THE STEINITZ-GROSS THEOREM ON SUMS OF VECTORS

F. A. BEHREND

1. Introduction. $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ are n-dimensional vectors,

$$
\sum_{\pi=1}^{p} \alpha_{\pi}=0, \quad\left|\alpha_{\pi}\right| \leqslant 1 \quad(1 \leqslant \pi \leqslant p)
$$

they are arranged to form a closed polygon

$$
O A_{1} A_{2} \ldots A_{p-1} O\left(\overrightarrow{O A}_{1}=\alpha_{1}, \ldots, \overrightarrow{A_{\pi-1} A_{\pi}}=\alpha_{\pi}, \ldots, \overrightarrow{A_{p-1}} O=\alpha_{p}\right) .
$$

Denote by $R\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ the radius of the smallest circumscribed hypersphere with centre at O; by $\bar{R}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ the minimum of

$$
R\left(\alpha_{1}, \alpha_{\pi_{2}}, \ldots, \alpha_{\pi_{p-1}}, \alpha_{p}\right)
$$

for all possible reorderings

$$
\alpha_{\pi_{1}}, \ldots, \alpha_{\pi_{p-1}}
$$

of $\alpha_{2}, \ldots, \alpha_{p-1}$; and by c_{n} the least possible constant such that

$$
\bar{R}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \leqslant c_{n}
$$

for all possible choices of p and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$.
Steinitz (1) proved that $c_{n} \leqslant 2(n+1)$; using induction with respect to n, Gross (2) obtained the weaker estimate $c_{n} \leqslant 2^{n}-1$; by the same method Bergström (3) obtained the result $c_{n}{ }^{2} \leqslant 4 c_{n-1}{ }^{2}+1$. Trivially, $c_{1}=1 . c_{2}=\sqrt{ } 2$ was proved independently by Gross (2), Bergström (4), and Damsteeg and Halperin (5). For $n \geqslant 3$ the exact values of c_{n} are not known; from Bergström's estimate it follows that $c_{3} \leqslant 3, c_{4} \leqslant \sqrt{ } 37$; for $n \geqslant 5$, Steinitz's estimate gives the best result.

By a refinement of Steinitz's original method it will be shown in this paper that, for $n \geqslant 3, c_{n}<n$ (Theorem 1), and particularly, $c_{3} \leqslant(5+2 \sqrt{ } 3)^{\frac{1}{2}}=$ $2.90 \ldots$ (Theorem 2).

The lower estimate $c_{n} \geqslant \frac{1}{2}(n+6)^{\frac{1}{2}}$ given by Damsteeg and Halperin (5), and other examples make it likely that the true order of c_{n} is $n^{\frac{1}{2}}$.
2. Notation. Greek letters except $\kappa, \lambda, \mu, \nu, \pi$ denote n-dimensional vectors $(n \geqslant 3) ; a, b, c, d, e, f, g, x, y, z$ real numbers; $i, j, k, l, m, n, p, q, r, s, t, \kappa, \lambda, \mu$, ν, π natural numbers.
$|\alpha|$ denotes the length of $\alpha ; \alpha \beta$ the scalar product of α, β.
The vectors $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$ will be called positively dependent (p.d.) if they are linearly dependent with non-negative coefficients; positively independent (p.i.) means not p.d.

Received March 12, 1953.

3. Lemmas.

(I) From any $m(>n+1)$ p.d. vectors $\theta_{1}, \theta_{2}, \ldots, \theta_{m}, n+1$ p.d. vectors $\theta_{\mu_{1}}, \theta_{\mu_{1}}, \ldots, \theta_{\mu_{n+1}}$ can be selected.

Proof. It is sufficient to show that $m-1$ of the given vectors are p.d. If, in the given relation

$$
\sum_{\mu=1}^{m} d_{\mu} \theta_{\mu}=0 \quad d_{\mu} \geqslant 0
$$

(at least one d_{μ} being positive), one d_{μ} is zero, this is trivial. If all $d_{\mu}>0$, choose any linear relation between $\theta_{1}, \ldots, \theta_{n+1}$,

$$
\sum_{\nu=1}^{n+1} a_{\nu} \theta_{\nu}=0 \quad\left(\text { not all } a_{\nu}=0\right)
$$

and consider the relation

$$
\sum_{\nu=1}^{n+1}\left(d_{\nu}-x a_{\nu}\right) \theta_{\nu}+\sum_{\nu=n+2}^{m} d_{\nu} \theta_{\nu}=0
$$

For $x=0$ all coefficients are positive; hence x can be chosen such that one coefficient vanishes, the others remaining non-negative (and d_{m} positive); the ensuing relation expresses the p.d. of $m-1$ of the vectors.

$$
\begin{equation*}
\theta_{\mu_{1}}, \ldots, \theta_{\mu_{\mathrm{m}}+1} \tag{I.1}
\end{equation*}
$$

in (I) may be prescribed to include θ_{1}.
Proof. Suppose θ_{1} is not already included. Let

$$
\sum_{i=1}^{n+1} b_{i} \theta_{\mu_{i}}=0
$$

be the relation expressing the p.d. of

$$
\theta_{\mu_{1}}, \ldots, \theta_{\mu_{n+1}} .
$$

If one $b_{i}=0$, the term $0 \cdot \theta_{1}$ may be substituted for $b_{i} \theta_{\mu i}$. If all $b_{i}>0$, consider any linear relation between $\theta_{\mu_{1}}, \ldots, \theta_{\mu_{n}}, \theta_{1}$:

$$
\sum_{i=1}^{n} e_{i} \theta_{\mu_{i}}+e_{n+1} \theta_{1}=0 \quad\left(\text { not all } e_{i}=0\right)
$$

It may be assumed that $e_{n+1} \geqslant 0$. If all $e_{i} \geqslant 0$,

$$
\theta_{\mu_{1}}, \ldots, \theta_{\mu_{n}}, \theta_{1}
$$

are p.d. If one $e_{i}<0$, consider the relation

$$
\sum_{i=1}^{n}\left(b_{i}+x e_{i}\right) \theta_{\mu_{i}}+b_{n+1} \theta_{\mu_{n+1}}+x e_{n+1} \theta_{1}=0
$$

For $x=0$ all coefficients in the first sum are positive; hence $x>0$ can be determined so that one coefficient vanishes, the others remaining non-negative (and b_{n+1} positive). The following corollary is obvious:
(I.2) In (I) and (I.1) θ_{m} may be excluded from

$$
\theta_{\mu_{1}}, \ldots, \theta_{\mu_{n+1}}
$$

unless $\theta_{1}, \ldots, \theta_{m-1}$ are p.i.
(II) If $m>n$,

$$
\theta=\sum_{\mu=1}^{m} d_{\mu} \theta_{\mu} \neq 0, \quad 0 \leqslant d_{\mu} \leqslant 1
$$

then θ can be expressed in the form

$$
\theta=\sum_{\mu=l}^{m} d_{\mu}{ }^{\prime} \theta_{\mu}^{\prime}, \quad\left\{\begin{aligned}
0<d_{\mu}^{\prime} \leqslant 1, & \mu<l+n \\
d_{\mu}^{\prime}=1, & \mu \geqslant l+n
\end{aligned}\right.
$$

where $1 \leqslant l \leqslant m$, and the $\theta_{\mu}{ }^{\prime}$ are a rearrangement of the θ_{μ}.
Proof. Let r be the number of d_{μ} 's with $0<d_{\mu}<1$. If $r \leqslant n$, then the required relation is obtained from the given one by omitting the terms with coefficient 0 . It is therefore sufficient to show that, for $r \geqslant n+1$, the value of r can be diminished. Suppose that $0<d_{\mu}<1$ for $1 \leqslant \mu \leqslant n+1$; using a linear relation

$$
\sum_{\mu=1}^{n+1} a_{\mu} \theta_{\mu}=0 \quad\left(\text { not all } a_{\mu}=0\right)
$$

form

$$
\theta=\sum_{\mu=1}^{n+1}\left(d_{\mu}-x a_{\mu}\right) \theta_{\mu}+\sum_{\mu=n+2}^{m} d_{\mu} \theta_{\mu} .
$$

For $x=0$ the first $n+1$ coefficients lie between 0 and 1 ; hence x can be chosen such that one coefficient becomes equal to 0 or 1 , the others remaining $\geqslant 0$, $\leqslant 1$. As $\theta \neq 0$, the final representation of θ contains at least one term, i.e., $l \leqslant m$.
(II.1) The representation

$$
\theta=\sum_{\mu=l}^{m} d_{\mu}{ }^{\prime} \theta_{\mu}^{\prime}
$$

in (II) may be so chosen that either $\theta_{1}=\theta_{l}^{\prime}$ or θ_{1} does not occur at all.
Proof. Suppose θ_{1} occurs in the relation obtained. (II.1) is obvious if the coefficient of θ_{1} is less than 1 or if fewer than n coefficients are less than 1 (only a trivial reordering of the $\theta_{\mu}{ }^{\prime}$ being required). If the coefficient of θ_{1} is 1 , and exactly n coefficients are less than 1, i.e.,

$$
\begin{gathered}
0<d_{\mu}^{\prime}<1 \text { for } \mu=l, \ldots, l+n-1 \\
\theta_{1}=\theta_{s}^{\prime}, \quad s \geqslant l+n, \quad d_{s}=1
\end{gathered}
$$

use a linear relation

$$
\sum_{\mu=l}^{l+n-1} b_{\mu} \theta_{\mu}+b_{s} \theta_{s}^{\prime}=0 \quad\left(b_{\mu}, b_{z} \text { not all } 0\right),
$$

to form

$$
\theta=\sum_{\mu=l}^{l+n-1}\left(d_{\mu}{ }^{\prime}-x b_{\mu}\right) \theta_{\mu}{ }^{\prime}+\left(1-x b_{s}\right) \theta_{1}+\sum_{\substack{\mu=l+n \\ \mu \neq s}}^{m} d_{\mu} \theta^{\prime} \theta^{\prime} .
$$

It may be assumed that $b_{s} \geqslant 0$; letting x increase from 0 , either θ_{1} can be eliminated from the relation, or one of the first n coefficients can be made equal to 0 or 1 (the others remaining $\geqslant 0, \leqslant 1$); in this case θ_{1} can be incorporated in the first n terms and be renamed $\theta_{l}{ }^{\prime}$.
(III) If $k \geqslant 2,\left|\theta_{\kappa}\right| \leqslant 1 \quad(1 \leqslant \kappa \leqslant k)$,

$$
\eta=d_{1} \theta_{1}-\sum_{\kappa=2}^{k} d_{\kappa} \theta_{\kappa}, \quad 0 \leqslant d_{1} \leqslant 1,0 \leqslant d_{\kappa}<1(\kappa>1),
$$

then

$$
.\left|\theta_{1}+\theta_{\kappa}\right|>1, \quad 1<\kappa<k
$$

implies

$$
|\eta|<\sqrt{ }\left(k^{2}-3 k+3\right)+1
$$

Proof. For $k=2,|\eta| \leqslant\left|d_{1} \theta_{1}\right|+\left|d_{2} \theta_{2}\right|<2=\sqrt{ } 1+1$; for $k \geqslant 3$,

$$
\left(\theta_{1}+\theta_{\kappa}\right)^{2}=\theta_{1}{ }^{2}+2 \theta_{1} \theta_{\kappa}+\theta_{\kappa}^{2}>1, \quad 1<\kappa<k,
$$

implies

$$
-2 \theta_{1} \theta_{\kappa}<\theta_{1}^{2}+\theta_{\kappa}^{2}-1 \leqslant 1,
$$

whence

$$
\begin{aligned}
|\eta| & \leqslant\left|d_{1} \theta_{1}-\sum_{\kappa=2}^{k-1} d_{k} \theta_{\kappa}\right|+\left|d_{k} \theta_{k}\right| \\
& <\left\{{\left.d_{1}{ }^{2} \theta_{1}{ }^{2}-\sum_{k=2}^{k-1} d_{1} d_{k} 2 \theta_{1} \theta_{\kappa}+\left(\sum_{k=2}^{k-1} d_{\kappa} \theta_{\kappa}\right)^{2}\right\}^{\frac{1}{2}}+1} \ll\left\{1+(k-2)+(k-2)^{2}\right\}^{\frac{1}{2}}+1=\left(k^{2}-3 k+3\right)^{\frac{1}{2}}+1 .\right.
\end{aligned}
$$

(III.1) If the condition $\left|\theta_{1}+\theta_{k}\right|>1$ is added in (III), then

$$
|\eta|<\left(k^{2}-k+1\right)^{\frac{1}{2}} .
$$

Proof. By obvious modification of the proof of (III).
(IV) If $k \geqslant 2,\left|\theta_{k}\right| \leqslant 1$
$(1 \leqslant \kappa \leqslant k)$,

$$
\begin{aligned}
& \eta^{\prime}=\sum_{\kappa=2}^{k} d_{\kappa} \theta_{\kappa}, \quad \zeta^{\prime}=\sum_{\kappa=2}^{k}\left(1-d_{\kappa}\right) \theta_{\kappa}, \quad 0 \leqslant d_{\kappa} \leqslant 1, \\
& \eta=\theta_{1}+\eta^{\prime}, \quad \zeta=-\theta_{1}+\zeta^{\prime},
\end{aligned}
$$

then $|\zeta|>1$, implies

$$
|\eta|<k-(2-\sqrt{ } 2) .
$$

Proof. For $k=2$,

$$
\zeta^{2}=\left(-\theta_{1}+\left(1-d_{2}\right) \theta_{2}\right)^{2}=\theta_{1}^{2}-2\left(1-d_{2}\right) \theta_{1} \theta_{2}+\left(1-d_{2}\right)^{2} \theta_{2}^{2}>1
$$

implies $1-d_{2}>0$ and

$$
2 \theta_{1} \theta_{2}<\frac{\theta_{1}^{2}-1}{1-d_{2}}+\left(1-d_{2}\right) \theta_{2}^{2} \leqslant\left(1-d_{2}\right) \theta_{2}^{2}
$$

whence

$$
\eta^{2}=\theta_{1}^{2}+2 d_{2} \theta_{1} \theta_{2}+d_{2}^{2} \theta_{2}^{2}<\theta_{1}^{2}+d_{2} \theta_{2}^{2} \leqslant 2,
$$

i.e.,

$$
|\eta|<\sqrt{ } 2=2-(2-\sqrt{ } 2)
$$

Let $k \geqslant 3$. As $\eta^{\prime}=0$ would imply $|\eta|=\left|\theta_{1}\right| \leqslant 1$, it may be assumed that $\eta^{\prime} \neq 0$. Similarly, $|\zeta|>1$, implies $\zeta^{\prime} \neq 0$. Let $\theta_{2}{ }^{\prime}, \ldots, \theta_{k}{ }^{\prime}$ be the projections of θ_{2}, \ldots, θ_{k} into a plane containing η^{\prime} and ζ^{\prime}. Then

$$
\eta^{\prime}=\sum_{k=2}^{k} d_{k} \theta_{k}^{\prime}, \quad \zeta^{\prime}=\sum_{k=2}^{k}\left(1-d_{k}\right) \theta_{k}^{\prime}, \quad \eta^{\prime}+\zeta^{\prime}=\sum_{k=2}^{k} \theta_{k}^{\prime}, \quad\left|\theta_{k}^{\prime}\right| \leqslant 1
$$

It may be assumed that the component of every $\theta_{\mathrm{k}}{ }^{\prime}(2 \leqslant \kappa \leqslant k)$, and hence the component of ζ^{\prime}, in the η^{\prime}-direction is positive, as otherwise $\left|\eta^{\prime}\right| \leqslant k-2$ and $|\eta|=\left|\theta_{1}+\eta^{\prime}\right| \leqslant k-1<k-(2-\sqrt{ } 2)$. The $\theta_{k}{ }^{\prime}$ may then be so renumbered

that they form a convex polygon which encloses the parallelogram formed by $\eta^{\prime}, \zeta^{\prime}$. Defining ω^{\prime} as shown in the Figure,

$$
\begin{equation*}
\eta^{\prime}=\omega^{\prime}+z \zeta^{\prime} \tag{1}
\end{equation*}
$$

$$
z \geqslant 0
$$

where

$$
\begin{align*}
& \left|\omega^{\prime}\right| \leqslant \sum_{k=2}^{k-1}\left|\theta_{k}^{\prime}\right| \leqslant k-2 \tag{2}\\
& \left|\omega^{\prime}\right|+(z+1)\left|\zeta^{\prime}\right| \leqslant \sum_{k=2}^{k}\left|\theta_{\mathrm{k}}^{\prime}\right| \leqslant k-1 \tag{3}
\end{align*}
$$

By assumption,

$$
\zeta^{2}=\left(-\theta_{1}+\zeta^{\prime}\right)^{2}=\theta_{1}^{2}-2 \theta_{1} \zeta^{\prime}+\zeta^{\prime 2}>1
$$

whence

$$
2 \theta_{1} \zeta^{\prime}<\theta_{1}^{2}+\zeta^{\prime 2}-1 \leqslant \zeta^{\prime 2}
$$

and

$$
\begin{align*}
\left(z \zeta^{\prime}+\theta_{1}\right)^{2} & =z^{2} \zeta^{\prime 2}+2 z \zeta^{\prime} \theta_{1}+\theta_{1}^{2}<\left(z^{2}+z\right) \zeta^{\prime 2}+1 \tag{4}\\
& <(z+1)^{2} \zeta^{\prime 2}+1 \leqslant\left(k-1-\left|\omega^{\prime}\right|\right)^{2}+1
\end{align*}
$$

by (3). By (1), (4),

$$
\begin{aligned}
|\eta| & =\left|\eta^{\prime}+\theta_{1}\right|=\left|\omega^{\prime}+z \zeta^{\prime}+\theta_{1}\right| \\
& \leqslant\left|\omega^{\prime}\right|+\left|z \zeta^{\prime}+\theta_{1}\right|<\left|\omega^{\prime}\right|+\left(\left(k-1-\left|\omega^{\prime}\right|\right)^{2}+1\right)^{\frac{1}{2}} .
\end{aligned}
$$

The last expression increases with $\left|\omega^{\prime}\right|$ and takes its greatest value, by (2), for $\left|\omega^{\prime}\right|=k-2$, i.e.,

$$
|\eta|<k-2+\sqrt{ } 2
$$

(V) If

$$
\begin{gathered}
\eta=\xi+\sum_{\mu=1}^{m} \theta_{\mu},|\xi|<a, \quad|\eta| \leqslant b, b>0,\left|\theta_{\mu}\right| \leqslant 1(1 \leqslant \mu \leqslant m) \\
1 \leqslant m \leqslant 2 a(a-b)
\end{gathered}
$$

(which implies $a>b$), then $\theta_{\nu}=\theta_{1}{ }^{\prime}$ can be selected such that $\left|\xi+\theta_{1}{ }^{\prime}\right|<a$.
Proof. Select $\theta_{1}{ }^{\prime}=\theta_{\nu}$ such that $\left(\xi+\theta_{\nu}\right)^{2} \leqslant\left(\xi+\theta_{\mu}\right)^{2}$ for $1 \leqslant \mu \leqslant m$; then

$$
\begin{aligned}
\left(\xi+\theta_{1}{ }^{\prime}\right)^{2} & \leqslant \frac{1}{m} \sum_{\mu=1}^{m}\left(\xi+\theta_{\mu}\right)^{2}=\frac{1}{m}\left(m \xi^{2}+2 \xi(\eta-\xi)+\sum_{\mu=1}^{m} \theta_{\mu}{ }^{2}\right) \\
& \leqslant\left(1-\frac{2}{m}\right) \xi^{2}+\frac{2}{m} \xi \eta+1<\left(1-\frac{2}{m}\right) a^{2}+\frac{2}{m} a b+1 \\
& =a^{2}-\frac{2 a(a-b)-m}{m} \leqslant a^{2}
\end{aligned}
$$

provided that $m \geqslant 2$. For $m=1, \theta_{1}{ }^{\prime}=\theta_{1},\left|\xi+\theta_{1}{ }^{\prime}\right|=|\eta| \leqslant b<a$.
(V.1) Under the conditions of (V) a rearrangement $\theta_{1}{ }^{\prime}, \ldots, \theta_{m}{ }^{\prime}$ of $\theta_{1}, \ldots, \theta_{m}$ exists such that

$$
\left|\xi+\sum_{\mu=1}^{q} \theta_{\mu}{ }^{\prime}\right|<a, \quad 1 \leqslant q \leqslant m
$$

Proof. Successive application of (V).

It can easily be verified that the conditions of (V) and (V.1) are satisfied in the following two cases:
(V.2) $\quad a=\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1, \quad b=\left(k^{2}-3 k+3\right)^{\frac{1}{2}}+1$, $2 \leqslant k \leqslant n-1, \quad 1 \leqslant m \leqslant 2 n-k$.

$$
\begin{equation*}
a=\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1, \quad b=1, \quad 1 \leqslant m \leqslant 2 n^{2}-4 n+3 . \tag{V.3}
\end{equation*}
$$

(VI) If $m \geqslant 1,\left|\theta_{\mu}\right| \leqslant 1(1 \leqslant \mu \leqslant m), a>0, b \geqslant 0$,

$$
\eta=\xi+\sum_{\mu=1}^{m} \theta_{\mu}, \quad \eta^{2}<a^{2}, \quad \xi^{2}<a^{2}+b^{2}
$$

then $\theta_{\nu}=\theta_{1}{ }^{\prime}$ can be selected such that

$$
\left(\xi+\theta_{1}{ }^{\prime}\right)^{2}<a^{2}+b_{1}{ }^{2}, \quad b_{1}{ }^{2}=\frac{m-1}{m} b^{2}+1 .
$$

Proof. For $m=1,\left(\xi+\theta_{1}{ }^{\prime}\right)^{2}=\left(\xi+\theta_{1}\right)^{2}=\eta^{2}<a^{2}<a^{2}+1=a^{2}+b_{1}{ }^{2}$. If $m \geqslant 2$, select $\theta_{1}{ }^{\prime}=\theta_{\nu}$ as in (V); then

$$
\begin{aligned}
\left(\xi+\theta_{1}^{\prime}\right)^{2} & \leqslant\left(1-\frac{2}{m}\right) \xi^{2}+\frac{2}{m} \xi \eta+1 \\
& <\left(1-\frac{2}{m}\right)\left(a^{2}+b^{2}\right)+\frac{2}{m} a\left(a^{2}+b^{2}\right)^{\frac{1}{2}}+1 \\
& \leqslant\left(1-\frac{2}{m}\right)\left(a^{2}+b^{2}\right)+\frac{2}{m}\left(a^{2}+\frac{1}{2} b^{2}\right)+1 \\
& =a^{2}+\frac{m-1}{m} b^{2}+1=a^{2}+b_{1}^{2}
\end{aligned}
$$

(VII) If $m \geqslant 1,\left|\theta_{\mu}\right| \leqslant 1$
$(1 \leqslant \mu \leqslant m)$,

$$
\eta=\xi+\sum_{\mu=1}^{m} \theta_{\mu}, \quad|\eta|<a, \quad|\xi|<a
$$

then a rearrangement $\theta_{1}{ }^{\prime}, \ldots, \theta_{m}{ }^{\prime}$ of $\theta_{1}, \ldots, \theta_{m}$ exists such that

$$
f(m)^{2}=\max _{1 \leqslant q<m}\left(\xi+\sum_{\mu=1}^{q} \theta_{\mu}^{\prime}\right)^{2}<a^{2}+\frac{3}{2}+e^{-1}\left(m-\frac{1}{2}\right)
$$

for $m \geqslant 1$, and in particular,

$$
\begin{array}{ll}
f(1)^{2}<a^{2}, & f(2)^{2}<a^{2}+1 \\
f(3)^{2}<a^{2}+\frac{3}{2}, & f(4)^{2}<a^{2}+\frac{11}{6}
\end{array}
$$

Proof. Applying (VI), with $b=0, \theta_{1}{ }^{\prime}$ can be selected such that

$$
\xi_{1}{ }^{2}=\left(\xi+\theta_{1}^{\prime}\right)^{2}<a^{2}+b_{1}^{2}
$$

$$
b_{1}^{2}=1
$$

applying (VI) again, $\theta_{2}{ }^{\prime}$ can be selected such that
$\xi_{2}{ }^{2}=\left(\xi_{1}+\theta_{2}{ }^{\prime}\right)^{2}=\left(\xi+\sum_{\mu=1}^{2} \theta_{\mu}{ }^{\prime}\right)^{2}<a^{2}+b_{2}{ }^{2}, \quad b_{2}{ }^{2}=\frac{m-2}{m-1} b_{1}{ }^{2}+1 ;$
and continued application of (VI) will lead to
$\xi_{q}{ }^{2}=\left(\xi_{q-1}+\theta_{q}{ }^{\prime}\right)^{2}=\left(\xi+\sum_{\mu=1}^{q} \theta_{\mu}{ }^{\prime}\right)^{2}<a^{2}+b_{q}{ }^{2}, \quad b_{q}{ }^{2}=\frac{m-q}{m-q+1} b_{q-1}{ }^{2}+1$,
for $q \leqslant m$. Hence,

$$
f(m)^{2}<a^{2}+b_{r}^{2}, \quad b_{r}^{2}=\max _{1 \leqslant \square \leqslant m} b_{q}^{2}
$$

Now

$$
\begin{equation*}
b_{q}{ }^{2}=(m-q) \sum_{\kappa=1}^{q} \frac{1}{m-\kappa}, \tag{5}
\end{equation*}
$$

and

$$
b_{q+1}{ }^{2}-b_{q}{ }^{2}=1-\frac{b_{q}{ }^{2}}{m-q}=1-\sum_{k=1}^{q} \frac{1}{m-\kappa}
$$

i.e., $b_{q}{ }^{2}$ first increases, then decreases, and reaches its maximum $b_{T}{ }^{2}$ when

$$
1-\sum_{k=1}^{r} \frac{1}{m-\kappa} \leqslant 0 \leqslant 1-\sum_{k=1}^{r-1} \frac{1}{m-\kappa}
$$

i.e.
(6)

$$
\sum_{\kappa=1}^{r-1} \frac{1}{m-\kappa} \leqslant 1 \leqslant \sum_{k=1}^{\tau} \frac{1}{m-\kappa}
$$

Now

$$
\sum_{\lambda=s}^{t} \frac{1}{\lambda}<\int_{s-\frac{1}{2}}^{t+\frac{1}{2}} \frac{d x}{x}=\log \frac{t+\frac{1}{2}}{s-\frac{1}{2}}
$$

hence, by (6),

$$
1<\log \frac{m-\frac{1}{2}}{m-r-\frac{1}{2}},
$$

whence

$$
\begin{equation*}
m-r<e^{-1}\left(m-\frac{1}{2}\right)+\frac{1}{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{aligned}
f(m)^{2} & <a^{2}+b_{\tau}^{2}=a^{2}+1+(m-r) \sum_{k=1}^{r-1} \frac{1}{m-\kappa} \\
& <a^{2}+1+\left(e^{-1}\left(m-\frac{1}{2}\right)+\frac{1}{2}\right) 1=a^{2}+\frac{3}{2}+e^{-1}\left(m-\frac{1}{2}\right)
\end{aligned}
$$

by (5), (6), (7). The relation $f(1)^{2}<a^{2}$ is trivial. For

$$
\begin{array}{ll}
m=2, b_{1}{ }^{2}=b_{2}{ }^{2}=1, & \text { whence } f(2)^{2}<a^{2}+1 ; \\
m=3, b_{1}{ }^{2}=1, b_{2}{ }^{2}=\frac{3}{2}, b_{3}{ }^{2}=1, & \text { whence } f(3)^{2}<a^{2}+\frac{3}{2} \\
m=4, b_{1}{ }^{2}=1, b_{2}{ }^{2}=\frac{5}{3}, b_{3}{ }^{2}=\frac{11}{6}, b_{4}{ }^{2}=1, & \text { whence } f(4)^{2}<a^{2}+\frac{11}{6} .
\end{array}
$$

(VII.1) If, in (VII),

$$
a=\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1
$$

$$
n \geqslant 3, \quad m \leqslant n
$$

then

$$
\left|\xi+\sum_{\mu=1}^{q} \theta_{\mu}^{\prime}\right|<g(n)<n, \quad 1 \leqslant q \leqslant m
$$

where $g(n)$ is defined in the following proof.

Proof. For $n=3$,
$\left(\xi+\sum_{\mu=1}^{q} \theta_{\mu}{ }^{\prime}\right)^{2}<(\sqrt{ } 3+1)^{2}+\frac{3}{2}=\frac{11}{2}+2 \sqrt{ } 3=g(3)^{2}, \quad g(3)<2.995<3$.
For $n=4$,
$\left(\xi+\sum_{\mu=1}^{q} \theta_{\mu}{ }^{\prime}\right)^{2}<(\sqrt{ } 7+1)^{2}+\frac{11}{6}=\frac{59}{6}+2 \sqrt{ } 7=g(4)^{2}, g(4)<3.89<4$.
For $n \geqslant 5$,
$\left(\xi+\sum_{\mu=1}^{q} \theta_{\mu}{ }^{\prime}\right)^{2}<\left\{\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1\right\}^{2}+e^{-1}\left(n-\frac{1}{2}\right)+\frac{3}{2}=g(n)^{2}$,
where

$$
\begin{aligned}
g(n)^{2} & <\left(n-\frac{1}{3}\right)^{2}+e^{-1}\left(n-\frac{1}{2}\right)+\frac{3}{2}=n^{2}-\left(\frac{2}{3}-e^{-1}\right) n+\frac{29}{18}-\frac{1}{2 e} \\
& \leqslant n^{2}-\frac{31}{18}+\frac{9}{2} e^{-1}<n^{2},
\end{aligned}
$$

i.e., $g(n)<n$.
4. Theorem 1. For $n \geqslant 3, c_{n}<n$.

The proof is in several steps.
4.1. Let

$$
\sum_{\pi=1}^{p} \alpha_{\pi}=0, \quad\left|\alpha_{\pi}\right| \leqslant 1
$$

A rearrangement

$$
\delta_{1}=\alpha_{1}, \quad \delta_{2}=\alpha_{\pi}, \quad \ldots, \quad \delta_{p-1}=\alpha_{\pi_{p-1}}, \quad \delta_{p}=\alpha_{p}
$$

is to be constructed such that

$$
\left|\sum_{\pi=1}^{q} \delta_{\pi}\right|<g(n)<n
$$

for $1 \leqslant q \leqslant p$. We use induction with respect to p. For $p=1$, in fact for $p \leqslant$ $2 n-1$, the result is trivial as no reordering is necessary:

$$
\left|\sum_{\pi=1}^{q} \alpha_{\pi}\right|=\left|\sum_{\pi=q+1}^{p} \alpha_{\pi}\right| \leqslant \min (q, p-q) \leqslant \min (q, 2 n-1-q) \leqslant n-1 .
$$

In the following it will be assumed that the result is true for $p^{\prime}<p$.
If a partial sum

$$
\zeta=\alpha_{1}+\sum_{i=2}^{q} \alpha_{\pi_{i}}, \quad 2 \leqslant q \leqslant p-2
$$

has a modulus $\leqslant 1$, then the result may be applied to

$$
\alpha_{1}+\sum_{i=2}^{q} \alpha_{\pi_{i}}+(-\zeta)=0 \quad\left(p^{\prime}=1+q<p\right)
$$

and to

$$
\zeta+\sum_{i=q+1}^{p-1} \alpha_{\pi_{i}}+\alpha_{p}=0 \quad\left(p^{\prime}=p-q+1<p\right)
$$

prescribing α_{1} and $-\zeta$ in the first case, ζ and α_{p} in the second case, as first and last vectors of the rearrangement; combining the two arrangements and omitting the vectors $-\zeta$ and ζ, the desired rearrangement of the α_{π} is obtained. In the following we may therefore make the assumptions:
(VIII) If ζ is a partial sum of the α_{π} containing exactly one of α_{1}, α_{p} and at least 1 , at most $p-3$ other vectors, then $|\zeta|>1$.

In particular,
(VIII.1) $\quad\left|\alpha_{1}+\alpha_{\pi}\right|>1, \quad 2 \leqslant \pi \leqslant p-1$.

Also,
(VIII.2) No partial sum is 0 , except possibly $\alpha_{1}+\alpha_{p}$ and

$$
\sum_{\pi=2}^{p-1} \alpha_{\pi}
$$

For let ζ be a partial sum other than the above, and $\zeta=0$. The following cases may arise: (a) ζ contains neither α_{1} nor α_{p}; in this case $\left|\zeta+\alpha_{1}\right| \leqslant 1$, contradicting (VIII); (b) ζ contains one of α_{1}, α_{p}; this directly contradicts (VIII) unless $\zeta=\alpha_{1}$ or $\zeta=\alpha_{p}$ or $\zeta=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{p-1}$ or $\zeta=\alpha_{2}+\alpha_{3}+$ $\ldots+\alpha_{p}$, which implies $\alpha_{1}=0$ or $\alpha_{p}=0$ and reduces the number of vectors to $p^{\prime}=p-1$; (c) ζ contains both α_{1} and α_{p} and at least another α_{π}; removal of α_{p} gives $\left|\zeta-\alpha_{p}\right| \leqslant 1$, again contradicting (VIII).
4.2 The desired rearrangment of the α_{π} will be obtained in three stages:
(1) a rearrangement $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$;
(2) a trivial alteration $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ of (1) obtained by placing α_{1} first; here certain special partial sums

$$
\sum_{k=1}^{q} \gamma_{\kappa}, \quad \sum_{k=1}^{q^{\prime}} \gamma_{\kappa}, \ldots
$$

with not too distantly spaced values of q, q^{\prime}, \ldots have a modulus less than n (more precisely, less than a bound somewhat smaller than n);
(3) the final rearrangement $\delta_{1}, \delta_{2}, \ldots, \delta_{p}$ obtained from (2) by reordering the vectors within each group $\gamma_{q+1}, \ldots, \gamma_{q^{\prime}}$ leading from one special partial sum to the next.

The $\beta_{\pi}, \gamma_{\pi}, \delta_{\pi}$ will be defined inductively as follows. Suppose an index i, $1 \leqslant i \leqslant p$, has been found such that
(i) β_{ν} have been selected from the α_{π} for $\nu<i$;
(ii) the non-selected vectors, $\epsilon_{i}, \ldots, \epsilon_{p}$, say, satisfy a relation

$$
\sum_{\nu=i}^{p} e_{\nu} \epsilon_{\nu}=0
$$

where
(iii) $0<e_{\nu} \leqslant 1$ for $\nu<i+n, e_{\nu}=1$ for $\nu \geqslant i+n$;
(iv) α_{p} is one of the ϵ_{ν}; and if the ϵ_{ν} other than α_{p} are p.d. then $\alpha_{p}=\epsilon_{p}$;
(v) if α_{1} is one of the ϵ_{ν}, then $\alpha_{1}=\epsilon_{1}$;
(vi a) if α_{1} is one of the ϵ_{ν}, then $\gamma_{1}, \ldots, \gamma_{i}$ are the vectors $\alpha_{1}, \beta_{1}, \ldots, \beta_{i-1}$; and

$$
\xi=\sum_{\nu=1}^{i} \gamma_{\nu}=\alpha_{1}+\sum_{\nu=1}^{i-1} \beta_{\nu}
$$

is the special partial sum belonging to the index i;
(vi b) if α_{1} is one of the $\beta_{\nu}, \alpha_{1}=\beta_{r}$ say, then $\gamma_{1}, \ldots, \gamma_{i-1}$ are the vectors $\alpha_{1}, \beta_{1}, \ldots, \beta_{r-1}, \beta_{r+1}, \ldots, \beta_{i-1}$; and

$$
\xi=\sum_{\nu=1}^{i-1} \gamma_{\nu}=\sum_{\nu=1}^{i-1} \beta_{\nu}
$$

is the special partial sum belonging to i;
(vii) $|\xi|<\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1$;
(viii) $\delta_{1}, \ldots, \delta_{i-1},\left(\delta_{i}\right)$ are a rearrangement of $\gamma_{1}, \ldots, \gamma_{i-1},\left(\gamma_{i}\right)$ with $\delta_{1}=$ $\gamma_{1}=\alpha_{1} ;$
(ix)

$$
\left|\sum_{\nu=1}^{q} \delta_{\nu}\right|<g(n)<n \quad q=1, \ldots, i-1,(i) .
$$

Such an index i will be called a special index.
The index $i=1$ is special: (i) is void as no β 's have to be selected; the given relation

$$
\sum_{\pi=1}^{p} \alpha_{\pi}=0
$$

plays the role of (ii) ($\alpha_{\pi}=\epsilon_{\pi}$); (iii), (iv), (v) are satisfied; defining $\delta_{1}=\gamma_{1}=$ $\alpha_{1}=\xi$, (vi) and (viii) are satisfied; (vii) and (ix) are trivial.

To every special index i, with $i<p-2 n$, a new special index $j>i$ will now be constructed (the construction will preserve the vectors $\beta_{v}, \gamma_{\nu}, \delta_{\nu}$ already selected for the index i).
4.3. Relation (ii) contains $p-(i-1)>2 n+i-(i-1)=2 n+1$ terms. Applying (I) to $\epsilon_{i}, \ldots, \epsilon_{p}$, we select $n+1$ p.d. vectors

$$
\epsilon_{\mu_{1}}, \ldots, \epsilon_{\mu_{n+1}}
$$

where we include

$$
\epsilon_{i}=\epsilon_{\mu_{n+1}}
$$

by (I.1), and exclude α_{p}, by (I.2), if possible (i.e., certainly when $\alpha_{p}=\epsilon_{p}$ and $\epsilon_{i}, \ldots, \epsilon_{p-1}$ are p.d.). If the relation of expressing p.d. is

$$
\begin{equation*}
a_{0} \epsilon_{i}+\sum_{j=1}^{n} a_{j} \epsilon_{\mu_{i}}=0, \quad a_{j} \geqslant 0, \text { not all } a_{j}=0 \tag{8}
\end{equation*}
$$

then, for all x,

$$
\begin{equation*}
\sum_{\nu=i}^{p} e_{\nu} \epsilon_{\nu}-x\left(a_{0} \epsilon_{i}+\sum_{j=1}^{n} a_{j} \epsilon_{\mu_{j}}\right)=0 \tag{9}
\end{equation*}
$$

For $x=0$ all coefficients are positive and $\leqslant 1$; hence a positive value of x can be determined for which (at least) one coefficient becomes 0 , the others remaining $\geqslant 0, \leqslant 1$. At most $2 n$ coefficients can be less than 1 (those of $\epsilon_{i}, \ldots, \epsilon_{i+n-1}$, $\epsilon_{\mu_{1}}, \ldots, \epsilon_{\mu_{n}}$), so that at least two coefficients remain equal to 1 . Renaming the $\epsilon_{\nu}: \epsilon_{i}^{\prime}, \epsilon_{i+1}^{\prime}, \ldots, \epsilon_{p}^{\prime}$, taking first the vector or vectors with coefficient 0 , then the remaining ϵ_{ν} from $\epsilon_{i}, \ldots, \epsilon_{i+n-1}, \epsilon_{\mu_{1}}, \ldots, \epsilon_{\mu_{n}}$, and then the remaining ones with coefficient 1 , (9) will read
(10) $\sum_{\nu=i+1}^{p} e_{\nu}{ }^{\prime} \epsilon_{\nu}^{\prime}=0, \quad 0 \leqslant e_{\nu} \leqslant 1$ for $\nu<i+2 n, \quad e_{\nu}{ }^{\prime}=1$ for $\nu \geqslant i+2 n$.
4.4. Put

$$
\begin{equation*}
\epsilon=\sum_{\nu=i+1}^{i+2 n-1} e_{\nu}^{\prime} \epsilon_{\nu}^{\prime} \quad\left(0 \leqslant e_{\nu}^{\prime} \leqslant 1\right), \tag{11}
\end{equation*}
$$

so that (10) may be written

$$
\begin{equation*}
\epsilon+\sum_{\nu=i+2 n}^{p} \epsilon_{\nu}^{\prime}=0 . \tag{12}
\end{equation*}
$$

α_{1} cannot be contained in the partial sum

$$
\sum_{\nu=i+2 n}^{p} \epsilon_{\nu}^{\prime} ;
$$

for if α_{1} occurs in (9), then $\alpha_{1}=\epsilon_{i}$ by (v), i.e. α_{1} is one of $\epsilon_{i}{ }^{\prime}, \ldots, \epsilon^{\prime}{ }_{i+2 n-1}$; by (VIII.2) the partial sum cannot vanish, whence $\epsilon \neq 0$. By (II) ϵ can be written in the form

$$
\begin{equation*}
\epsilon=\sum_{\nu=i+l}^{i+2 n-1} f_{\nu} \phi_{\nu}, 0<f_{\nu} \leqslant 1 \text { for } \nu<i+l+n, f_{\nu}=1 \text { for } \nu \geqslant i+l+n \text {, } \tag{13}
\end{equation*}
$$ where

$$
\begin{equation*}
1 \leqslant l \leqslant 2 n-1, \tag{14}
\end{equation*}
$$

and $\phi_{i+1}, \ldots, \phi_{i+2 n-1}$ is a rearrangement of $\epsilon^{\prime}{ }_{i+1}, \ldots, \epsilon^{\prime}{ }_{i+2 n-1}$. By (II.1) it may be assumed that
(15) if α_{1} is still present in (13), then $\alpha_{1}=\phi_{i+l}$.

Define

$$
\begin{equation*}
j=i+l ; \tag{16}
\end{equation*}
$$

then, by (14),

$$
\begin{equation*}
i+1 \leqslant j \leqslant i+2 n-1 \tag{17}
\end{equation*}
$$

It will now be shown that j is a special index. The properties (i), . ., (ix) relating to j will be denoted by (i^{\prime}), . . ., (ix^{\prime}).
4.5. (i') By (i), β_{ν} is defined for $\nu<i$; defining

$$
\beta_{i}=\epsilon_{i}^{\prime}, \quad \beta_{i+1}=\phi_{i+1}, \quad \ldots, \quad \beta_{j-1}=\phi_{j-1}
$$

β_{ν} are selected for $\nu<j$.

The non-selected vectors are $\phi_{j}, \ldots, \phi_{i+2 n-1}$ and $\epsilon^{\prime}{ }_{i+2 n}, \ldots, \epsilon_{p}{ }^{\prime}$ which will be renamed $\phi_{i+2 n}, \ldots, \phi_{p}$. Substituting (13) into (12), we get

$$
\begin{equation*}
\sum_{\nu=j}^{p} f_{\nu} \phi_{\nu}=0 \tag{ii'}
\end{equation*}
$$

where
(iii') $\quad 0<f_{\nu} \leqslant 1$ for $\nu<j+n, \quad f_{v}=1$ for $\nu \geqslant j+n$;
note also that

$$
\begin{equation*}
f_{\nu}=1 \text { for } \nu \geqslant i+2 n \text {; } \tag{18}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
f_{p-1}=f_{p}=1 \tag{19}
\end{equation*}
$$

(iv') α_{p} is one of the $\phi_{\nu}(\nu \geqslant j)$. For, either the ϵ_{μ} other than α_{p} are p.i.; then, a fortiori, the ϕ_{ν} other than α_{p} are p.i.; but (ii') expresses the p.d. of the ϕ_{ν} other than α_{p} unless α_{p} is present in (ii'); or the ϵ_{ν} other than α_{p} are p.d.; then $\alpha_{p}=\epsilon_{p}$ by (iv), and α_{p} was excluded from (8), so that $\alpha_{p}=\epsilon_{p}=\epsilon_{p}{ }^{\prime}=\phi_{p}$. This latter case certainly arises if the ϕ_{ν} other than α_{p} are p.d., for this implies the p.d. of the ϵ_{μ} other than α_{p}.
$\left(\mathrm{v}^{\prime}\right) \quad$ If α_{1} is one of the $\phi_{\nu}(\nu \geqslant j)$, then $\alpha_{1}=\phi_{j}$, by (15), (16).
(vi' a) If α_{1} is one of the ϕ_{ν}, then $\gamma_{1}, \ldots, \gamma_{j}$ are the vectors $\alpha_{1}, \beta_{1}, \ldots, \beta_{j-1}$: and

$$
\eta=\sum_{\nu=1}^{j} \gamma_{\nu}=\alpha_{1}+\sum_{\nu=1}^{j-1} \beta_{\nu}
$$

will be defined as the special partial sum belonging to the index j;
(vi' b) if $\alpha_{1}=\beta_{r}, r<j$, then $\gamma_{1}, \ldots, \gamma_{j-1}$ are the vectors $\alpha_{1}, \beta_{1}, \ldots, \beta_{r-1}$, $\beta_{r+1}, \ldots, \beta_{j-1}$; and

$$
\eta=\sum_{\nu=1}^{j-1} \gamma_{\nu}=\sum_{\nu=1}^{j-1} \beta_{\nu} .
$$

These definitions are consistent with the definitions (vi).
4.6. We now investigate the special partial sum η.

In case (vi' a)

$$
\begin{aligned}
\eta & =\alpha_{1}+\sum_{\nu=1}^{j-1} \beta_{\nu}=\alpha_{1}-\sum_{\nu=j}^{p} \phi_{\nu}=-\sum_{\nu=j+1}^{p} \phi_{\nu} & \text { by (} \mathrm{v}^{\prime} \text {) } \\
& =-\sum_{\nu=j+1}^{p} \phi_{\nu}+\sum_{\nu=j}^{p} f_{\nu} \phi_{\nu} & \text { by (ii') } \\
& =f_{j} \alpha_{1}-\sum_{\nu=j+1}^{p}\left(1-f_{v}\right) \phi_{\nu} &
\end{aligned}
$$

and as $f_{\nu}=1$ for $\nu \geqslant \min (j+n, i+2 n)$ by (iii') and (18),

$$
\begin{equation*}
\eta=f_{j} \alpha_{1}-\sum_{\nu=j+1}^{j+k-1}\left(1-f_{v}\right) \phi_{\nu} \tag{20}
\end{equation*}
$$

where

$$
j+k-1=\min (j+n-1, i+2 n-1)
$$

i.e., by (16),

$$
\begin{equation*}
k=\min (n, 2 n-(j-i))=\min (n, 2 n-l) \tag{21}
\end{equation*}
$$

whence, by (14), $1 \leqslant k \leqslant n$. The case $k=1$ can be excluded as it would imply $|\eta|=\left|f_{j} \alpha_{1}\right| \leqslant 1$ where η is a partial sum with $j=2 n+i-1$ terms ($2 n \leqslant$ $j \leqslant p-2$), including α_{1}, excluding α_{p}, which contradicts (VIII). Thus,

$$
\begin{equation*}
2 \leqslant k \leqslant n, \quad 1 \leqslant l \leqslant 2 n-2, \quad i+1 \leqslant j \leqslant i+2 n-2 \tag{22}
\end{equation*}
$$

As $\left|\alpha_{1}\right| \leqslant 1,\left|\phi_{\nu}\right| \leqslant 1,0<f_{j} \leqslant 1,0 \leqslant 1-f_{\nu}<1$, and, by (VIII.1) $\left|\alpha_{1}+\phi_{\nu}\right|$ >1, except, possibly, for $\phi_{\nu}=\alpha_{p}$, (20) satisfies the conditions of (III), and we have

$$
\begin{equation*}
|\eta|<\left(k^{2}-3 k+3\right)^{\frac{1}{2}}+1 \tag{23}
\end{equation*}
$$

As $k \leqslant n$, this implies
(vii') $|\eta|<\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1$.
In case ($\mathrm{vi}^{\prime} \mathrm{b}$),

$$
\begin{align*}
\eta & =\sum_{\nu=1}^{j-1} \beta_{\nu}=-\sum_{\nu=j}^{p} \phi_{\nu}=-\sum_{\nu=j}^{p} \phi_{\nu}+\sum_{\nu=j}^{p} f_{\nu} \phi_{\nu} \tag{ii'}\\
& =\sum_{\nu=j}^{p}\left(1-f_{\nu}\right)\left(-\phi_{\nu}\right)=\sum_{\nu=j}^{j+k-1}\left(1-f_{\nu}\right)\left(-\phi_{\nu}\right)
\end{align*}
$$

by (iii') and (18), where k is defined by (21); $k=1$ would imply $\left|\left(1-f_{j}\right) \phi_{j}\right|$ $=|\eta| \leqslant 1$, hence can be excluded as above; thus, (22) will hold and η may be written

$$
\begin{equation*}
\eta=\sum_{\nu=j}^{j+k-2}\left(1-f_{v}\right)\left(-\phi_{\nu}\right)+\left(1-f_{j+k-1}\right)\left(-\phi_{j+k-1}\right) \tag{24}
\end{equation*}
$$

We may assume that $\alpha_{p}=\phi_{p}$ or $\alpha_{p}=\phi_{j+k-1}$, so that the partial sum

$$
\zeta=\sum_{\nu=j+k-1}^{p} \phi_{\nu}
$$

contains α_{p}, but not α_{1}, and $f=p-(j+k-1)$ further terms; $j \geqslant 2, k \geqslant 2$ imply $f \leqslant p-3$; (21) and $i<p-2 n$ imply $f>1$; hence, by (VIII).

$$
|\zeta|>1
$$

Now,

$$
\begin{align*}
\zeta & =\sum_{\nu=j+k-1}^{p} \phi_{\nu}-\sum_{\nu=j}^{p} f_{\nu} \phi_{\nu} \tag{25}\\
& =\sum_{\nu=j}^{j+k-2} f_{\nu}\left(-\phi_{\nu}\right)-\left(1-f_{j+k-1}\right)\left(-\phi_{j+k-1}\right)
\end{align*}
$$

(24), (25) satisfy the conditions of (IV); hence,

$$
\begin{equation*}
|\eta|<k-(2-\sqrt{ } 2) \tag{26}
\end{equation*}
$$

which implies (23) and (vii').
4.7. It remains to establish (viii') and (ix'). By (vi) and (vi'), the three possibilities are:

$$
\left\{\begin{array}{l}
\eta=\xi+\sum_{\nu=i}^{j-1} \gamma_{\nu} \tag{27}\\
\eta=\xi+\sum_{\nu=i+1}^{j} \gamma_{\nu} \\
\eta=\xi+\sum_{\nu=i+1}^{j-1} \gamma_{\nu}
\end{array}\right.
$$

The γ_{ν} contained in ξ have already been rearranged as δ_{ν} according to (viii) to satisfy (ix); it therefore remains to reorder the γ_{ν} under the summation sign in (27). There are m such γ_{ν}, where $m=j-i=l$ or $m=j-i-1=l-1$, i.e., $1 \leqslant m \leqslant l$. (The case $m=0$ is trivial, since then $\eta=\xi, \beta_{i}=\epsilon_{i}=\alpha_{1}$ and the vectors considered in (viii'), (ix') are identical with those of (viii), (ix).) We distinguish two cases:
(1) $2 \leqslant k \leqslant n-1$. By (21), $k=2 n-l, \quad 1 \leqslant m \leqslant 2 n-k$. Together with (vii) and (23), these are the conditions of (V.2) for (27) which guarantee the required reordering (viii') of the γ_{ν} satisfying (ix'), the bound obtained being $\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1$.
(2) $k=n$. By (21), $n \leqslant 2 n-l$, whence $m \leqslant l \leqslant n$, and by (vii) and (vii'), (27) satisfies the conditions of (VII.1) which guarantee the required reordering (viii') of the γ_{ν} satisfying (ix'), the bound $g(n)$ being defined as in the proof of (VII.1).

As $g(n)$ is greater than $\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+1$, the bound $g(n)$ may also be used in case (1).

This completes the proof that j is a special index.
4.8. The procedure of selecting the $\beta_{\nu}, \gamma_{\nu}, \delta_{\nu}$ can be continued until a special index i is reached for which $i \geqslant p-2 n$. In this case $\delta_{1}, \ldots, \delta_{i-1}$ or $\delta_{1}, \ldots, \delta_{i}$ have been correctly selected, and the corresponding special partial sum is

$$
\xi=\sum_{\nu=1}^{i-1} \delta_{\nu}
$$

or

$$
\xi=\sum_{\nu=1}^{i} \delta_{\nu} .
$$

If the remaining vectors are called $\gamma_{i}, \ldots, \gamma_{p}=\alpha_{p}$ or $\gamma_{i+1}, \ldots, \gamma_{p}=\alpha_{p}$ respectively, then

$$
\eta=-\alpha_{p}=\xi+\sum_{\nu=i}^{p-1} \gamma_{\nu}
$$

or

$$
\eta=-\alpha_{p}=\xi+\sum_{\nu=i+1}^{p-1} \gamma_{\nu}
$$

satisfies the conditions of (V.3), because the number of γ_{ν} is $m=p-i$ or $p-i-1$, whence $m \leqslant 2 n<2 n^{2}-4 n+3$ (for $n \geqslant 3$). Reordering the γ_{ν} according to (V.3), and choosing α_{p} as the last vector, the rearrangement of the given vectors is completed.
5. Theorem 2. $c_{3} \leqslant(5+2 \sqrt{ } 3)^{\frac{3}{3}} \simeq 2.91$.

Proof. For any special index $i(1 \leqslant i \leqslant p-7)$, relation (ii) of $\S 4.2$ reads ($n=3$)

$$
\sum_{\nu=i}^{i+2} e_{\nu} \epsilon_{\nu}+\sum_{\nu=i+3}^{p} \epsilon_{\nu}=0, \quad 0<e_{\nu} \leqslant 1
$$

We shall prove (cf. (vii)) that

$$
|\xi|<1+\sqrt{ } 2
$$

unless both α_{1}, α_{p} are present in

$$
\sum_{\nu=i}^{i+2} e_{\nu} \epsilon_{\nu}
$$

and the coefficient of the third vector is less than 1 (in this case (vii) gives $|\xi|<1+\sqrt{ } 3$). If α_{1} is not present in

$$
\sum_{\nu=i}^{i+2} e_{\nu} \epsilon_{\nu},
$$

the reasoning of 4.6 , ($\mathrm{vi}^{\prime} \mathrm{b}$) applies leading to (26), which for $k \leqslant 3$ gives the estimate $1+\sqrt{ } 2$. If α_{1} is present, α_{p} absent, then

$$
\xi=e_{i} \alpha_{1}-\left(1-e_{i+1}\right) \epsilon_{i+1}-\left(1-e_{i+2}\right) \epsilon_{i+2} ;
$$

if

$$
\zeta=\epsilon_{i+3}+\ldots+\epsilon_{p}=-e_{i} \alpha_{1}-e_{i+1} \epsilon_{i+1}-e_{i+2} \epsilon_{i+2},
$$

then $|\zeta|>1$, by (VIII), and $|\xi|<1+\sqrt{ } 2$, by (IV). If, finally, α_{1}, α_{p} are both present, but the coefficient of the third vector is 1 , then

$$
|\xi|=\left|e_{i} \alpha_{1}-\left(1-e_{i+1}\right) \alpha_{p}\right| \leqslant 2<1+\sqrt{ } 2
$$

The relation between the special partial sums ξ, η belonging to two successive special indices i, j is given by (27), where $m \leqslant l \leqslant 2 n-2=4$. We distinguish two cases:
(1) One of the two partial sums, say η, has modulus less than $1+\sqrt{ } 2$, i.e.,

$$
|\xi|<1+\sqrt{ } 3, \quad|\eta|<1+\sqrt{ } 2
$$

If the γ_{ν} in (27) are called $\theta_{1}, \ldots, \theta_{m}$, then

$$
\eta=\xi+\sum_{\mu=1}^{m} \theta_{\mu}
$$

Let $\theta_{1}{ }^{\prime}, \ldots, \theta_{m}{ }^{\prime}$ be the rearrangement of $\theta_{1}, \ldots, \theta_{m}$ according to the principle used in (V). Then, for $m=4$,

$$
\begin{aligned}
\left(\xi+\theta_{1}{ }^{\prime}\right)^{2} & \leqslant \frac{1}{2} \xi^{2}+\frac{1}{2}|\xi| \cdot|\eta|+1 \\
& <\frac{1}{2}(\sqrt{ } 3+1)^{2}+\frac{1}{2}(\sqrt{ } 3+1)(\sqrt{ } 2+1)+1<8.04 \\
\left|\xi+\theta_{1}{ }^{\prime}\right| & <2.84 \\
\left(\xi+\theta_{1}^{\prime}+\theta_{2}{ }^{\prime}\right)^{2} & \leqslant \frac{1}{3} \times 8.04+\frac{2}{3} \times 2.84 \times 2.42+1<8.27 \\
\left|\xi+\theta_{1}{ }^{\prime}+\theta_{2}{ }^{\prime}\right| & <2.88 \\
\left(\xi+\theta_{1}{ }^{\prime}+\theta_{2}{ }^{\prime}+\theta_{3}{ }^{\prime}\right)^{2} & \leqslant 2.88 \times 2.42+1<7.97 \\
\left|\xi+\theta_{1}{ }^{\prime}+\theta_{2}{ }^{\prime}+\theta_{3}{ }^{\prime}\right| & <2.83
\end{aligned}
$$

the maximum estimate, 2.88 , is less than $(5+2 \sqrt{ } 3)^{\frac{1}{2}}$. The cases $m<4$ are treated in the same way.
(2) The estimate $1+\sqrt{ } 2$ is not available for either of ξ, η. This means, by (vii), that both (ii) and (ii') contain α_{1} and α_{p} in their first three terms, the coefficient of the third term being less than 1. By (iv), the ϵ_{ν} other than α_{p} are p.i.; hence (8) contains $\alpha_{1}=\epsilon_{i}, \alpha_{p}=\epsilon_{i+1}$, and two other vectors $\epsilon_{\mu_{1}}, \epsilon_{\mu_{2}}$. In the transition from (ii) via (8)-(13) to (ii'), α_{1}, α_{p} are retained together with at least one of $\epsilon_{i+2}, \epsilon_{\mu_{1}}, \epsilon_{\mu_{2}}$, i.e., at most two vectors are eliminated. Hence, $m=l=j-i \leqslant 2 ; m=1$ means $\eta=\xi+\theta_{1}$ which requires no reordering; $m=2$ means $\eta=\xi+\theta_{1}+\theta_{2}$, and $\theta_{1}{ }^{\prime}$ can be selected from θ_{1}, θ_{2} such that

$$
\begin{aligned}
\left(\xi+\theta_{1}^{\prime}\right)^{2} & <(1+\sqrt{ } 3)^{2}+1=5+2 \sqrt{ } 3 \\
\left|\xi+\theta_{1}{ }^{\prime}\right| & <(5+2 \sqrt{ } 3)^{\frac{1}{2}}
\end{aligned}
$$

References

1. E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. reine angew. Math. 143 (1913), 128-175; 144 (1914), 1-40.
2. W. Gross, Bedingt konvergente Reihen, Monatsh. Math. Phys. 28 (1917), 221-237.
3. V. Bergström, Ein neuer Beweis eines Satzes von E. Steinitz, Abh. Math. Seminar Hamburg, 8 (1930), 148-152.
4. -_ Zwei Sätse über ebene Vektorpolygone, Abh. Math. Seminar Hamburg, 8 (1930), 206-214.
5. I. Damsteeg and I. Halperin, The Steinitz-Gross theorem on sums of vectors, Trans. Roy. Soc. Can., sec. III, 44 (1950), 31-35.

University of Melbourne

