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Abstract
According to the real business cycle theory, business cycles mainly result from random exogenous shocks.
In this paper, this argument is tested. I extend the Wald–Wolfowitz runs test under the assumption that
a recession lasts for two periods at least and an expansion lasts for k periods at least with k≥ 2. I apply
the extended runs test to the three two-valued data recession-expansion series generated by the National
Bureau of Economic Research and the Center for Economic and Policy Research. The test results reject the
null hypothesis that they are generated in a random way for any k even at the 1% significance level.
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1. Introduction
Real business cycle models [Kydland and Prescott, (1982)] state that economic fluctuations or
business cycles mainly result from stochastic exogenous shocks. This argument needs to be
empirically tested, which is done in this paper.

The National Bureau of Economic Research (NBER) dates the US recessions and expansions,
which is regarded as the most authoritative data on the business cycles of the USA in the world.
The data consist of two two-valued data recession-expansion time series. One is monthly over
from 1854m12 on, while the other is quarterly over from 1854q4 on. A series takes value 1 (0)
if the USA is in a recession (an expansion) in a month or a quarter. The Center for Economic
and Policy Research (CEPR) dates the Euro Area recessions and expansions from 1970q1 on,
generating a similar quarterly two-valued data recession-expansion series. The real business cycle
models predict the null hypothesis that these three time series are randomly generated. Applying
the runs test developed by Wald and Wolfowitz (1940) to them yields that the null hypothesis is
rejected even at the 1% significance level, which is surprising.

However, the Wald–Wolfowitz runs test should be extended in order to be applied to these
series of recessions and expansions. The reason is that not all the two-valued data series can be
considered as a recession-expansion series. According to the definitions of recession adopted by
the NBER and the CEPR, a recession lasts several months or at least two quarters. Thus, the runs of
a recession-expansion series, consisting of expansions and recessions, are constrained. In contrast,
under the Wald–Wolfowitz runs test, the runs are not constrained. Thus, applying the Wald–
Wolfowitz runs test may yield a large error.

This paper extends the Wald–Wolfowitz runs test under the assumption that a recession lasts
at least two periods (months or quarters) and an expansion lasts at least k periods with k≥ 2.
The test result depends on k. If k is sufficiently large, the null hypothesis cannot be rejected. This
assumption results from the definitions of recession adopted by the NBER and the CEPR and the
features of the three recession-expansion series. For the three series, the shortest recession lasts
two months for the US monthly series and two quarters for the US and the Euro Area quarterly
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series, respectively. Thus, I assume that a recession lasts at least two periods. Because there are
more expansion periods than recession periods, I assume that k≥ 2.Moreover, the shortest expan-
sion lasts 10 months for the US monthly series, four quarters for the US quarterly series, and nine
quarters for the Euro Area series, respectively. Thus, for the three series, k≤ 10, k≤ 4, and k≤ 9,
respectively. I show that applying the extended runs test to these three series still leads to reject
the null hypothesis at the 1% significance level for any k subject to the constraints.

My test results are not in favor of the real business cycle theory. The empirical evidence for sup-
porting the theory is that most macro series contain a unit root [e.g., Nelson and Plosser (1982)].
However, randomness test is the premise of unit root test. That is to say, only when a series is
randomly generated can one test whether the series contains a unit root. For example, let T0 be
an integer. The series which takes value a+ bt if t < T0 and c+ bt if t ≥ T0 with a �= c and b �= 0
at period t is generated in a deterministic way. If the Augmented Dickey–Fuller, Philips–Perron
[Phillips and Perron (1988)], the Elliott-Rothenberg-Stock [Elliott et al. (1996)] unit root tests
are applied, then this series contains a unit root. Moreover, randomness should be tested because
randomness is the most fundamental assumption of real business theory. I also apply the Wald–
Wolfowitz runs test to the growth rates of real GDP and many other macro indicators with the
median being the threshold. The test results also reject their randomness, which are not reported
in this paper.

This paper is organized as follows. Section 2 presents the null hypothesis. Section 3 proposes
the extended runs test. Section 4 tests these three series. And Section 5 concludes. I leave the proofs
of all the Lemmas in the Appendix.

2. The null hypothesis
According to the real business cycle theory, economic fluctuations or business cycles result from
random exogenous shocks, which predicts that the recessions and expansions occur randomly.
The NBER has published two two-valued data series of the US recessions and expansions, one
being monthly over from 1854m12 on, while the other being quarterly over from 1854q4 on.1 The
CEPR has published a quarterly two-valued data series of the Euro Area recessions and expansions
from 1970q1 on.2 The series takes value 1 at quarter t if quarter t is in a recession and 0 otherwise.
The real business cycle theory indicates the following hypothesis:

H0: These three recession-and-expansion series are randomly generated.
H1: These series are not randomly generated.

The Wald–Wolfowitz runs test is used to test the null hypothesis and the alternative. I apply it
to these three series of the recessions and expansions, and the null hypothesis is rejected even at
the 1% significance level.

I argue that applying the Wald–Wolfowitz runs test to these series may yield a large error due
to the definitions of recession adopted by the NBER and the CEPR. The NBER stresses that a
recession lasts “more than a few months”.3 The CEPR stresses that a recession lasts “two or more
consecutive quarters”.4 In the three recession-expansion series to be tested in this paper, if a “1”
follows a “0”, then there must be another “1” which follows the “1”. In other words, the series
must not take the values “. . .0, 1, 0. . .” but may take the values “. . .0, 1, 1, 0. . .”. However, for a
series applicable for the Wald–Wolfowitz runs test, the series may take the values “. . .0, 1, 0. . .”
and “. . .0, 1, 1, 0. . .”. In other words, all the series of recessions and expansions are only a part
of all the series that are applicable for the Wald–Wolfowitz runs test. Thus, a modification of the
Wald–Wolfowitz runs test is required to test the null hypothesis.

The definitions of recession indicate that for a series of recessions and expansions, there is a
threshold recession length (TRL) and a threshold expansion length (TEL). The TRL is theminimal
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length a recession may last and the TEL is the minimal length an expansion may last. The defi-
nitions also indicate that the TRL is greater than or equal to 2. Moreover, for each of these three
recession-expansion series, there is a recession which just lasts 2 quarters or 2 months. Thus,
TRL= 2. However, neither the NBER nor the CEPR defines expansion. Considering that the USA
and the Euro Area stay in expansion longer than in recession, I assume that TEL≥ 2 and TEL is a
parameter.

Assumption 1: TRL= 2 and TEL= k with k≥ 2.

However, the TELmust have an upper bound. If the TEL is too large, these three series may not
satisfy Assumption 1. Thus, the least upper bound is equal to the length of the shortest expansion
of a series. For the quarterly series of the Euro Area recessions and expansions, TEL≤ 9; for the
quarterly series of the US recessions and expansions, TEL≤ 4, and for the monthly series of the
US recessions and expansions, TEL≤ 10.

3. The extended runs test
Under Assumption 1, for an observed recession-and-expansion series, the recession with which
the series begins or ends may last one period or more because the recession may be just a part of a
complete recession. Similarly, the expansion with which the series begins or ends may last one or
more periods.

For an observed series, denote by n0 and n1 the number of expansion periods (quarters or
months) and that of recession periods, respectively, with n0 > k and n1 > 2. Just as in the Wald–
Wolfowitz runs test, a run is defined as a recession or an expansion. Denote the number of runs
(i.e., the total number of expansions and recessions) by r. Then r ≥ 2. Under the null hypothesis,
r is a random variable. Denote byM the maximum that r may take. Then 2≤ r ≤M.

For convenience, define [x] as the maximal integer less than or equal to x.

Lemma 1: Under Assumption 1,

M =
⎧⎨
⎩
n1 + 1 if n0 ≥ k

[
n1−1
2

]
+ 2− n0mod2

Max
{
2

[
n0−2
k

]
+ 3, 2

[
n0−1
k

]
+ 2

}
otherwise

Here n0mod2 is equal to 1 if n0 is odd and 0 if n0 is even.

I consider two cases that n1 is even and that n1 is odd, respectively. In each case, expansions
and recessions alternate in a series and the maximal difference between the number of reces-
sions and that of expansions is equal to 1. I consider three subcases: (1) the series begins with a
recession and ends with a recession; (2) the series “begins with a recession and ends with an expan-
sion” or “begins with an expansion and ends with a recession”; and (3) the series begins with
an expansion and ends with an expansion. Intuitively, given n1, if n0 is sufficiently large, M is
determined by n1; if n0 is small,M is determined by n0. Thus, Lemma 1 holds.

Lemma 2: Under Assumption 1, let R= [ r2 ]≥ 1. Then the number of the series of recessions and
expansions with r runs is equal to

N (r) =
⎧⎨
⎩
2CR−1

n1−RC
R−1
n0−(R−1)(k−1)−1

CR
n1−RC

R−1
n0−R(k−1)−1 + CR−1

n1−R−1C
R
n0−(R−1)(k−1)−1

if
r = 2R

r = 2R+ 1

If r = 2R, the number of recessions and that of expansions are the same and equal to R and the
series “begins with a recession and ends with an expansion” or “begins with an expansion and ends
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with a recession.” The numbers of the qualified series in the two cases are the same. Moreover, in
each case, one recession (expansion) may last any periods and each of the other R− 1 recessions
(expansions) lasts two (k) periods at least, which yields CR−1

n1−R (C
R−1
n0−(R−1)(k−1)−1) combinations of

recessions (expansions).
If r = 2R+ 1, there are two cases. (1) The series begins and ends with recessions, which indi-

cates that there are R+ 1 recessions and R expansions. Thus, there are CR
n1−R combinations of

recessions and CR−1
n0−R(k−1)−1 combinations of expansions. (2) The series begins and ends with

expansions, which indicates that there are R recessions and R+ 1 expansions. Thus, there are
CR−1
n1−R−1 combinations of recessions and CR

n0−(R−1)(k−1)−1 combinations of expansions.
My runs test is similar to the Wald–Wolfowitz runs test. The difference is in that the qualified

series under my runs test consist of a subset of the series under the Wald–Wolfowitz runs test. All
the qualified series share the same number of recession periods and the same number of expansion
periods but differ in their orders. Thus, the following Proposition 3 can be directly derived from
Lemmas 1 and 2 and we omit its proof.

Proposition 3: Under Assumption 1, if all the qualified recession-and-expansion series occur at the
same probability, the probability at which the number of runs is equal to r equals P (r) = N(r)∑M

i=2 N(i)
with 2≤ r ≤M.

Define E(r)= ∑M
r=2 r ∗ P(r) and D(r)=

√∑M
i=2 (i− E(r))2 ∗ P(i). That is to say, E(r) is the

mean of the number of runs and D(r) is the standard deviation of the number of runs.
For the large sample, the Wald–Wolfowitz runs statistic approximately obeys a normal distri-

bution. The numerical simulation in following three figures reveals that my runs statistic seems
to obey a normal distribution, too. This approximation helps to report the test results. However,
for the Euro Area quarterly recession-expansion series, the following Figure 3 indicates that the
sample size is small so that using the approximation may lead to a large error. Moreover, it is diffi-
cult to prove whether my runs statistic approximately obeys a normal distribution. Thus, I do not
intend to prove the result.

Let r be the observed number of runs. Define F(r)= ∑r
i=2 P(i). That is to say, F(r) is the prob-

ability at which the number of runs is less than or equal to the observed number of runs. If F(r) is
less than the significance level, the null hypothesis should be rejected.

4. Test results
In this section, I state that applyingmy runs test to these three series yields that the null hypothesis
is rejected for any TEL even at the 1% significance level. I also divide each of the two US series into
two subseries, one beforeWorldWar II and the other after it, and apply the runs test to them. The
null hypothesis is still rejected at the 1% significance level.

Table 1 reports the descriptive statistics of the three series, including the number of recession
periods, the number of recessions, the number of expansion periods, the number of expansions,
the observed number of runs, the longest and the shortest expansions, and the longest and the
shortest recessions. For the USA, the range of the lengths of expansion is from 10 months to
120 months or from 4 quarters to 40 quarters, while the range of the lengths of recessions is from
2 months to 65 months or from 2 quarters to 22 quarters. For the Euro Area, the range of the
lengths of expansion is from 9 quarters to 58 quarters, while the range of the lengths of recessions
is from 2 quarter to 10 quarters. These wide ranges of variances, large numbers of expansion
periods, and large numbers of recession periods may lead to a large average number of runs.

I apply the extended runs test to these three series. Table 2 reports the test results, including the
value ofM, the probability F(r), the mean E(r), and the standard deviations D(r), in the case that
the TEL is greater than 1 and less than or equal to the length of the shortest expansion. It indicates
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Table 1. Descriptive statistics

The USA The Euro Area

Monthly data Quarterly data Quarterly data

Observations and interval 2012
1854m12–2022m7

671
1854q4–2022q2

210
1970q1–2022q2

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recession periods 579 193 31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recessions 35 35 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Expansion periods 1433 478 179
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Expansions 35 35 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The observed number of runs 70 70 13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The shortest expansion:
length and interval

10
1919m4–1920m1

4
1980q4–1981q3
1919q2–1920q1

9
2009q3–211q3

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The shortest recession: length
and interval

2
2020m3–2020m4

2
2020q1–2020q2

2
2020q1–2020q2

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The longest expansion: length
and interval

120
1990m4–2001m3

40
1990q2–2001q1

58
1993q4–2008q1

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The longest recession: length
and interval

65
1873m11–1879m3

22
1873q4–1879q1

10
1980q2–1982q3

that F(r) is very small for any TEL and that as the TEL increases, both the mean and the standard
deviation decrease.

For the monthly series of the USA over 1854m12–2022m7, Figure 1 illustrates the density dis-
tributions P(r) and their normal-distribution counterparts, defined as N(r, E(r),D(r)2) over the
intervals [E(r)− 4D(r), E(r)+ 4D(r)] in the case that 2≤ TEL≤ 10. The values of both P(r) and
N(r, E(r),D(r)2) over the periods out of the intervals are close to 0. Figure 1 indicates that for
large samples, the density distributions are well approximated by their normal-distribution coun-
terparts. If the null hypothesis is true, the observed number of the runs r, which is equal to 70,
should be close to the mean E(r). However, E(r) is far larger than r for any TEL. As a result, the
probability F(r) is so small that the null hypothesis is rejected at the 1% significance level.

For the US quarterly series over 1854q4–2022q2, Figure 2 illustrates the density distribu-
tions P(r) and their normal-distribution counterparts N(r, E(r),D(r)2) over the intervals [E(r)−
4D(r), E(r)+ 4D(r)] in the case that 2≤ TEL≤ 4. Their values over the periods out of the intervals
are close to 0. It also indicates that for large samples, the density distributions are well approxi-
mated by their normal-distribution counterparts. Similarly, the null hypothesis is rejected at the
1% significance level.

For the Euro Area quarterly series over 1970q1–2022q2, the maximal possible number of runs
is identical to 32. Figure 3 illustrates the density distributions P(r) and their normal-distribution
counterparts N(r, E(r),D(r)2) over the intervals [E(r)− 4D(r), 32] in the case that 2≤ TEL≤ 9.
Their values over the period out of the intervals are close to 0. Because there are only 210 samples,
the maximal difference between P(r) andN(r, E(r),D(r)2) is large. Despite this, if the null hypoth-
esis is true, the observed number of the runs should still be close to the mean E(r). The probability
F(r) is so small that the null hypothesis is rejected at the 1% significance level. For comparison,
I also apply the test to the US quarterly series over 1970q1–2022q2 and the null hypothesis is
rejected at the 1% significance level. I omit reporting the test result.

The Great Depression is a watershed. Before that, the US government had basically adopted a
laissez faire policy when facing business cycles. And since then, various macroeconomic policies
have been used to stabilize the economy. One question arises whethermacro policies have changed
the randomness of the business cycles. I divide the US monthly data and quarterly data into two
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Table 2. Test results

The USmonthly series over 1854m12–2022m7 The US quarterly series over 1854q4–2022q2 The Euro Area series over 1970q1–2022q2

TEL Probability Maximum Mean Deviation Probability Maximum Mean Deviation Probability Maximum Mean Deviation

2 6.09E-230 580 435.85 10.345 2.92E-31 194 146.10 5.966 8.42E-09 32 27.42 2.007


3 3.18E-211 580 408.59 10.324 3.71E-26 194 137.09 5.956 2.01E-08 32 27.06 2.054


4 6.51E-192 580 376.27 9.9018 5.92E-21 194 126.39 5.717 5.05E-08 32 26.64 2.098


5 6.57E-173 575 341.98 9.1529 1.33E-07 32 26.14 2.136


6 5.26E-155 479 309.15 8.2875 3.68E-07 32 25.57 2.163


7 1.22E-138 411 279.72 7.4660 1.06E-06 32 24.92 2.175


8 6.23E-124 360 254.21 6.7503 3.15E-06 32 24.18 2.166


9 8.28E-111 321 232.34 6.1460 9.51E-06 32 23.38 2.134


10 4.03E-99 289 213.62 5.6390

Probability: the probability which the number of runs is less than or equal to the observed number of runs.
Maximum: the maximum that the number of runs may take.
Mean: the means of the number of runs.
Deviation: the standard deviation of the number of runs.
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Figure 1. The distribution based on the US monthly series over 1854m12–2012m7 (line) and its normal-distribution
counterpart (point).
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Figure 2. The distribution based on the US quarterly series over 1854q4–2012q2 (line) and its normal-distribution counter-
part (point).

parts, respectively. No matter how the series are divided with the cutoff point in 1929–1947, the
null hypothesis is rejected at the 1% significance level for any TEL. Thus, whether macro policies
are adopted does not change the non-randomness of the series.

5. Conclusion
In this paper, I extend the Wald–Wolfowitz runs test under the assumption that a recession lasts
for two periods at least and an expansion lasts for k periods at least with k≥ 2. I apply the extended
runs test to the three recession-expansion series generated by the NBER and the CEPR. The test
results reject the null hypothesis that the series are randomly generated at the 1% significance
level for any TEL. The test results are not in favor of the argument made by the real business cycle
theory that business cycles mainly result from random exogenous shocks.
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Figure 3. The distribution based on the Euro area quarterly series over 1970q1–2012q2 (line) and its normal-distribution
counterpart (point).

Notes
1 The two series are available at https://fred.stlouisfed.org/series/USRECQ and https://fred.stlouisfed.org/series/USREC
2 The series https://eabcn.org/dc/chronology-euro-area-business-cycles (Note: Peaks belong to expansions and troughs
belong to recessions.)
3 The NBER define a recession as “a significant decline in economic activity spreading across the economy, lasting more than
a few months, normally visible in real GDP, real income, employment, industrial production, and wholesale-retail sales.” (cf.
https://www.nber.org/news/business-cycle-dating-committee-announcement-january-7-2008)
4 The CEPR defines a recession as “a significant decline in the level of economic activity, spreading across the economy of the
euro area, usually visible in two or more consecutive quarters of negative growth in GDP, employment and other measures of
aggregate economic activity for the euro area as a whole.” (cf. https://eabcn.org/dc/methodology)
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Appendix

Proof of Lemma 1: Let m= [n12 ]. Note that recessions and expansions alternate. The maximal
difference between the number of recessions and that of the expansions is equal to 1. I consider
two cases.

Case 1: n1 is even. Then k
[
n1−1
2

]
+ 2− n1mod2= k (m− 1) + 2.

(i) I affirm that if and only if n0 ≥ k(m− 1)+ 2,M = n1 + 1= 2m+ 1.
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If M = 2m+ 1, then the series either “begins and ends with recessions” or “begins and ends
with expansions.” If the series begins and ends with recessions, there are at mostm+ 1 recessions
(i.e., the first and the last recessions last one period, respectively, and each of the other m− 1
recessions last two periods) and m expansions, which need at least km expansion periods. If the
series begins and ends with expansions, there are at most m recessions (i.e., each recession lasts
two periods) and m+ 1 expansions, which need at least k(m− 1)+ 2 expansion periods (i.e., the
first and the last expansions last one period, respectively, and each of the other m− 1 expansions
lasts k periods at least). Note that km≥ k(m− 1)+ 2. Thus, n0 ≥ k(m− 1)+ 2.

If n0 ≥ k(m− 1)+ 2, these expansion periods and recession periods can form the following
series, which has n1 + 1 runs. The series begins and ends with a one-period expansion, the other
expansion periods form its m− 1 expansions with each lasting at least k expansion periods,
and 2m recession periods form its m recessions. Thus, M ≥ n1 + 1. We argue that M = n1 + 1.
OtherwiseM ≥ n1 + 2= 2m+ 2. Thus, there are at leastm+ 1 recessions andm+ 1 expansions.
However, that 2m recession periods formm+ 1 recessions indicates that the series must begin and
end with recessions and it is impossible that there are m+ 1 expansions. This is a contradiction.
Thus,M = n1 + 1.

(ii) I affirm that if n0 ≤ k(m− 1)+ 1, M =Max{2
[
n0−2
k

]
+ 3, 2

[
n0−1
k

]
+ 2}. In

such a case, 2
[
n0−2
k

]
+ 3≤ 2

[
k(m−1)+1−2

k

]
+ 3= 2m− 1= n1 − 1 and 2

[
n0−1
k

]
+ 2≤

2
[
k(m−1)+1−1

k

]
+ 2= 2m= n1.

If the series begins and ends with expansions, then there are at most
[
n0−2
k

]
+ 2 expansions and[

n0−2
k

]
+ 1 recessions. Note that

[
n1−2
k

]
+ 1≤

[
k(m−1)−1

k

]
+ 1≤m− 1 and 2m recession periods

can form
[
n1−2
k

]
+ 1 recessions. Moreover, if both the first expansion and the last expansion last

one period, then n0 expansion periods can form
[
n0−2
k

]
+ 2 expansions. Thus, there are at most

2
[
n0−2
k

]
+ 3 runs andM may be equal to 2

[
n0−2
k

]
+ 3.

If the series begins and ends with recessions, then there are at most
[n0
k

]
expansions and

[n0
k

] +
1 recessions. Note that

[n0
k

] + 1≤
[
k(m−1)+1

k

]
+ 1=m and 2m recession periods can form

[n0
k

] +
1 recessions. Thus, there are at most 2

[n0
k
] + 1 runs. However, 2

[
n0−2
k

]
+ 3− (

2
[n0
k

] + 1
) =

2(
[
n0+k−2

k

]
− [n0

k
]
)≥ 0. Thus,M does not necessarily take value 2

[n0
k

] + 1.
If the series “begins with a recession and ends with an expansion” or “begins with an expansion

and ends with a recession,” then the number of runs is even and there are at most
[
n0−1
k

]
+ 1

expansions and
[
n0−1
k

]
+ 1 recessions. Note that

[
n0−1
k

]
+ 1≤

[
k(m−1)

k

]
+ 1≤m and 2m reces-

sion periods can form
[
n0−1
k

]
+ 1 recessions. Moreover, if the expansion with which the series

begins or ends lasts one period, then n0 expansion periods can form
[
n0−1
k

]
+ 1 expansions. Thus,

there are 2
[
n1−1
k

]
+ 2 andM may be equal to 2

[
n1−1
k

]
+ 2.

Note that 2
[
n1−2
k

]
+ 3 is odd, 2

[
n1−1
k

]
+ 2 is even, and one number is not always greater than

the other. Thus,M =Max{2
[
n1−2
k

]
+ 3, 2

[
n1−1
k

]
+ 2} and my affirmation holds.

Case 2: n1 is odd. Then k
[
n1−1
2

]
+ 2− n1mod2= km+ 1.

(iii) I affirm that if and only if n0 ≥ km+ 1,M = n1 + 1= 2m+ 2.
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If M = n0 + 1= 2m+ 2, then there are m+ 1 recessions and m+ 1 expansions and the series
“begins with a recession and ends with an expansion” or “begins with an expansion and ends with
a recession.” Note that 2m+ 1 recession periods can form m+ 1 recessions with one recession
lasting one period.m+ 1 expansions need at least km+ 1 expansion periods. Thus, n0 ≥ km+ 1.

If n0 ≥ km+ 1, the series 1,
k︷ ︸︸ ︷

0, . . . 0, 1, 1,
k︷︸︸︷

0, ..0,1, 1, 0, . . . , 1,
k︷︸︸︷

0, ..0,1, 1,
n0−km︷ ︸︸ ︷
0, .., 0 contains n1 + 1

runs. Thus, M ≥ n1 + 1. We argue that M = n1 + 1. Otherwise, M ≥ n1 + 2= 2m+ 3. 2m+ 1
recession periods form at most m+ 1 recessions. Thus, at least m+ 2 expansions are required,
which indicates that each of the m+ 1 recessions lasts 2 periods or more or 2m+ 2 recession
periods are required. This is a contradiction. Therefore,M = n1 + 1.

(iv) I affirm that if n1 ≤ km, M =Max{2
[
n0−2
k

]
+ 3, 2

[
n0−1
k

]
+ 2}. The proof of this affir-

mation is similar to that of affirmation (ii) and I omit its proof. In the proof, one needs to
use the following inequalities:

[
n0−2
k

]
+ 1≤

[
km−2

k

]
+ 1≤m,

[n0
k

] + 1≤
[
km
k

]
+ 1≤m+ 1, and[

n0−1
k

]
+ 1≤

[
km−1

k

]
+ 1≤m.

Proof of Lemma 2: I consider two cases.
Case 1: r is even. Then there are R recessions and R expansions. Moreover, the series either

“begins with a recession and ends with an expansion” or “begins with an expansion and ends with
a recession.”

(i) The series begins with a recession and ends with an expansion. For any qualified combina-
tion of recessions, the first recession may last any periods, while each of the other R− 1 recessions
lasts at least 2 periods. I first take out R− 1 recession periods and then divide the left n1 − R+ 1
recession periods into R groups, yielding CR−1

n1−R divisions in total. I affirm that there exists a one-
to-one correspondence between the divisions and the qualified combinations of recessions, which
indicates that there are CR−1

n1−R qualified combinations of recessions. Given a division, the first
group acts as a recession, and adding a recession period to each of the last R− 1 group leads to
R− 1 recessions, each of which lasts 2 periods at least. These recessions form a qualified combina-
tion of recessions. Conversely, for any qualified combination of recessions, taking out a recession
period from each of the last R− 1 recessions yields such a division. Thus, my affirmation holds.
For any qualified combination of expansions, each of the first R− 1 expansions lasts at least k
periods, while the last expansion may last any periods. I first take out (R− 1)(k− 1) expansion
periods and then divide the left n0 − (R− 1)(k− 1) expansion periods into R groups, yielding
CR−1
n0−(R−1)(k−1)−1 divisions in total. Similarly, there is also a one-to-one correspondence between

the divisions and the qualified combinations of expansions. In fact, for a qualified combination,
taking out k− 1 expansion periods from each of the first R− 1 expansions yields a division, which
builds the correspondence. Thus, in total, there are CR−1

n1−RC
R−1
n0−(R−1)(k−1)−1 combinations of series

in such a subcase.
(ii) The series begins with an expansion and ends with a recession. It is easy to show that there

are also CR−1
n1−RC

R−1
n0−(R−1)(k−1)−1 combinations of series in such a subcase.

Therefore, if r = 2R, Lemma 2 holds.
Case 2: r is odd. Then the series either “begins and ends with recessions” or “begins and ends

with expansions.” Consider two subcases.
(iii) The series begins and ends with recessions. In such a subcase, there are R+ 1 recessions

and R expansions; the first recession and the last recessionmay last any periods; each of themiddle
R− 1 recessions lasts at least 2 periods; and each expansion lasts at least k periods. Consider the
qualified combinations of recessions. Take out R− 1 recession periods and the left n1 − R+ 1
recession periods are divided into R+ 1 groups, yielding CR

n1−R divisions. Similarly, there is a
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one-to-one correspondence between the divisions and the qualified combinations of recessions
and there are CR

n1−R qualified combinations of recessions. In fact, taking out a recession period
from each of the middle R− 1 recessions yields a division, which builds the correspondence. For
the n0 expansion periods, take out R(k− 1) expansion periods and divide the left n0 − R(k− 1)
expansion periods into R groups, yielding CR−1

n0−R(k−1)−1 divisions. Note that each expansion lasts
at least k expansion periods and there are R expansions. There is a one-to-one correspondence
between the divisions and the qualified combinations of expansions. Thus, there are CR−1

n0−R(k−1)−1
qualified expansion combinations. In total, there are CR

n1−RC
R−1
n0−R(k−1)−1 combinations of series in

such a subcase.
(iv) The series begins and ends with expansions. There are R recessions and R+ 1 expansions;

each recession lasts 2 periods at least; the first and the last expansions may last any periods;
and each of the middle R− 1 expansions lasts at least k periods. For the n1 recession peri-
ods, take out R recession periods and divide the left n1 − R recession periods into R groups,
yielding CR−1

n1−R−1 divisions. There is a one-to-one correspondence between the divisions and
the qualified combinations of recessions and there are CR−1

n1−R−1 qualified combinations of reces-
sions. For the n0 expansion periods, take out (R− 1)(k− 1) expansion periods and divide the
left n0 − (R− 1)(k− 1) expansion periods into R+ 1 groups, yielding CR

n0−(R−1)(k−1)−1 divisions.
Similarly, there is a one-to-one correspondence between the divisions and the qualified combina-
tions of expansions and there are CR

n0−(R−1)(k−1)−1 qualified combinations of expansions. In total,
there are CR−1

n1−R−1C
R
n0−(R−1)(k−1)−1 combinations of series in such a subcase.

Summarizing case (iii) and (iv) yields that if r = 2R+ 1, Lemma 2 is true.
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