.

Proof. For
$$n = 3$$
,
 $\left(\xi + \sum_{\mu=1}^{q} \theta_{\mu}'\right)^{2} < (\sqrt{3} + 1)^{2} + \frac{3}{2} = \frac{11}{2} + 2\sqrt{3} = g(3)^{2}, \quad g(3) < 2.995 < 3.$
For $n = 4$,
 $\left(\xi + \sum_{\mu=1}^{q} \theta_{\mu}'\right)^{2} < (\sqrt{7} + 1)^{2} + \frac{11}{6} = \frac{59}{6} + 2\sqrt{7} = g(4)^{2}, \quad g(4) < 3.89 < 4.$
For $n \ge 5$,
 $\left(\xi + \sum_{\mu=1}^{q} \theta_{\mu}'\right)^{2} < \{(n^{2} - 3n + 3)^{\frac{1}{2}} + 1\}^{2} + e^{-1}(n - \frac{1}{2}) + \frac{3}{2} = g(n)^{2},$
where
 $g(n)^{2} < (n - \frac{1}{3})^{2} + e^{-1}(n - \frac{1}{2}) + \frac{3}{2} = n^{2} - (\frac{2}{3} - e^{-1})n + \frac{29}{18} - \frac{1}{2e}$
 $\leqslant n^{2} - \frac{31}{18} + \frac{9}{2}e^{-1} < n^{2},$

i.e., g(n) < n.

4. THEOREM 1. For $n \ge 3$, $c_n < n$.

The proof is in several steps.

4.1. Let

$$\sum_{\tau=1}^{p} \alpha_{\tau} = 0, \qquad |\alpha_{\tau}| \leq 1.$$

A rearrangement

$$\delta_1 = \alpha_1, \quad \delta_2 = \alpha_{\pi_1}, \quad \ldots, \quad \delta_{p-1} = \alpha_{\pi_{p-1}}, \quad \delta_p = \alpha_p$$

is to be constructed such that

$$\left|\sum_{\pi=1}^{q} \delta_{\pi}\right| < g(n) < n$$

for $1 \le q \le p$. We use induction with respect to p. For p = 1, in fact for $p \le 2n - 1$, the result is trivial as no reordering is necessary:

$$\left|\sum_{\pi=1}^{q} \alpha_{\pi}\right| = \left|\sum_{\pi=q+1}^{p} \alpha_{\pi}\right| \leqslant \min(q, p-q) \leqslant \min(q, 2n-1-q) \leqslant n-1.$$

In the following it will be assumed that the result is true for p' < p.

If a partial sum

$$\zeta = \alpha_1 + \sum_{i=2}^{q} \alpha_{\tau_i}, \qquad \qquad 2 \leq q \leq p-2,$$

has a modulus ≤ 1 , then the result may be applied to

$$\alpha_1 + \sum_{i=2}^{q} \alpha_{\pi_i} + (-\zeta) = 0 \qquad (p' = 1 + q < p),$$

and to

$$\zeta + \sum_{i=q+1}^{p-1} \alpha_{\pi_i} + \alpha_p = 0$$
 $(p' = p - q + 1 < p),$

prescribing α_1 and $-\zeta$ in the first case, ζ and α_p in the second case, as first and last vectors of the rearrangement; combining the two arrangements and omitting the vectors $-\zeta$ and ζ , the desired rearrangement of the α_{π} is obtained. In the following we may therefore make the assumptions:

(VIII) If ζ is a partial sum of the α_{π} containing exactly one of α_1 , α_p and at least 1, at most p - 3 other vectors, then $|\zeta| > 1$.

In particular,

(VIII.1) $|\alpha_1 + \alpha_{\pi}| > 1, \qquad 2 \leq \pi \leq p - 1.$

Also,

(VIII.2) No partial sum is 0, except possibly $\alpha_1 + \alpha_p$ and

$$\sum_{\pi=2}^{p-1} \alpha_{\pi}.$$

For let ζ be a partial sum other than the above, and $\zeta = 0$. The following cases may arise: (a) ζ contains neither α_1 nor α_p ; in this case $|\zeta + \alpha_1| \leq 1$, contradicting (VIII); (b) ζ contains one of α_1, α_p ; this directly contradicts (VIII) unless $\zeta = \alpha_1$ or $\zeta = \alpha_p$ or $\zeta = \alpha_1 + \alpha_2 + \ldots + \alpha_{p-1}$ or $\zeta = \alpha_2 + \alpha_3 + \ldots + \alpha_p$, which implies $\alpha_1 = 0$ or $\alpha_p = 0$ and reduces the number of vectors to p' = p - 1; (c) ζ contains both α_1 and α_p and at least another α_{π} ; removal of α_p gives $|\zeta - \alpha_p| \leq 1$, again contradicting (VIII).

4.2. The desired rearrangement of the α_{π} will be obtained in three stages: (1) a rearrangement $\beta_1, \beta_2, \ldots, \beta_n$;

(2) a trivial alteration $\gamma_1, \gamma_2, \ldots, \gamma_p$ of (1) obtained by placing α_1 first; here certain *special* partial sums

$$\sum_{\kappa=1}^{q} \gamma_{\kappa}, \quad \sum_{\kappa=1}^{q'} \gamma_{\kappa}, \ldots$$

with not too distantly spaced values of q, q', \ldots have a modulus less than n (more precisely, less than a bound somewhat smaller than n);

(3) the final rearrangement $\delta_1, \delta_2, \ldots, \delta_p$ obtained from (2) by reordering the vectors within each group $\gamma_{q+1}, \ldots, \gamma_{q'}$ leading from one special partial sum to the next.

The β_{π} , γ_{π} , δ_{π} will be defined inductively as follows. Suppose an index *i*, $1 \leq i \leq p$, has been found such that

(i) β_{ν} have been selected from the α_{π} for $\nu < i$;

(ii) the non-selected vectors, $\epsilon_i, \ldots, \epsilon_p$, say, satisfy a relation

$$\sum_{\nu=i}^p e_{\nu} \epsilon_{\nu} = 0,$$

where

F. A. BEHREND

(iii) $0 < e_{\nu} \leq 1$ for $\nu < i + n$, $e_{\nu} = 1$ for $\nu \ge i + n$;

(iv) α_p is one of the ϵ_{ν} ; and if the ϵ_{ν} other than α_p are p.d. then $\alpha_p = \epsilon_p$;

(v) if α_1 is one of the ϵ_{ν} , then $\alpha_1 = \epsilon_1$;

(vi a) if α_1 is one of the ϵ_{ν} , then $\gamma_1, \ldots, \gamma_i$ are the vectors $\alpha_1, \beta_1, \ldots, \beta_{i-1}$; and

$$\xi = \sum_{\nu=1}^{i} \gamma_{\nu} = \alpha_1 + \sum_{\nu=1}^{i-1} \beta_{\nu}$$

is the special partial sum belonging to the index i;

(vi b) if α_1 is one of the β_r , $\alpha_1 = \beta_r$ say, then $\gamma_1, \ldots, \gamma_{i-1}$ are the vectors $\alpha_1, \beta_1, \ldots, \beta_{r-1}, \beta_{r+1}, \ldots, \beta_{i-1}$; and

$$\xi = \sum_{\nu=1}^{i-1} \gamma_{\nu} = \sum_{\nu=1}^{i-1} \beta_{\nu}$$

is the special partial sum belonging to i;

(vii) $|\xi| < (n^2 - 3n + 3)^{\frac{1}{2}} + 1;$

(viii) $\delta_1, \ldots, \delta_{i-1}, (\delta_i)$ are a rearrangement of $\gamma_1, \ldots, \gamma_{i-1}, (\gamma_i)$ with $\delta_1 = \gamma_1 = \alpha_1$;

(ix)
$$\left| \sum_{\nu=1}^{q} \delta_{\nu} \right| < g(n) < n \qquad q = 1, \ldots, i - 1, (i).$$

Such an index *i* will be called a *special* index.

The index i = 1 is special: (i) is void as no β 's have to be selected; the given relation

$$\sum_{\pi=1}^p \alpha_{\pi} = 0$$

plays the role of (ii) $(\alpha_{\pi} = \epsilon_{\pi})$; (iii), (iv), (v) are satisfied; defining $\delta_1 = \gamma_1 = \alpha_1 = \xi$, (vi) and (viii) are satisfied; (vii) and (ix) are trivial.

To every special index *i*, with i , a new special index <math>j > i will now be constructed (the construction will preserve the vectors β_{ν} , γ_{ν} , δ_{ν} already selected for the index *i*).

4.3. Relation (ii) contains p - (i - 1) > 2n + i - (i - 1) = 2n + 1 terms. Applying (I) to $\epsilon_i, \ldots, \epsilon_p$, we select n + 1 p.d. vectors

$$\epsilon_{\mu_1}, \ldots, \epsilon_{\mu_{n+1}},$$

where we include

$$\epsilon_i = \epsilon_{\mu_{n+1}}$$

by (I.1), and exclude α_p , by (I.2), if possible (i.e., certainly when $\alpha_p = \epsilon_p$ and $\epsilon_i, \ldots, \epsilon_{p-1}$ are p.d.). If the relation of expressing p.d. is

(8)
$$a_0\epsilon_i + \sum_{j=1}^n a_j\epsilon_{\mu_j} = 0, \qquad a_j \ge 0, \text{ not all } a_j = 0,$$

then, for all x,

(9)
$$\sum_{\nu=i}^{p} e_{\nu} \epsilon_{\nu} - x(a_{0} \epsilon_{i} + \sum_{j=1}^{n} a_{j} \epsilon_{\mu_{j}}) = 0.$$

For x = 0 all coefficients are positive and ≤ 1 ; hence a positive value of x can be determined for which (at least) one coefficient becomes 0, the others remaining $\geq 0, \leq 1$. At most 2n coefficients can be less than 1 (those of $\epsilon_i, \ldots, \epsilon_{i+n-1}, \epsilon_{\mu_1}, \ldots, \epsilon_{\mu_n}$), so that at least two coefficients remain equal to 1. Renaming the $\epsilon_{\nu}: \epsilon'_i, \epsilon_{i+1}, \ldots, \epsilon'_{\nu}$, taking first the vector or vectors with coefficient 0, then the remaining ϵ_{ν} from $\epsilon_i, \ldots, \epsilon_{i+n-1}, \epsilon_{\mu_1}, \ldots, \epsilon_{\mu_n}$, and then the remaining ones with coefficient 1, (9) will read

(10)
$$\sum_{\nu=i+1}^{\nu} e_{\nu}' \epsilon_{\nu}' = 0, \quad 0 \leq e_{\nu}' \leq 1 \text{ for } \nu < i+2n, \quad e_{\nu}' = 1 \text{ for } \nu \geq i+2n.$$

(11)
$$\epsilon = \sum_{\nu=i+1}^{i+2n-1} e_{\nu}' \epsilon_{\nu}' \qquad (0 \leq e_{\nu}' \leq 1),$$

so that (10) may be written

i⊥2*n*_1

(12)
$$\epsilon + \sum_{\nu=i+2n}^{p} \epsilon_{\nu}' = 0.$$

 α_1 cannot be contained in the partial sum

$$\sum_{\nu=i+2n}^{p}\epsilon_{\nu}';$$

for if α_1 occurs in (9), then $\alpha_1 = \epsilon_i$ by (v), i.e. α_1 is one of $\epsilon_i', \ldots, \epsilon'_{i+2n-1}$; by (VIII.2) the partial sum cannot vanish, whence $\epsilon \neq 0$. By (II) ϵ can be written in the form

(13)
$$\epsilon = \sum_{\nu=i+l}^{j=n-1} f_{\nu} \phi_{\nu}, \ 0 < f_{\nu} \leq 1 \text{ for } \nu < i+l+n, \ f_{\nu} = 1 \text{ for } \nu \ge i+l+n,$$

where

$$(14) 1 \leqslant l \leqslant 2n-1,$$

and $\phi_{i+1}, \ldots, \phi_{i+2n-1}$ is a rearrangement of $\epsilon'_{i+1}, \ldots, \epsilon'_{i+2n-1}$. By (II.1) it may be assumed that

;

(15) if α_1 is still present in (13), then $\alpha_1 = \phi_{i+i}$.

Define

$$(16) j = i + l$$

then, by (14),

It will now be shown that j is a special index. The properties (i), . . ., (ix) relating to j will be denoted by (i'), . . ., (ix').

4.5. (i') By (i), β_{ν} is defined for $\nu < i$; defining

$$\beta_i = \epsilon_i', \quad \beta_{i+1} = \phi_{i+1}, \quad \ldots, \quad \beta_{j-1} = \phi_{j-1}$$

 β_{ν} are selected for $\nu < j$.

The non-selected vectors are $\phi_j, \ldots, \phi_{i+2n-1}$ and $\epsilon'_{i+2n}, \ldots, \epsilon_p'$ which will be renamed $\phi_{i+2n}, \ldots, \phi_p$. Substituting (13) into (12), we get

(ii')
$$\sum_{\nu=j}^{p} f_{\nu} \phi_{\nu} = 0,$$

where

(iii')
$$0 < f_{\nu} \leq 1 \text{ for } \nu < j + n, \quad f_{\nu} = 1 \text{ for } \nu \ge j + n;$$

note also that

(18)
$$f_{\nu} = 1 \text{ for } \nu \geqslant i + 2n;$$

in particular,

(19) $f_{p-1} = f_p = 1.$

(iv') α_p is one of the ϕ_{ν} ($\nu \ge j$). For, either the ϵ_{μ} other than α_p are p.i.; then, a fortiori, the ϕ_{ν} other than α_p are p.i.; but (ii') expresses the p.d. of the ϕ_{ν} other than α_p unless α_p is present in (ii'); or the ϵ_{ν} other than α_p are p.d.; then $\alpha_p = \epsilon_p$ by (iv), and α_p was excluded from (8), so that $\alpha_p = \epsilon_p = \epsilon_{p'} = \phi_p$. This latter case certainly arises if the ϕ_{ν} other than α_p are p.d., for this implies the p.d. of the ϵ_{μ} other than α_p .

(v') If α_1 is one of the ϕ_{ν} ($\nu \ge j$), then $\alpha_1 = \phi_j$, by (15), (16).

(vi' a) If α_1 is one of the ϕ_{ν} , then $\gamma_1, \ldots, \gamma_j$ are the vectors $\alpha_1, \beta_1, \ldots, \beta_{j-1}$: and

$$\eta = \sum_{\nu=1}^{j} \gamma_{\nu} = \alpha_1 + \sum_{\nu=1}^{j-1} \beta_{\nu}$$

will be defined as the special partial sum belonging to the index j;

(vi' b) if $\alpha_1 = \beta_r$, r < j, then $\gamma_1, \ldots, \gamma_{j-1}$ are the vectors $\alpha_1, \beta_1, \ldots, \beta_{r-1}$, $\beta_{r+1}, \ldots, \beta_{j-1}$; and

$$\eta = \sum_{\nu=1}^{j-1} \gamma_{\nu} = \sum_{\nu=1}^{j-1} \beta_{\nu}.$$

These definitions are consistent with the definitions (vi).

4.6. We now investigate the special partial sum η . In case (vi' a)

$$\eta = \alpha_1 + \sum_{\nu=1}^{j-1} \beta_{\nu} = \alpha_1 - \sum_{\nu=j}^{p} \phi_{\nu} = -\sum_{\nu=j+1}^{p} \phi_{\nu} \qquad \text{by (v')}$$

$$= -\sum_{\nu=j+1}^{p} \phi_{\nu} + \sum_{\nu=j}^{p} f_{\nu} \phi_{\nu} \qquad \text{by (ii')}$$

$$= f_j \alpha_1 - \sum_{\nu=j+1}^{\nu} (1 - f_{\nu}) \phi_{\nu},$$

and as $f_{\nu} = 1$ for $\nu \ge \min(j + n, i + 2n)$ by (iii') and (18),

(20)
$$\eta = f_j \alpha_1 - \sum_{\nu=j+1}^{j+k-1} (1 - f_{\nu}) \phi_{\nu},$$

where

$$j + k - 1 = \min(j + n - 1, i + 2n - 1)$$

i.e., by (16),

(21)
$$k = \min(n, 2n - (j - i)) = \min(n, 2n - l),$$

whence, by (14), $1 \le k \le n$. The case k = 1 can be excluded as it would imply $|\eta| = |f_j \alpha_1| \le 1$ where η is a partial sum with j = 2n + i - 1 terms $(2n \le j \le p - 2)$, including α_1 , excluding α_p , which contradicts (VIII). Thus,

(22)
$$2 \leq k \leq n, \ 1 \leq l \leq 2n-2, \ i+1 \leq j \leq i+2n-2.$$

As $|\alpha_1| \leq 1$, $|\phi_{\nu}| \leq 1$, $0 < f_j \leq 1$, $0 \leq 1 - f_{\nu} < 1$, and, by (VIII.1) $|\alpha_1 + \phi_{\nu}| > 1$, except, possibly, for $\phi_{\nu} = \alpha_{\nu}$, (20) satisfies the conditions of (III), and we have

(23)
$$|\eta| < (k^2 - 3k + 3)^{\frac{1}{2}} + 1.$$

As $k \leq n$, this implies

(vii')
$$|\eta| < (n^2 - 3n + 3)^{\frac{1}{2}} + 1.$$

In case (vi'b),

$$\eta = \sum_{\nu=1}^{j-1} \beta_{\nu} = -\sum_{\nu=j}^{p} \phi_{\nu} = -\sum_{\nu=j}^{p} \phi_{\nu} + \sum_{\nu=j}^{p} f_{\nu} \phi_{\nu} \qquad \text{by (ii')}$$
$$= \sum_{\nu=j}^{p} (1 - f_{\nu})(-\phi_{\nu}) = \sum_{\nu=j}^{j+k-1} (1 - f_{\nu})(-\phi_{\nu}),$$

by (iii') and (18), where k is defined by (21); k = 1 would imply $|(1 - f_j)\phi_j| = |\eta| \leq 1$, hence can be excluded as above; thus, (22) will hold and η may be written

(24)
$$\eta = \sum_{\nu=j}^{j+k-2} (1-f_{\nu})(-\phi_{\nu}) + (1-f_{j+k-1})(-\phi_{j+k-1}).$$

We may assume that $\alpha_p = \phi_p$ or $\alpha_p = \phi_{j+k-1}$, so that the partial sum

$$\zeta = \sum_{\nu=j+k-1}^{p} \phi_{\nu}$$

contains α_p , but not α_1 , and f = p - (j + k - 1) further terms; $j \ge 2$, $k \ge 2$ imply $f \le p - 3$; (21) and i imply <math>f > 1; hence, by (VIII). $|\zeta| > 1$.

Now,

(25)
$$\zeta = \sum_{\substack{\nu=j+k-1 \\ \nu=j}}^{p} \phi_{\nu} - \sum_{\substack{\nu=j \\ \nu=j}}^{p} f_{\nu} \phi_{\nu}$$
$$= \sum_{\substack{\nu=j \\ \nu=j}}^{j+k-2} f_{\nu} (-\phi_{\nu}) - (1 - f_{j+k-1})(-\phi_{j+k-1}).$$

(24), (25) satisfy the conditions of (IV); hence,
(26) |η| < k − (2 − √2),

which implies (23) and (vii').

4.7. It remains to establish (viii') and (ix'). By (vi) and (vi'), the three possibilities are:

(27)
$$\begin{cases} \eta = \xi + \sum_{\nu=i}^{j-1} \gamma_{\nu}, \\ \eta = \xi + \sum_{\nu=i+1}^{j} \gamma_{\nu}, \\ \eta = \xi + \sum_{\nu=i+1}^{j-1} \gamma_{\nu}. \end{cases}$$

The γ_r contained in ξ have already been rearranged as δ_r according to (viii) to satisfy (ix); it therefore remains to reorder the γ_r under the summation sign in (27). There are m such γ_r , where m = j - i = l or m = j - i - 1 = l - 1, i.e., $1 \leq m \leq l$. (The case m = 0 is trivial, since then $\eta = \xi$, $\beta_i = \epsilon_i = \alpha_1$ and the vectors considered in (viii'), (ix') are identical with those of (viii), (ix).) We distinguish two cases:

(1) $2 \le k \le n-1$. By (21), k = 2n - l, $1 \le m \le 2n - k$. Together with (vii) and (23), these are the conditions of (V.2) for (27) which guarantee the required reordering (viii') of the γ_{ν} satisfying (ix'), the bound obtained being $(n^2 - 3n + 3)^{\frac{1}{2}} + 1$.

(2) k = n. By (21), $n \leq 2n - l$, whence $m \leq l \leq n$, and by (vii) and (vii'), (27) satisfies the conditions of (VII.1) which guarantee the required reordering (viii') of the γ_r satisfying (ix'), the bound g(n) being defined as in the proof of (VII.1).

As g(n) is greater than $(n^2 - 3n + 3)^{\frac{1}{2}} + 1$, the bound g(n) may also be used in case (1).

This completes the proof that j is a special index.

4.8. The procedure of selecting the β_{ν} , γ_{ν} , δ_{ν} can be continued until a special index *i* is reached for which $i \ge p - 2n$. In this case $\delta_1, \ldots, \delta_{i-1}$ or $\delta_1, \ldots, \delta_i$ have been correctly selected, and the corresponding special partial sum is

$$\xi = \sum_{\nu=1}^{i-1} \delta_{\nu}$$

or

$$\xi = \sum_{\nu=1}^{i} \delta_{\nu}.$$

If the remaining vectors are called $\gamma_i, \ldots, \gamma_p = \alpha_p$ or $\gamma_{i+1}, \ldots, \gamma_p = \alpha_p$ respectively, then

$$\eta = -\alpha_p = \xi + \sum_{\nu=i}^{p-1} \gamma_{\nu}$$

or

$$\eta = -\alpha_p = \xi + \sum_{\nu=i+1}^{p-1} \gamma_{\nu}$$

satisfies the conditions of (V.3), because the number of γ_{ν} is m = p - i or p - i - 1, whence $m \leq 2n < 2n^2 - 4n + 3$ (for $n \geq 3$). Reordering the γ_{ν} according to (V.3), and choosing α_p as the last vector, the rearrangement of the given vectors is completed.

5. THEOREM 2. $c_3 \leq (5+2\sqrt{3})^{\frac{1}{2}} \simeq 2.91$.

Proof. For any special index i $(1 \le i \le p-7)$, relation (ii) of §4.2 reads (n = 3)

$$\sum_{\nu=i}^{i+2} e_{\nu}\epsilon_{\nu} + \sum_{\nu=i+3}^{p} \epsilon_{\nu} = 0, \qquad \qquad 0 < e_{\nu} \leq 1.$$

We shall prove (cf. (vii)) that

$$|\xi| < 1 + \sqrt{2},$$

unless both α_1 , α_p are present in

$$\sum_{\nu=i}^{i+2} e_{\nu} \epsilon_{\nu}$$

and the coefficient of the third vector is less than 1 (in this case (vii) gives $|\xi| < 1 + \sqrt{3}$). If α_1 is not present in

$$\sum_{\nu=i}^{i+2} e_{\nu} \epsilon_{\nu},$$

the reasoning of 4.6, (vi'b) applies leading to (26), which for $k \leq 3$ gives the estimate $1 + \sqrt{2}$. If α_1 is present, α_p absent, then

 $\xi = e_i \alpha_1 - (1 - e_{i+1}) \epsilon_{i+1} - (1 - e_{i+2}) \epsilon_{i+2};$

if

$$\zeta = \epsilon_{i+3} + \ldots + \epsilon_p = -e_i\alpha_1 - e_{i+1}\epsilon_{i+1} - e_{i+2}\epsilon_{i+2}$$

then $|\zeta| > 1$, by (VIII), and $|\xi| < 1 + \sqrt{2}$, by (IV). If, finally, α_1 , α_p are both present, but the coefficient of the third vector is 1, then

$$|\xi| = |e_i \alpha_1 - (1 - e_{i+1}) \alpha_p| \leq 2 < 1 + \sqrt{2}.$$

The relation between the special partial sums ξ , η belonging to two successive special indices i, j is given by (27), where $m \leq l \leq 2n - 2 = 4$. We distinguish two cases:

(1) One of the two partial sums, say η , has modulus less than $1 + \sqrt{2}$, i.e.,

$$|\xi| < 1 + \sqrt{3}, \quad |\eta| < 1 + \sqrt{2}.$$

If the γ , in (27) are called $\theta_1, \ldots, \theta_m$, then

$$\eta = \xi + \sum_{\mu=1}^m \theta_{\mu}.$$

Let $\theta_1', \ldots, \theta_m'$ be the rearrangement of $\theta_1, \ldots, \theta_m$ according to the principle used in (V). Then, for m = 4,

F. A. BEHREND

$$\begin{aligned} (\xi + \theta_1')^2 &\leq \frac{1}{2}\xi^2 + \frac{1}{2}|\xi| \cdot |\eta| + 1 \\ &< \frac{1}{2}(\sqrt{3} + 1)^2 + \frac{1}{2}(\sqrt{3} + 1)(\sqrt{2} + 1) + 1 < 8.04, \\ |\xi + \theta_1'| &< 2.84, \\ (\xi + \theta_1' + \theta_2')^2 &\leq \frac{1}{3} \times 8.04 + \frac{2}{3} \times 2.84 \times 2.42 + 1 < 8.27, \\ |\xi + \theta_1' + \theta_2'| &< 2.88, \\ (\xi + \theta_1' + \theta_2' + \theta_3')^2 &\leq 2.88 \times 2.42 + 1 < 7.97, \end{aligned}$$

 $|\xi + \theta_1' + \theta_2' + \theta_3'| < 2.83;$

the maximum estimate, 2.88, is less than $(5 + 2\sqrt{3})^{\frac{1}{2}}$. The cases m < 4 are treated in the same way.

(2) The estimate $1 + \sqrt{2}$ is not available for either of ξ , η . This means, by (vii), that both (ii) and (ii') contain α_1 and α_p in their first three terms, the coefficient of the third term being less than 1. By (iv), the ϵ_p other than α_p are p.i.; hence (8) contains $\alpha_1 = \epsilon_i$, $\alpha_p = \epsilon_{i+1}$, and two other vectors ϵ_{μ_1} , ϵ_{μ_2} . In the transition from (ii) via (8)–(13) to (ii'), α_1 , α_p are retained together with at least one of ϵ_{i+2} , ϵ_{μ_1} , ϵ_{μ_2} , i.e., at most two vectors are eliminated. Hence, $m = l = j - i \leq 2$; m = 1 means $\eta = \xi + \theta_1$ which requires no reordering; m = 2 means $\eta = \xi + \theta_1 + \theta_2$, and θ_1' can be selected from θ_1 , θ_2 such that

$$(\xi + \theta_1')^2 < (1 + \sqrt{3})^2 + 1 = 5 + 2\sqrt{3},$$
$$|\xi + \theta_1'| < (5 + 2\sqrt{3})^{\frac{1}{2}}.$$

References

- 1. E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. reine angew. Math. 143 (1913), 128-175; 144 (1914), 1-40.
- 2. W. Gross, Bedingt konvergente Reihen, Monatsh. Math. Phys. 28 (1917), 221-237.
- 3. V. Bergström, Ein neuer Beweis eines Satzes von E. Steinitz, Abh. Math. Seminar Hamburg, 8 (1930), 148-152.
- 4. —, Zwei Sätze über ebene Vektorpolygone, Abh. Math. Seminar Hamburg, 8 (1930), 206-214.
- I. Damsteeg and I. Halperin, The Steinitz-Gross theorem on sums of vectors, Trans. Roy. Soc. Can., sec. III, 44 (1950), 31-35.

University of Melbourne