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Abstract

In a previous paper, 'The concept of "largeness" in group theory', a partial order was defined
on the class of infinite groups, and this partial order was seen to give some precision to our
intuitive notions of what it means for one infinite group to be 'larger' than another. The aim of
this paper is to look more closely at groups which are 'low down' in this partial order, and to
examine the interplay between large properties of groups and finiteness conditions in group
theory.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20E15, 2OF15, 20K10,
20 K 25; secondary 20 E 10.

1. Introduction

This paper is a continuation of the study of the concept of largeness in group theory
which was begun in Pride (to appear). Familiarity with that paper will be assumed
throughout.

The ideas introduced in Pride (to appear) have already provided a useful framework
for investigating groups thought of as being 'large'—see Baumslag and Pride (1978).
The main aim of this paper is to look at the opposite extreme and to examine the
interplay between large properties of groups and finiteness conditions in group
theory. This is obviously of intrinsic interest in relation to the ideas developed in
Pride (to appear). More importantly, however, it puts the study of finiteness con-
ditions into a wider context, and therefore leads to a different, and hopefully profit-
able, way of looking at things.

A brief illustration can be given immediately of the way in which finitary aspects
of infinite group theory are thrown into a new light by a study of large properties.
In the theory of abelian groups, groups of the following three types play a signifi-
cant role as 'building blocks': quasicyclic groups, infinite cyclic groups, countable
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elementary groups. Now, as will be seen later, there is an obvious subdivision of
the class ~# of minimal groups into three disjoint subclasses, ufl5 ^t\, J(\. It turns
out that an abelian group is minimal if and only if it is a finite extension of a group
of one of the three types mentioned above; moreover, quasicyclic groups lie in J(x,
infinite cyclic groups lie in JK\ and countable elementary groups lie in uf|.

Some of the interplay between large properties of groups and finiteness conditions
in group theory can already be seen in Pride (to appear). For example, any group
satisfying the finiteness condition 'being just-infinite and having Max-sn' is of
finite height. Every finitely generated abelian group has finite height. Any group G
which satisfies Max-an (and so, in particular, any group satisfying Max-sn) can
have infinite height, although there cannot be a chain ... -< G2 -< Gt < Go = G
(that is G must satisfy Min-=Q. Similarly, any group satisfying Min-an must
satisfy Max-=^.

In contrast to the results in the previous paragraph, the finiteness conditions
'being residually finite' and 'being finitely generated' are enjoyed by F2, which
certainly does not satisfy Max-=^ or Min-=^.

The above examples illustrate exactly what one intuitively expects: really
incisive finiteness conditions give groups of finite height, those which are not so
incisive give groups satisfying either Max-^ or Min-=^ and those which are not
very incisive can be satisfied by groups without Max-=^ or Min-=^.

This paper will concentrate on examining finiteness conditions which lead to
groups of finite height.

The early part of the paper (Section 2) is concerned with the class of minimal
groups. As mentioned above, there is an obvious subdivision of J( into three
disjoint sublcasses, J(X,*J(\,^#\. Typical examples of groups in the three classes
are, respectively: infinite simple groups and quasicyclic groups, infinite non-simple
^-groups, countable direct powers of finite simple groups. Some discussion
concerning the structure of ^-groups (particularly ^Ju^l-groups) is given.
The minimal abelian groups are determined.

In Section 3, attention is given to abelian groups of finite height. Necessary and
sufficient conditions are found under which groups of any one of the following
types has finite height: divisible groups, direct sums of cyclic groups, torsion
groups.

In Pride (to appear), an example was given showing that poly-minimal groups need
not have finite height. Other examples show that not every group of finite height is
poly-minimal. For instance, if G is the direct product of Ki copies of a finite simple
group S (where S ^ 1) then G has height 2. For ifH<G then H is equally as large
as the direct product of Xo copies of S (use Robinson (1972), Theorem 5.45). It is
not difficult to show that G is not poly-minimal. It can thus be seen that the
minimal groups do not constitute the 'building blocks' for groups of finite
height.
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Nevertheless, there is a connection between minimal groups and height. Suppose
G is a group and Mx,...,Mn are minimal groups, no two of which are equally large,
and M j ^ G for i = \,...,n. Then it is shown in Section 4 that Mxx ... xMn^G
and that G has height at least n. It follows that if there are infinitely many minimal
group M -< G, no two of which are equally large, then G does not satisfy Max-^ .

The fact that not every poly-minimal group has finite height means that there
is interest in looking for classes <& of minimal groups such that every poly-1^ group
does have finite height. One suitable choice for <& is the class of quasicyclic groups.
Indeed every poly-(quasicyclic or finite) group has a subgroup of finite index which
is the direct product of finitely many quasicyclic groups (see Robinson (1972), p. 69).
It thus follows (using Pride (to appear), Theorem 4.5) that every poly-(quasicyclic
or finite) group has finite height.

Another suitable choice for <W is the class of infinite cyclic groups. It is not
difficult to show that every poly-(cyclic or finite) group has finite height. More
generally one can take <& to be the class of infinite S2-groups. In Section 5 attention
is given to the class of poly-^2 groups. This class is quite extensive. It includes
polycyclic groups, groups with a (finite) composition series, and ^-groups
satisfying Max-sn (see Wilson (1971)). By introducing a rank function (which is a
generalization of the Hirsch number for polycyclic groups) it is shown that every
poly-^2 group has finite height.

Unless otherwise stated, notation will be as in Pride (to appear). In order to avoid
annoying distinctions between finite and infinite groups, it is convenient to extend
the definitions of ~ and =̂  given in Pride (to appear). Thus any two finite groups are
defined to be equally large, and if H is finite and G infinite then G is defined to be
strictly larger than H.

For Theorems 3-6 the reader is assumed to be familiar with the basic theory of
abelian groups (see Rotman (1973), Chapter 9 for example). Notation for abelian
groups will be as in Rotman (1973), except that <x(/>°°) groups will be called
quasicyclic, the additive group of the rationals will be denoted by Q, and the
cyclic group of order n will be denoted by Zm.

The class of abelian groups will be denoted by 9t, and § will denote the class
of groups G with the following property: for every integer n>0, G has only
finitely many distinct subgroups of index n.

2. On minimal groups

The aim of this section is to obtain some information on the structure of minimal
groups. In this connection it is convenient to divide ^K into three disjoint subclasses
as follows. Let ufx be the class of minimal groups G with the property that the
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intersection of all subgroups of finite index in G again has finite index in G. Let
Jt2 = J(\J(X. Subdivide J(% as follows: Jg\ = J(2n%> and JC\ = J(2\J(\.

The class u ^ is enormous, containing for example all infinite simple groups. In
particular J(x contains groups of arbitrarily large cardinality. On the other hand:

THEOREM 1. Every ^2-group has cardinality at most 2No. This bound can be
attained.

PROOF. Let G be an *#2-group and let Nt (/= 1,2,...) be distinct normal sub-
groups of G with \G: Ni\<oo. Let N= flfii^i- Then G/N~G, and G/N can be
embedded in

G

Thus G/N, and therefore G, has cardinality at most 2**°.
The ^2-group discussed in Wilson (1971), p. 380, has cardinality 2*>. This proves

the theorem.
The class Ut\ contains all minimal just-infinite groups which are not simple-by-

finite (by Wilson (1970), Theorem A). It seems reasonable to suggest that JK\
consists only of those groups which are equally as large as some minimal just-
infinite group.

The next result gives a reasonable amount of information concerning the
structure of <^|-groups.

THEOREM 2. If G is an <Jf\-group then Gshas a subgroup of finite index which is
locally a finite direct power of some finite simple group S.

PROOF. Since G does not lie in § it follows from Wilson (1970), Lemma 1, that
G has a subgroup Go of finite index with infinitely many distinct subgroups K^GQ
(iel), where GJKf is isomorphic to a finite simple group S. Let K= ^^jK^ and
consider Go = Go/K. Note that Go~ G. Note also that Go belongs to the variety U
generated by S.

Assume first that S is non-abelian. Let 93 be the variety generated by all proper
subgroups of S; then S does not belong to 93 (Neumann (1967), 51.34). Let W(G0)
be the verbal subgroup of Go corresponding to the variety 93. If | <J0: W(GO)\ = oo,
consider G0/W(G0), which is equally as large as Go and belongs to 93. This must
have a subgroup of finite index which can be mapped onto a normal subgroup U
of finite index in Go, and clearly f/e93. Now there exists Kt such that C/<^
(where Rt = KJK). Then U/Un^ is isomorphic to S. But this implies that Se 93,
a contradiction. It now follows |6 0 : *?((?„) |<oo, and so G^ W(G0). Thus W(<J0)
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has a normal subgroup of finite index which can be mapped onto a subgroup L of
finite index in G. Since W(G0) is locally a finite direct power of S (Wilson (1970),
Lemma 7'), and since the property 'being locally a finite direct power of 5 ' is closed
under taking normal subgroups and homomorphic images, it follows that L is
locally a finite direct power of S.

Now suppose that 5 is abelian, so that Go is an elementary abelian group. By
Priifer's Theorem, Go is the direct sum of p-cycles for some prime p. Moreover, the
number of summands must be countable, for otherwise Go would be uncountable
and yet would have a countable homomorphic image H, so that H -< Go. Since the
direct sum of countably many p-cycles is easily seen to be minimal, this completes
the proof.

Some comments are in order. (In the following discussion S will denote a
non-trivial finite simple group.)

It can be shown without too much difficulty that the direct product P(S) of
countably many copies of S is minimal (for the proof when S is non-abelian see
Pride (to appear), Example 4.3). If S is abelian then any group which is locally a finite
direct power of S is the direct product of copies of S (by Prufer's Theorem), and
so in this case the only minimal group which is locally a finite direct power of S is
(isomorphic to) P(5). On the other hand, if S is non-abelian it is conceivable that
there are minimal groups which are locally a finite direct power of S, but which are
not equally as large as P(S). However, I have not been able to find any such groups.
It seems hopeful that for suitable choice of ring R, the Boolean power BP(5, R)
(as defined in Neumann and Yamamuro (1965)) should be minimal, but except for
the case when R is the ring SF of finite-cofinite subsets of a countable set, I have not
been able to show this. Notice that BP(S ,^ ) has a subgroup of finite index
isomorphic to P(S).

The last result of this section gives a complete description of the abelian ~#-
groups. This obviously enables one to describe the soluble ^-groups, for it is
clear that every soluble ^ -g roup has an abelian ^-subgroup of finite index.

THEOREM 3. (i) 31 n ^ is the class of groups Q®B, where Q is quasicyclic and B
is a finite abelian group.

(ii) yin^l is the class of groups C®B, where C is infinite cyclic and B is a finite
abelian group.

(iii) %c\Jt\ is the class of direct sums of countably many finite cycles, almost all
of which are p-cycles for a fixed prime p.

PROOF. First consider (i). It is easily shown that any finite extension of a quasi-
cyclic group lies in u ^ . On the other hand, suppose G lies in $1 n J(x. Then G has a
subgroup Q of finite index which has no proper subgroups of finite index. Thus Q
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is divisible, and so G = Q®B where B is finite. Moreover, Q has a quasicyclic
homomorphic image Q. Since Q is minimal Q ^ Q, and so 0 and Q are isomorphic.

The fact that %c\^(\ consists precisely of the groups described in (iii) follows
from the proof of Thoerem 2 (see also the comments following the proof).

In order to deal with (ii) it is necessary to show that no abelian torsion group
lies in *J(\. Suppose H is a minimal abelian torsion group, and let D be a basic
subgroup of H. Then H/D is divisible; so either H= D or H/D~H. It follows
from what has already been shown that in the former case H lies in u?§, while in
the latter case H lies in ~#x.

It is easy to show that any finite extension of an infinite cyclic group lies in Jl\.
On the other hand, suppose G lies in 5In^£. It follows from the previous para-
graph that the quotient group K of G by its torsion subgroup must be infinite. So
K~ G. Let x be a non-trivial element of K and define a subset L of K to be in-
dependent of x if an equation yx+Xx yx +... + An yn = 0 (n ̂  0, y, Ax,..., An integers,
y1>...,yneL) implies y — 0. Let E be a maximal set independent of x (which
exists by Zorn's Lemma). Then sgp{x,E} = sgp{x}@sgpE. Moreover, the
maximality of E implies that K/sgp {x, E} is a torsion group, and so it follows from
the previous paragraph that \K: sgp{jc,£}|<oo. Consequently G^sgpfois}. But
sgp {x} ^ sgp {x, E), so G~ sgp {x}. It now follows easily that G is the direct sum of
an infinite cyclic group and a finite group.

This completes the proof of Theorem 3.

3. Abelian groups of finite height

In this section only, group will mean abelian group.

THEOREM 4. A divisible group has finite height if and only if it is isomorphic to the
direct sum ofn quasicyclic groups for some non-negative integer n, in which case the
group has height exactly n.

PROOF. Let B = S i Qi, where each Qt is quasicyclic, and let C be a homomorphic
image of B. Then it is not difficult to show that C is isomorphic to XieiQi for
some subset / of {1, ...,r}. Moreover, if / is properly contained in {1, ...,r} then
there is no homomorphism of C back onto B.

Now suppose G = 2 " A where each D{ is quasicyclic. Since divisible groups have
no proper subgroups of finite index, it follows from the previous paragraph that
H^ G if and only if Hcz^^Dt for some subset / of {1, ...,n}. It also follows
from the previous paragraph that if J is a proper subset of/then 2 , e j D} <
Consequently G has height exactly n.
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Conversely, suppose G is a divisible group of finite height. Now every divisible
group is isomorphic to the direct sum of quasicyclic groups and copies of Q. But
for every integer r ̂  0, Q can be mapped onto the direct sum of r quasicyclic groups.
Consequently, Q has infinite height by the previous paragraph and so Q cannot
occur as a direct summand of G. Thus G is isomorphic to the direct sum of quasi-
cyclic groups, and this direct sum can have only finitely many summands, again
by the previous paragraph.

This completes the proof.

THEOREM 5. Let G be a direct sum of cyclic groups. Then G has finite height if and
only if:

(i) the rank ofG/tG is finite;
(ii) tG has bounded order;

(iii) | G\ <Xu where u> is the least infinite ordinal.

(Recall that a group has bounded order if there is an integer n such that ng = 0
for all elements of the group.)

PROOF. First suppose that G has finite height.
Since a free abelian group of rank n has height n (Pride (to appear), Example 4.1)

it is clear that (i) holds.
To show that (ii) holds, it suffices to show that (tG)p has bounded order for all

primes p, and that for almost all primes (tG)p = 0. Suppose first, by way of
contradiction, that for an infinite set n of primes (tG)p ^ 0 for pen. Let -n^ir^, ...
be a sequence of subsets of n with •ni => 7ri+1 and tti \ ni+1 infinite for i = 1,2, Now
obviously tG (and thus G) can be mapped onto the direct sum At of cycles of order p
with p ranging over TT^ It is not difficult to show that Ai+1 -< A^ so tG does not
have finite height. Next suppose, again by way of contradiction, that for some
prime p, (tG)p has unbounded order. Then tG (and hence G) can be mapped onto
a countable direct sum Dn of cycles of order pn for arbitrarily large n. Now it is
not difficult to show that Do -< D1 -<...-< Dn, and so C has height at least n.
Since n can be chosen arbitrarily large, this means that G has infinite height—a
contradiction.

It remains to show that (iii) holds. Suppose \G\ = K. If K 0 < a < * then G has a
homomorphic image Ga of cardinality a. Clearly if Ko< «</?<«: then Ga<Gfi.
Thus /c<Ku.

Now suppose that G satisfies (i)—(iii). In order to show that G has finite height
some preliminary discussion is required.
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By a signature will be meant a sequence

(*) (j = (7n,n,s1,s2,...),

where m,n are non-negative integers and where for i = 1,2,..., sf is an («+ l)-tuple
(si0, ...,sin) of non-negative integers with either 5y = 0 or .%>.si(y+1). In addition,
almost all of the st are required to be 0. If T = (k, I, tly i^,...) is another signature
then write TS£CT if k^m, l^n, t ^ S j for i= 1,2 Here, if t = (t0 t,) and
s = (s0, ...,sn) are respectively an (/+ l)-tuple and an (n + l)-tuple of integers where
/<«, then t ^ s means to4iso,...,ti^sl.

A group B satisfying (i)-(u0 determines a signature as follows: the first
coordinate is the rank of B/tB; if | B\ = Xn

 t n e n t n e second coordinate is n, and if B
is finite the second coordinate is zero. Let pvp2,... be the sequence of primes. For
i = l ,2 , . . . let

sin = max{r: there are tf» summands of B of order pj},

and for

Sy = max{r: r>si(j+1), there are X^ summands of B of order pty.

(Adopt the convention max<£ = 0.) Then put sf = (si0, ...,sin).
It is not too difficult to establish the following three facts.
(a) Given a signature a as in (*), there is a group [a] whose signature is precisely

a, defined as follows. Let U be a free abelian group of rank m. For / = 1,2,... let
Vi be the direct sum of Xn cycles of order pf», Kn-i cycles of order /*?"—", ...Xo
cycles of order pf«. Then [a] = U® £ f Vt.

(b) If B satisfies (i)-(iii) and has signature a then B~ [a].
(c) If B satisfies (i)-(iii) and has signature a and if C ̂  B then C is equally as

large as a group Bx satisfying (i)-(iii), where the signature T of B1 is such that T < am

It now follows easily from (b) and (c) that if H =̂  G then H~ [T] for some T with
T ̂  er. Since the number of signatures T with T < a is finite, it follows that G has
finite height.

This proves Theorem 5.

REMARK. It can be seen from the proofs of Theorems 4 and 5 that if G is either
a divisible group or a direct sum of cyclic groups, and if G has finite height, then
up to equivalence under ~ , there are only finitely many groups H with H^G.
This fact will be needed for the proof of Theorem 6. (Some further comments
related to this remark will be made at the end of Section 4.)
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THEOREM 6. Let G be a torsion group, and let B be a basic subgroup of G. Then G
has finite height if and only if:

(i) GjB is the direct sum of finitely many quasicyclic groups;
(ii) B is of bounded order;
(iii) I G| <Xw where to is the least infinite ordinal.

PROOF. First suppose that G has finite height.
Since GIB =< G, GIB has finite height, so (i) holds by Theorem 4.
To show that (ii) holds it suffices to show that Bp has bounded order for all

primes p, and that for almost all primes Bp = 0. Suppose first, by way of contradic-
tion, that for an infinite set n of primes Bp # 0 for p e 77. Since G/B is the direct sum
of finitely many quasicyclic groups there is an infinite subset IT' of n such that
'Zp^-Bp is a direct summand of G. But by Theorem 5, Y,pe^Bp has infinite
height, and so therefore does G, contrary to assumption. Next suppose, again by
way of contradiction, that for some prime p, Bp has unbounded order. Then for
arbitrarily large n there is a factor group B/N of B isomorphic to the direct sum of
Ko cycles of order pn. Since B/N is of bounded order and is pure in GIN, it is a
direct summand, so G has B/N as a homomorphic image. But B/N has height n,
and since n can be chosen arbitrarily large, this implies that G has infinite height—a
contradiction.

Now (ii) implies that B is a direct summand, and so (iii) holds using Theorem

Next suppose that G satisfies (i)-(iii). Then B is a direct summand, so G can be
written as B@C, where C is the direct sum of finitely many quasicyclic groups.
Suppose L ^ G. Then there is a subgroup H of finite index in 5 © C which can be
mapped onto a subgroup K of finite index in L. Obviously H = Bt © C for some
subgroup B1 of finite index in B. Let D be the image of C under the mapping
H^-K. Since D is divisible it is a direct summand, so K= U® D where U is a
homomorphic image of Bv Hence U^B, D=^C. Since (up to equivalence under
~ ) there are only finitely many group U^B, D^C (see remark above), it follows
that G has finite height.

This completes the proof.

4. Direct products of minimal groups

The principal aim of this section is to show how the height of a group G is
influenced by the minimal groups M with M ̂  G. In the course of looking at this
question one is led to consider direct products of minimal groups, and so the
section begins with a discussion of this subject.
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It was shown in Pride (to appear), Theorem 4.5, that the direct product of n
minimal groups has height at most n. It turns out that if no two of the direct
factors are equally large then such a direct product has height exactly n.

THEOREM 7. Let Mx, ...,Mn be minimal groups, no two of which are equally large.
Then:

(i) M1<M1xM2< ... <Mxx ...xMn;
(ii) M1x ...xMn has height n.

PROOF. The proof of (i) is by induction on n. If n = 1 the result is trivial.
Assume n> 1, and suppose by way of contradiction that

Mxx ... xMn_1~M1x ... xMn.

Now it follows from Pride (to appear), Theorem 4.5 and the inductive hypothesis that
if M is a minimal group with M =^Mxx ... xMn_x then M~Mi for some / with
1 <i'<n —1. But Mn^Mxx ... xMn_1 and so there exists i (1 </<«—1) such that
Mn~Mt—a contradiction.

It is now obvious that (ii) holds, using (i) and Pride (to appear), Theorem 4.5.
When one comes to consider direct powers of minimal groups it is found that

various things can happen. It has already been pointed out in Pride (to appear) that
if B is a minimal just-infinite group not lying in <̂ 2 then B x B~ B. In fact the work in
Pride (to appear), Sections 4.2 and 4.3, shows the following. Let G be a minimal just-
infinite group. If G lies in Q)2 then Gn has height n, while if G does not he in 9l2 then
Gn~ G. The group P(5) of Section 2 has the property that the direct product of Ko

copies of P(5) is equally as large as P(S).
The next theorem is the main result of this section.

THEOREM 8. Let Mlt ...,Mn be minimal groups, no two of which are equally large.
Suppose G is a group with Mx =̂  Gfor i = 1,...,«. Then Mx x ... x Mn =̂  G, and G has
height at least n.

PROOF. The proof is by induction on n. If n = 1 the result is trivial.
Suppose n>\. By the inductive hypothesis, G has subgroups G0,N1,N2 with

\G: G0|<oo, N^N^GQ, GQ/NJ^ isomorphic to a subgroup of finite index in
Mt x ... x Mm_1, Go/N2 isomorphic to a subgroup of finite index in Mn. Now
|G0: ^JVg^oo. For suppose \G0: ^N^ = oo. Then GJ(N1N2)~Mn and

=^Mxx... xMn_1. Thus, by Theorem 7, Mn~Mi for some i with
- 1 . This is a contradiction.

Since |G0: N^KOO, G~NXN2. Thus {NxNJ/NXnN2 =< G. But (tyAy/tynN2

is isomorphic to (NxA^/A^ x(NxNJ/N2. Moreover, (^NJ/N^M^ ... xMn_x

and (ATXAy/N2~Mre. So (N1Ni)IN1nN2~M1 x ... xMn < G, as required.
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The fact that G has height at least n follows from Theorem 7.
This completes the proof.

COROLLARY. Suppose Mf (/ = 1,2,...) are minimal groups, no two of which are
equally large. If G is a group with Mt -< G for i= 1,2,... then G does not satisfy

ForM1 <MxxM2<M1xM2xMz< ... <G, by Theorems 7 and 8.
It should be remarked that if G is such that there are only finitely many distinct

(up to ~ ) minimal groups M with M =̂  G, then G may satisfy Max-^ (for example,
if G is minimal), but on the other hand it need not (for example, if G is the group
constructed in Pride (to appear), Theorem 4.4.).

It follows from Theorem 8 that if G is a group of finite height then there are only
finitely many distinct (up to ~ ) minimal groups M with M =̂  G. It is not in general
true that if G is a group of finite height then there are only finitely many distinct
(up to ~ ) groups H {not necessarily minimal) with H^G. Examples showing this
have been found by A. Hales (1979).

5. Poly-^2 groups

The aim of this section is to establish the following result.

THEOREM 9. Every poly-3l% group has finite height.

In order to prove this theorem some preliminary discussion is needed. Through-
out this section the following result will be used without explicit mention: every
subgroup of finite index in a ^2-group is again a ^2-group (Tretkoff (1976)).

Let G be a poly-^2 group. By a ^-series for G will be meant a series

where Gi+jJGt is a ^2-group for i = 0, ...,n — 1. Using Schreier's Theorem, it is not
difficult to establish that any two ^-series for G have the same number of infinite
factors. Denote this number by Pi(G).

Now consider a ^-series S? for G as above, and suppose Gk+1/Gk is the last
infinite factor. Let p^S^) be the sum of the orders of the finite factors in the ^ 2 -
series G&2 G^ ...^Gk(ifk does not exist put p^ST) = 0). Denote min {p^S^}: Sf is
a ^-series for G) by p{G). A ^-series Sf for G with Pf(G) = p^Sf) will be called
a minimal series. Clearly Pf(G) is an invariant of G.

The rank of G, denoted p(G), will be the ordered pair (pi(G), pt{G)).
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If (m^m^, (n^n^) are two ordered pairs of integers then write (% Wg) < (nlt n%)
if either m1<n1 or mx = nx and m2<n2 (the lexicographical ordering).

It is well-known that for every polycyclic group G (and more generally for every
poly-(cyclic or finite) group p,(G) = 0. Thus p(G) can be identified with Pi(G). This
number is usually called the Hirsch number. On the other hand, if G = SL(n,F)
where F is an infinite field having a finite number, say m, of nth roots of unity then
P(G) = {\,m), while if G = Sym(Kn) then p{G) = («+2,2) (see Scott (1964), 11.3.4).

LEMMA. Let G be a poly-22 group.
(i) If B is a subgroup of finite index in G then B is a poly-@2 group and
B) (G)(B)^(G)B) Pi(G),pt(.)^Pf(G).
(ii) If C is a homomorphic image of G then C is a poly-3l2 group and p(C) < />(G).

Moreover, p(C) = p(G) implies C~ G.

PROOF. Let «$": 1 = Go-nG^.-.^Gn = G be a minimal series for G.

To prove (i), let ^ ^ ^ n G j for i = 0, ...,n. Then BiJtX\Bi is isomorphic to a
subgroup of finite index in Gi+1/Gi (i = 0,..., n — 1). Thus

is a ^-series for 5. Moreover, 3T has the same number of infinite factors as £f
and so Pi(B) = pt(G). The finite factors of tT have orders not exceeding the orders
of the corresponding finite factors of £f. Thus p,(B) < pfT) s£ p / ^ ) = pf(G).

To prove (ii), let 6 be the homdhiorphism of G onto C, and for / = 0,...,« let
Q = ^(GJ. Then 0€: C?i+1/Gi^Q+1/Q defined by ej(Gix) = Q9(x) is an epi-
morphism. This implies in particular that °ll: 1 = Co^C^.- .^Cn = C is a ^2"
series for C. If one of the infinite factors of £? gets mapped (by the appropriate fy)
to a finite factor then p^C) < Pi(G). Otherwise all the infinite factors are mapped
isomorphically, and the finite factors of £f are mapped homomorphically onto the
finite factors of Ql. Thus pt(C) = p^G) and p,(C) < pf^l) ^ pt(S?) = p/G).

Now suppose p(C) = p(G). This means that if Gk+1/Gk is the last infinite factor
of £f then for O^i^k, 6t is an isomorphism. Consequently, the restriction of 6 to
Gh+1 is an isomorphism, and so G and C both have subgroups of finite index
isomorphic to Gk+V Thus G~C.

PROOF OF THEOREM 9. It is clearly sufficient to establish that if G is a
group and H^G then H is equally as large as a poly-^2 group L with
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Now if H •< G then G has a subgroup K of finite index which can be mapped onto
a subgroup L of finite index in H. By the lemma, p(K) ^ p(G). Moreover, since
L<K, p{L) < p(K), again by the lemma. This completes the proof.

It has already been noted that if G is poly-(cyclic or finite) then p(G) is essentially
the Hirsch number of G, and it follows easily from the proof of Theorem 9 that
every poly-(cyclic or finite) group has height less than or equal to its Hirsch
number. It can be shown that the height is equal to the Hirsch number if and only
if the group is nilpotent-by-finite.

One has the feeling that finitely generated nilpotent-by-finite groups are somehow
'smaller' than polycyclic groups in general, and there are results in the literature
to support this notion (for example, Wolf (1968)). The reader might be tempted to
think that the results mentioned in the previous paragraph give support to the
opposite viewpoint. However, this is purely illusionary, for obviously two groups
of different height need not be comparable. It is in fact easy to see that no nilpotent-
by-finite group can be larger than any group which is not nilpotent-by-finite.
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