
23

H(b) spaces generated by a nonextreme
symbol b

As we have already said, many properties of H(b) depend on whether b is or
is not an extreme point of the closed unit ball of H∞. Recall that, by the de
Leeuw–Rudin theorem (Theorem 6.7), b is a nonextreme point of the closed
unit ball of H∞ if and only if log(1− |b|2) ∈ L1(T), i.e.∫

T

log(1− |b|2) dm > −∞. (23.1)

In this chapter, we study some specific properties of the spaceH(b) when b is a
nonextreme point. Roughly speaking, when b is a nonextreme point, the space
H(b) looks like the Hardy space H2.

In this situation, an important property is the existence of an outer function
a such that a(0) > 0 and which satisfies |a|2 + |b|2 = 1 a.e. on T. This
function a is introduced in Section 23.1 and we will see that H(b̄) � M(ā).
In Section 23.2, we characterize the inclusionM(u) ⊂ H(b) where u ∈ H∞.
An important object in the nonextreme case is the associated function f+

introduced in Section 23.3. This function, which is defined via the equation
Tb̄f = Tāf

+, enables us to give a useful formula for the scalar product in
H(b). We also show, in Section 23.3, that b ∈ H(b) and we compute its norm.
It turns out that the analytic polynomials belong to and are dense inH(b). This
is the content of Section 23.4. Then, in Section 23.5, we give a formula for
‖Xbf‖b, f ∈ H(b), and we compute the defect operator DXb

. Recall that, in
Section 19.2, we gave a geometric representation of H(b) space based on the
abstract functional embedding. In Section 23.6, we obtain another representa-
tion, which corresponds to the Sz.-Nagy–Foiaş model for the contraction Xb.
In Section 23.7, we characterize H(b) spaces when b is a nonextreme point.
The analog for the extreme case will be done in Section 25.8. In Section 23.8,
we exhibit some new inhabitants of H(b). In the last section, we finally show
that theH(b) space can be viewed as the domain of the adjoint of an unbounded
Toeplitz operator with symbol in the Smirnov class.
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274 H(b) spaces generated by a nonextreme symbol b

23.1 The pair (a, b)

If b satisfies the condition (23.1), then we define a to be the unique outer
function whose modulus on T is (1 − |b|2)1/2 and is positive at the origin.
Hence, on the open unit disk, a is given by the formula

a(z) = exp

(∫
T

ζ + z

ζ − z
log(1− |b(ζ)|2)1/2 dm(ζ)

)
(z ∈ D). (23.2)

Clearly, a ∈ H∞ with ‖a‖∞ ≤ 1 and

|a|2 + |b|2 = 1 (a.e. on T). (23.3)

Whenever we use the pair (a, b), we mean that they are related as described
above. We sometimes say that a is the Pythagorean mate associated with b.

Theorem 23.1 For each pair (a, b), we have

a

1− b
∈ H2.

Proof By Corollary 4.26, 1/(1 − b) is an outer function in Hp for each 0 <

p < 1. Since a is an outer function in H∞, then a/(1 − b) is also an outer
function in Hp for each 0 < p < 1. But, by (13.50) and (23.3),

|a|2
|1− b|2 =

1− |b|2
|1− b|2 ∈ L1(T),

or equivalently a/(1 − b)∈L2(T). Hence, Corollary 4.28 ensures that
a/(1− b) ∈ H2.

Theorem 23.2 Let b be a nonextreme point of the closed unit ball of H∞.
Then

M(ā) � H(b̄).

Moreover,

M(a) ↪→M(ā) ↪→ H(b),

i.e. both inclusions are contractive. In particular,M(a) is contractively con-
tained inH(b).

Proof The relation M(a) ↪→ M(ā) follows from Theorem 17.17. Using
Theorem 12.4 and (23.3), we see that

TāTa = T|a|2 = T1−|b|2 = I − Tb̄Tb.

Hence, Corollary 16.8 implies thatM(ā) =M(Tā) �M((I − Tb̄Tb)
1/2) =

H(b̄). The contractive inclusion H(b̄) ↪→ H(b) is contained in Theorem 17.9.
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23.1 The pair (a,b) 275

Theorem 23.2 ensures that M(ā) embeds contractively in H(b). The fol-
lowing result provides another contraction between these spaces.

Theorem 23.3 Let b be a nonextreme point of the closed unit ball of H∞.
Then the operator Tb mapsM(ā) contractively intoH(b).

Proof According to Lemma 16.20, the operator Tb acts as a contraction from
H(b̄) into H(b). The result follows since, by Theorem 23.2, we have H(b̄) �
M(ā).

According to Theorem 23.2, H(b̄) � M(ā), and thus, if f ∈ H(b̄), then
there exists a unique g ∈ H2 such that

f = Tāg. (23.4)

The uniqueness of g follows from the fact that Tā is injective; see Theorem
12.19(ii). In other words, Tā is an isometry from H2 ontoM(ā). Therefore, if
f1 = Tāg1 and f2 = Tāg2, with g1, g2 ∈ H2, then

〈f1, f2〉b̄ = 〈Tāg1, Tāg2〉M(ā) = 〈g1, g2〉2. (23.5)

We recall that kw denotes the Cauchy kernel.

Theorem 23.4 Let (a, b) be a pair. Then

kw ∈ H(b̄) (w ∈ D)

and, for every function f ∈ H(b̄), we have

〈f, kw〉b̄ =
g(w)

a(w)
,

where g ∈ H2 is related to f via (23.4). Moreover, we have

‖kw‖b̄ =
1

|a(w)| (1− |w|2)1/2 . (23.6)

Proof According to (12.7), we have Tākw = a(w)kw. Since a is outer, then
a(w) �= 0 and we can write the last identity as

kw = Tā

(
kw

a(w)

)
. (23.7)

This representation shows that kw ∈ M(ā) = H(b̄) and the function corre-
sponding to kw via (23.4) is equal to kw/a(w). Therefore, for each f ∈ H(b̄),
by (23.5), we have

〈f, kw〉b̄ = a(w)−1〈g, kw〉2 = a(w)−1g(w).
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276 H(b) spaces generated by a nonextreme symbol b

In particular, if we take f = kw, we obtain

‖kw‖2b̄ = a(w)−1kw(w)/a(w) = |a(w)|−2(1− |w|2)−1.

Remember, as we established in (4.19), that kw(w) = 1/(1− |w|2).

Recall that, in Section 17.5, we studied the question of inclusion of different
H(b̄) spaces. In the case when b is nonextreme, we can state the condition
(17.12) in terms of the associated function a.

Corollary 23.5 Let (a1, b1) and (a2, b2) be two pairs. Then the following are
equivalent:

(i) H(b̄2) ⊂ H(b̄1);
(ii) a2/a1 ∈ H∞.

Proof (i) =⇒ (ii) By Theorem 17.12, there is a constant c > 0 such that

1− |b2(ζ)|2 ≤ c(1− |b1(ζ)|2) (a.e. on T).

Hence,

|a2|2 ≤ c |a1|2 (a.e. on T).

This means that a2/a1 ∈ L∞(T). But, since a1 is outer, the function a2/a1 in
fact belongs to H∞.

(ii) =⇒ (i) Assume that a2 = a1g, with some function g ∈ H∞. Then we
have Tā2

= Tā1
Tḡ , which trivially implies thatM(ā2) ⊂ M(ā1). The con-

clusion follows now from Theorem 23.2, because we have H(b̄k) =M(āk),
k = 1, 2.

Exercises

Exercise 23.1.1 Let (a, b) be a pair. Show that

|a(λ)|2 + |b(λ)|2 ≤ 1 (λ ∈ D).

Moreover, if b is not constant, the inequality is strict.
Hint: (First method) Note that |a|2 + |b|2 is harmonic and apply the maximum
principle for harmonic functions.

(Second method) By Theorem 12.10, we know that, for any ϕ ∈ H∞, we
have TϕTϕ̄ ≤ Tϕ̄Tϕ. Apply this inequality to get ‖Tākλ‖22 + ‖Tb̄kλ‖22 ≤
‖kλ‖22.

Exercise 23.1.2 Let b be a nonextreme point of the closed unit ball of H∞,
and let a be the associated outer function. Show that a/b ∈ H∞ if and only if
‖b‖∞ < 1.
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23.2 Inclusion of M(u) into H(b)

Theorem 23.2 reveals thatM(a) is a linear manifold inH(b). Generally speak-
ing, it is important to distinguish a submanifold of H(b) that is of the form
M(u) for a certain bounded analytic function u. The following result is a
characterization of this type.

Theorem 23.6 Let (a, b) be a pair, and let u be a function in H∞. Then the
following are equivalent:

(i) u/a ∈ H∞;

(ii) M(u) ⊂M(a);

(iii) M(u) ⊂ H(b).

Proof (i)⇐⇒ (ii) This is already contained in Theorem 17.1.
(ii) =⇒ (iii) This follows from Theorem 23.2.
(iii) =⇒ (i) According to Lemma 16.6, there is a constant c > 0 such that

‖f‖b ≤ c ‖f‖M(u), (23.8)

for every function f ∈M(u). Now applying Theorem 16.7 gives

TuTū ≤ c2(I − TbTb̄). (23.9)

Applying (23.9) to kw, w ∈ D, gives

‖Tūkw‖22 ≤ c(‖kw‖22 − ‖Tb̄kw‖22).

But, by (12.7), Tūkw = u(w)kw and Tb̄kw = b(w)kw, and thus we obtain

|u(w)|2 ≤ c(1− |b(w)|2) (w ∈ D).

In particular, we deduce from this inequality that

|u(ζ)|2 ≤ c(1− |b(ζ)|2) (a.e. ζ ∈ T).

By definition, we have |a|2 = 1 − |b|2 almost everywhere on T and thus we
get

|u(ζ)|2 ≤ c|a(ζ)|2 (a.e. ζ ∈ T).

Hence, u/a belongs to L∞(T). But, since a is outer, Corollary 4.28 ensures
that u/a belongs to H∞.

Considering the set-theoretic inclusion, Theorem 23.6 also reveals that
among spacesM(u), u ∈ H∞, that fulfillM(u) ⊂ H(b), the spaceM(a) is
the largest one.
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278 H(b) spaces generated by a nonextreme symbol b

Exercise

Exercise 23.2.1 Let (a, b) be a pair, and let u be a function in H∞. Show
that the following are equivalent.

(i) u/a ∈ H∞ and ‖u/a‖∞ ≤ 1.
(ii) M(u) ↪→M(a).
(iii) M(u) ↪→ H(b).

Hint: See the proof of Theorem 23.6.

23.3 The element f+

Let f ∈ H(b). Thus, using Theorems 17.8 and 23.2, we know that Tb̄f ∈
H(b̄) =M(ā). Theorem 12.19(ii) says that Tā is injective. Therefore, there is
a unique element of H2, henceforth denoted by f+, such that

Tb̄f = Tāf
+. (23.10)

It is also useful to mention that, if a function f ∈ H2 satisfies Tb̄f = Tāg,
for some function g ∈ H2, then it follows from Theorems 17.8 and 23.2 that
f surely belongs to H(b) and g = f+. The element f+ is a useful tool in
studying the properties of f ∈ H(b). In this section, we study some elementary
properties of f+.

Looking at the definition in (23.10), it is no wonder that this operation is
invariant under a Toeplitz operator with a conjugate-analytic symbol.

Lemma 23.7 Let b be a nonextreme point of the closed unit ball of H∞, let
f ∈ H(b) and let ϕ ∈ H∞. Then

(Tϕ̄f)
+ = Tϕ̄f

+.

Proof We know from Theorem 18.13 that H(b) is invariant under Tϕ̄.
Consequently, we have Tϕ̄f ∈ H(b). Then, according to Theorem 12.4,

Tb̄Tϕ̄f = Tϕ̄Tb̄f = Tϕ̄Tāf
+ = TāTϕ̄f

+.

Hence, remembering the uniqueness of (Tϕ̄f)
+, the identity Tb̄(Tϕ̄f) =

Tā(Tϕ̄f
+) means that (Tϕ̄f)

+ = Tϕ̄f
+.

Theorem 23.8 Let f1, f2 ∈ H(b). Then we have

〈f1, f2〉b = 〈f1, f2〉2 + 〈f+
1 , f+

2 〉2.

In particular, for each f ∈ H(b),

‖f‖2b = ‖f‖22 + ‖f+‖22.
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23.3 The element f+ 279

Proof Using Theorem 17.8, we can write

〈f1, f2〉b = 〈f1, f2〉2 + 〈Tb̄f1, Tb̄f2〉b̄
= 〈f1, f2〉2 + 〈Tāf

+
1 , Tāf

+
2 〉b̄.

SinceH(b̄) �M(ā), we have

〈Tāf
+
1 , Tāf

+
2 〉b̄ = 〈Tāf

+
1 , Tāf

+
2 〉M(ā).

Since, according to Theorem 12.19(ii), Tā is injective, it follows that

〈Tāf
+
1 , Tāf

+
2 〉M(ā) = 〈f+

1 , f+
2 〉2,

and this implies

〈f1, f2〉b = 〈f1, f2〉2 + 〈f+
1 , f+

2 〉2.

Theorem 23.8 is very useful in computing the norm of elements of H(b).
Two such computations are discussed below.

Corollary 23.9 Let b be a nonextreme point of the closed unit ball of H∞.
Then b ∈ H(b), with

b+ =
1

a(0)
− a,

and, moreover, we have

‖b‖2b = |a(0)|−2 − 1

‖S∗b‖2b = 1− |b(0)|2 − |a(0)|2.

Proof According to Theorems 18.1 and 23.2, we have b ∈ H(b) if and only
if Tb̄b ∈ H(b̄) =M(ā). But

Tb̄b = P+|b|2 = P+(1− |a|2) = 1− Tāa,

and we can write 1 = P+(ā/a(0)) = Tā(1/a(0)). Therefore, we obtain

Tb̄b = Tā

(
1

a(0)
− a

)
∈M(ā).

This fact ensures that b ∈ H(b). Moreover, the last identity also reveals that

b+ =
1

a(0)
− a. (23.11)

A simple calculation shows that

‖b+‖22 = ‖a‖22 +
1

|a(0)|2 − 2.

https://doi.org/10.1017/CBO9781139226769.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139226769.010


280 H(b) spaces generated by a nonextreme symbol b

Hence, by Theorem 23.8 and the fact that ‖a‖22 + ‖b‖22 = 1, we obtain

‖b‖2b = ‖b‖22 + ‖b+‖22
= ‖b‖22 + ‖a‖22 +

1

|a(0)|2 − 2

=
1

|a(0)|2 − 1.

By Lemma 23.7 and (23.11), we see that

(S∗b)+ = −S∗a. (23.12)

According to Theorem 23.8 and (8.16), we thus have

‖S∗b‖2b = ‖S∗b‖22 + ‖S∗a‖22
= ‖b‖22 + ‖a‖22 − |b(0)|2 − |a(0)|2

= 1− |b(0)|2 − |a(0)|2.

This completes the proof.

By Theorem 23.2, we know that M(ā) = H(b̄) ⊂ H(b). The following
result reveals that, in a sense,M(ā) is a large subset of H(b). In the extreme
case, this is far from being true. For example, if b is inner, thenH(b̄) = {0}.

Corollary 23.10 Let b be a nonextreme point of the closed unit ball of H∞.
Then, relative to the topology of H(b), the spaceH(b̄) is a dense submanifold
of H(b).

Proof By Theorem 23.2,M(ā) � H(b̄) ↪→ H(b). Let f ∈ H(b) and assume
that, relative to the inner product of H(b), f is orthogonal toM(ā). Thus, in
particular, we have

〈f, TāS
∗nf〉b = 0 (23.13)

for all n ≥ 0. Using Theorem 12.4, we can write

TāS
∗nf = TāTz̄nf = Tāz̄nf.

Again, since zna(z) ∈ H∞, by Lemma 23.7,

(TāS
∗nf)+ = Tāz̄nf+.

Therefore, according to Lemma 4.8 and Theorem 23.8, we have

〈f, TāS
∗nf〉b = 〈f, Tāz̄nf〉2 + 〈f+, Tāz̄nf+〉2

= 〈Taznf, f〉2 + 〈Taznf+, f+〉2
= 〈aznf, f〉2 + 〈aznf+, f+〉2

=
1

2π

∫ 2π

0

a(eiθ)[|f(eiθ)|2 + |f+(eiθ)|2] einθ dθ

= ϕ̂(−n),
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where ϕ denotes the L1 function defined by ϕ = (|f |2+ |f+|2)a (the function
ϕ belongs to L1(T) since it is the product of the H∞ function a and the L1

function (|f |2 + |f+|2)). Thus, (23.13) and the previous computation imply
that ϕ̂(n) = 0 for all n ≤ 0. This precisely means that ϕ ∈ H1

0 . Since a is
an outer function and |f |2 + |f+|2 ∈ L1(T), we deduce from Corollary 4.28
that |f |2 + |f+|2 ∈ H1

0 . Since this function is real-valued, (4.12) implies that
|f |2+ |f+|2 ≡ 0. In particular, f ≡ 0. Therefore,M(ā) is dense inH(b).

Recall that, if 0 < r < 1, then, by definition, ar is the unique outer function
whose modulus on T is (1−r2|b|2)1/2 and ar(0) > 0. In other words, (ar, rb)
is a pair. Note that, on T, we have

|a|2 = 1− |b|2 ≤ 1− r2|b|2 = |ar|2,

which implies that a/ar ∈ L∞(T). Then, according to Corollary 4.28, the
function a/ar belongs to H∞ and we have∥∥∥∥ a

ar

∥∥∥∥
∞
≤ 1. (23.14)

A similar argument shows that a−1
r belongs to H∞.

Given a function f in H(b), the next result gives a method to find the
associated function f+. To give the motivation for the following result, note
that, if incidentally bf/a ∈ L2(T), then

f+ = P+(b̄f/ā). (23.15)

Indeed, we have

TāP+(b̄f/ā) = P+(āP+(b̄f/ā)) = P+(āb̄f/ā) = Tb̄f,

which, by uniqueness of f+, gives the formula (23.15). However, if bf/a does
not belong to L2(T), we appeal to a limiting process to get a similar result.

Theorem 23.11 Let f ∈ H(b). Then

lim
r→1
‖Tb̄/ār

f − f+‖2 = 0.

Proof Since a−1
r ∈ H∞, multiplying both sides of Tb̄f = Tāf

+ by T1/ār

gives

Tb̄/ār
f = Tā/ār

f+.

Hence, by (23.14), we have

‖Tb̄/ār
f‖2 = ‖Tā/ār

f+‖2 ≤
∥∥∥∥ a

ar

∥∥∥∥
∞
‖f+‖2 ≤ ‖f+‖2 (23.16)
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for all r ∈ (0, 1). Let us now prove that a/ar tends to 1, as r −→ 1, in the
weak-star topology of H∞. According to Theorem 4.16, this is equivalent to
saying that

sup
0≤r<1

∥∥∥∥ a

ar

∥∥∥∥
∞

< +∞

and

lim
r→1

a(z)

ar(z)
= 1 (z ∈ D).

The first fact follows immediately from (23.14). To verify the second fact,
recall that

ar(z) = exp

(∫
T

ζ + z

ζ − z
log |ar(ζ)| dm(ζ)

)
,

and then an application of the dominated convergence theorem gives the result.
Consequently, for every φ ∈ L1(T), we have

lim
r→1

∫
T

ā

ār
φ dm =

∫
T

φ dm.

Now, let u, v ∈ H2. Since uv̄ ∈ L1(T), the last identity gives

lim
r→1
〈Tā/ār

u, v〉2 = lim
r→1
〈āu/ār, v〉2

= lim
r→1

∫
T

ā

ār
uv̄ dm =

∫
T

uv̄ dm = 〈u, v〉2.

This means that Tā/ār
u is weakly convergent to u in H2. Therefore, Tb̄/ār

f =

Tā/ār
f+ weakly converges to f+ in H2, as r −→ 1. But, according to (23.16),

we have

‖Tb̄/ār
f − f+‖22 = ‖Tb̄/ār

f‖22 + ‖f‖22 − 2�〈Tb̄/ār
f, f+〉2

≤ 2‖f+‖22 − 2�〈Tb̄/ār
f, f+〉2.

Hence, we get

lim sup
r→1

‖Tb̄/ār
f − f+‖22 ≤ 2‖f+‖22 − 2 lim

r→1
�〈Tb̄/ār

f, f+〉2 = 0,

from which we deduce that Tb̄/ār
f actually converges to f+ in H2 norm, as

r −→ 1.

Using this fact and Theorem 23.8, we can give another proof of formula
(18.20) in the nonextreme case.

Theorem 23.12 The map G : h �−→ h+ is a partial isometry of H(b) onto
H(a), and its kernel is kerTb̄ ∩H(b).
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Proof Let h ∈ H(b). Note that h+ ∈ H2 and then h+ ∈ H(a) if and only
if Tāh

+ ∈ H(ā). By applying Theorem 23.2 to a (which is of course also a
nonextreme point of the closed unit ball of H∞), thenM(b̄) = H(ā) and we
deduce that

Tāh
+ = Tb̄h ∈ H(ā).

Hence h+ ∈ H(a). Now, let ϕ ∈ H(a). Then Tāϕ ∈ H(ā). Using Theorem
23.2 once more, there exists h ∈ H2 such that Tāϕ = Tb̄h. Since Tb̄h ∈
M(ā) = H(b̄), we deduce that h ∈ H(b) and the last equation gives that
h+ = ϕ. That means that G is a surjective map fromH(b) ontoH(a).

Let h ∈ H(b). Since Tā is one-to-one, we have

G(h) = 0⇐⇒ h+ = 0

⇐⇒ Tāh
+ = 0

⇐⇒ Tb̄h = 0

⇐⇒ h ∈ kerTb̄.

Hence kerG = kerTb̄ ∩H(b).
It remains to check that G is a partial isometry. So let h ∈ H(b), h ⊥ kerTb̄.

On the one hand, we have

‖h‖2b = ‖h‖22 + ‖h+‖22,

and on the other,

‖h+‖2a = ‖h+‖22 + ‖Tāh
+‖2ā = ‖h+‖22 + ‖Tb̄h‖2M(b̄).

Since h ∈ kerTb̄, we have ‖Tb̄h‖2M(b̄)
= ‖h‖22, which gives

‖h+‖2a = ‖h+‖22 + ‖h‖22 = ‖h‖2b .

In other words, G is a partial isometry.

Exercises

Exercise 23.3.1 Assume that b is not an extreme point of the closed unit
ball of H∞.

(i) Prove that

rTrb̄/ār
b = a−1

r (0)− ar.

(ii) Deduce that

‖b‖2b = |a(0)|−2 − 1.
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(iii) Prove that, for n ≥ 1, we have

rTrb̄/ār
Xnb = −S∗nar.

(iv) Show that Tb̄/ār
1 = b(0)/ar(0).

(v) Deduce that

〈Xnb, 1〉b = b̂(n)− b(0)â(n)a(0)−1 (n ≥ 1).

Hint: Use (iii) and (iv).

Exercise 23.3.2 Assume that b is not an extreme point of the closed unit
ball of H∞ and assume that b has a zero of order m at the origin. Show that

〈Xnb, zm〉b = b̂(n+m)− b̂(m)â(n)a(0)−1 (n ≥ 1).

Hint: Use Exercise 23.3.1(iii) and Exercise 18.9.3(ii).

Exercise 23.3.3 Assume that b has a zero of order m (possibly 0) at the
origin and assume that b is not an extreme point of the closed unit ball of H∞.
Show that

〈Xnb, b〉b = −â(n)/a(0) (n ≥ 1).

Hint: Use Exercise 18.9.1 with f = Xnb and Exercise 23.3.2.

23.4 Analytic polynomials are dense in H(b)

Theorem 17.4 tells us that the analytic polynomials are dense inM(ā). Then
Theorem 23.2 says that the latter linear manifold is dense and contractively
contained in H(b). Hence, it is natural to deduce some result about the family
of analytic polynomials inH(b).

Theorem 23.13 Let b be a nonextreme point of the closed unit ball of H∞,
and let P denote the linear manifold of analytic polynomials. Then the follow-
ing hold.

(i) P ⊂M(ā) ⊂ H(b).
(ii) P is a dense manifold inM(ā).
(iii) P is a dense manifold inH(b).

Proof (i) The inclusion P ⊂ M(ā) was shown in Theorem 17.4, and
M(ā) ⊂ H(b) was established in Theorem 23.2.

(ii) This is also from Theorem 17.4.
(iii) Let f ∈ H(b) and let ε > 0. According to Corollary 23.10, there exists

g ∈M(ā) such that

‖f − g‖b ≤
ε

2
,
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and, appealing to part (ii), there is a p ∈ P such that

‖g − p‖M(ā) ≤
ε

2
.

But, by Theorem 23.2,

‖g − p‖b ≤ ‖g − p‖M(ā).

The three inequalities above imply that ‖f − p‖b ≤ ε.

Let uo be the inner part and bo be the outer part of a function b in the closed
unit ball of H∞. Since |bo| = |b| a.e. on T, if b is nonextreme, then bo is also
nonextreme. In particular, we will have, according to Theorems 23.13 and 18.7,

P ⊂ H(bo) ⊂ H(b).

Since P is dense inH(b), we immediately get thatH(bo) is also dense inH(b).
The situation in the extreme case is dramatically different because we will see
in Section 25.6 thatH(bo) is a closed subspace ofH(b) and, if uo is not a finite
Blaschke product, the orthogonal complement of H(bo) in H(b) is of infinite
dimension.

23.5 A formula for ‖Xbf‖b

We recall that H(b) is invariant under the backward shift S∗ and that the
restriction of S∗ toH(b) was denoted by Xb. In this section, we give a formula
for ‖Xbf‖b.

Theorem 23.14 Assume that b is a nonextreme point of the closed unit ball
of H∞. Then we have

X∗
bXb = I − kb0 ⊗ kb0 − |a(0)|2b ⊗ b.

Moreover, for every f ∈ H(b), we have

‖Xbf‖2b = ‖f‖2b − |f(0)|2 − |a(0)|2|〈f, b〉b|2. (23.17)

Proof According to Corollary 18.23, we have

X∗
bXbf = SS∗f − 〈Xbf, S

∗b〉bb
= f − f(0)− 〈Xbf,Xbb〉bb
= f − f(0)− 〈f,X∗

bXbb〉bb (23.18)

for every f ∈ H(b). By Corollary 23.9, b ∈ H(b), and thus by setting f = b in
(23.18), we obtain

X∗
bXbb = b− b(0)− 〈b,X∗

bXbb〉bb = b− b(0)− ‖Xbb‖2b b.
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Using Corollary 23.9 again and the formula for Xbb = S∗b, we simplify the
preceding identity to get

X∗
bXbb = (|b(0)|2 + |a(0)|2)b− b(0).

Plugging the preceding expression for X∗
bXbb and the formula f(0) = 〈f, kb0〉b

into (23.18) gives

X∗
bXbf = f − 〈f, kb0〉b − (|b(0)|2 + |a(0)|2)〈f, b〉bb+ b(0)〈f, 1〉b

= f − 〈f, kb0〉b − |a(0)|2〈f, b〉bb+ b(0)(〈f, 1〉b − b(0)〈f, b〉b)b
= f − 〈f, kb0〉b − |a(0)|2〈f, b〉bb+ b(0)〈f, 1− b(0)b〉bb
= f − |a(0)|2〈f, b〉bb− 〈f, kb0〉bkb0
= (I − kb0 ⊗ kb0 − |a(0)|2b ⊗ b)f.

Using this formula for X∗
bXb, we can write

‖Xbf‖2b = 〈Xbf,Xbf〉b
= 〈X∗

bXbf, f〉b
=

〈
f − 〈f, kb0〉bkb0 − |a(0)|2〈f, b〉bb, f

〉
b

= ‖f‖2b − |〈f, kb0〉b|2 − |a(0)|2|〈f, b〉b|2

= ‖f‖2b − |f(0)|2 − |a(0)|2|〈f, b〉b|2.

This completes the proof.

We recall that, in Corollary 18.27, we proved that the defect operator DX∗
b
=

(I − XbX
∗
b )

1/2 has rank one, its range is spanned by S∗b and its nonzero
eigenvalue equals ‖S∗b‖b. The analogous result for DXb

depends on whether
b is an extreme or nonextreme point of the closed unit ball of H∞.

Corollary 23.15 Let b be a nonextreme point of the closed unit ball of H∞.
The operator D2

Xb
= I −X∗

bXb has rank two. It has two eigenvalues λ1 = 1

and λ2 = 1 − |b(0)|2 − |a(0)|2. Moreover, if e1 = 1 and e2 = −b(0)kb0 +

|a(0)|2b, then

ker(D2
Xb
− λ1I) = Ce1 and ker(D2

Xb
− λ2I) = Ce2.

Proof Using Theorem 23.17, we have

D2
Xb

= kb0 ⊗ kb0 + |a(0)|2b ⊗ b.

Since b and kb0 are linearly independent, D2
Xb

has rank two, and it is sufficient
to study its restriction to the two-dimensional space Ckb0 ⊕Cb. Relative to the
basis (kb0, b), this restriction has the following matrix:

A =

(
‖kb0‖2b 〈b, kb0〉b

|a(0)|2〈kb0, b〉b |a(0)|2‖b‖2b

)
.
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According to (18.8), Theorem 18.11 and Corollary 23.9, we have

‖kb0‖2b = 1− |b(0)|2, 〈b, kb0〉b = b(0) and |a(0)|2‖b‖2b = 1− |a(0)|2.

Hence,

A =

(
1− |b(0)|2 b(0)

b(0)|a(0)|2 1− |a(0)|2

)
.

It is now easy to compute the eigenvalue and eigenvectors of this matrix. The
characteristic polynomial is given by

det(A− λI) = λ2 − λ(2− |a(0)|2 − |b(0)|2) + 1− |a(0)|2 − |b(0)|2.

As already noted, we have 1− |a(0)|2− |b(0)|2 > 0. Hence, there are two real
roots, which are 1 and 1− |a(0)|2 − |b(0)|2. Therefore, λ1 = 1 and λ2 = 1−
|a(0)|2−|b(0)|2 are the two eigenvalues. To compute the eigenvectors, we need
to solve linear systems. Let u = αkb0+βb, α, β ∈ C. Then u ∈ ker(D2

Xb
−λ1I)

if and only if (
1− |b(0)|2 b(0)

b(0)|a(0)|2 1− |a(0)|2

)(
α

β

)
=

(
α

β

)
.

This equivalent to {
α|b(0)|2 = βb(0),

αb(0)|a(0)|2 = β|a(0)|2.

Since a(0) �= 0, this equivalent to β = αb(0) and we get that u ∈ ker(D2
Xb
−

λ1I) if and only if u = αkb0 + αb(0)b = α. This proves that

ker(D2
Xb
− λ1) = C1.

Similarly, u ∈ ker(D2
Xb
− λ2I) if and only if(

1− |b(0)|2 b(0)

b(0)|a(0)|2 1− |a(0)|2

)(
α

β

)
= λ2

(
α

β

)
,

which is equivalent to{
βb(0) = α(λ2 − 1 + |b(0)|2),
αb(0)|a(0)|2 = β(λ2 − 1 + |a(0)|2).

Using the fact that λ2 = 1 − |a(0)|2 − |b(0)|2, we see that the system is
equivalent to α = −βb(0)/|a(0)|2. Hence, u ∈ ker(D2

Xb
− λ1I) if and only if

u = −β b(0)

|a(0)|2 k
b
0 + βb =

β

|a(0)|2 (−b(0)k
b
0 + |a(0)|2b),
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which gives

ker(D2
Xb
− λ2I) = C(−b(0)kb0 + |a(0)|2b).

We are now ready to explicitly determine the defect operator DXb
.

Corollary 23.16 Let b be a nonextreme point of the closed unit ball of H∞.
Then the following hold.

(i) The operator DXb
has rank two and it has two eigenvalues μ1 = 1 and

μ2 = (1− |b(0)|2 − |a(0)|2)1/2.

(ii) If e1 = 1 and e2 = −b(0)kb0 + |a(0)|2b, then we have

ker(DXb
− μ1I) = Ce1 and ker(DXb

− μ2I) = Ce2.

(iii) We have

DXb
=

1

|a(0)|2 + |b(0)|2
(
|a(0)|2e1 ⊗ e1 +

1

μ2
e2 ⊗ e2

)
.

Proof Parts (i) and (ii) follow immediately from Corollary 23.15 and the fact
that μ
 =

√
λ
, � = 1, 2.

To prove (iii), note that 〈e1, e2〉b = 0 since they correspond to eigenvectors
associated with different eigenvalues of a self-adjoint operator. With respect to
the orthogonal basis (e1, e2), the operator DXb

can then be written as

DXb
=

1

‖e1‖2b
e1 ⊗ e1 +

μ2

‖e2‖2b
e2 ⊗ e2.

It remains to compute ‖e1‖b and ‖e2‖b. First, note that e+1 = b(0)/a(0), which
gives, using Theorem 23.8,

‖e1‖2b = ‖e1‖22 + ‖e+1 ‖22 = 1 +
|b(0)|2
|a(0)|2 =

|a(0)|2 + |b(0)|2
|a(0)|2 .

On the other hand, using Corollary 23.9, we have

‖e2‖2b = |b(0)|2‖kb0‖2b + |a(0)|4‖b‖2b − 2|a(0)|2 �(b(0)〈kb0, b〉b)

= |b(0)|2(1− |b(0)|2) + |a(0)|4
(

1

|a(0)|2 − 1

)
− 2|a(0)|2|b(0)|2

= (1− |b(0)|2 − |a(0)|2)(|b(0)|2 + |a(0)|2)
= μ2

2(|b(0)|2 + |a(0)|2).

Finally, we get

DXb
=

|a(0)|2
|a(0)|2 + |b(0)|2 e1 ⊗ e1 +

1

μ2(|b(0)|2 + |a(0)|2)
e2 ⊗ e2.
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23.6 Another representation of H(b)

In Section 19.2, we saw a representation of theH(b) space based on an abstract
functional embedding. In the nonextreme case, we can also give a slightly
different representation. Let b be a nonextreme point of the closed unit ball of
H∞ and let a be the outer function defined by (23.2). Denote Hb = L2 ⊕ L2

along with

π : L2 −→ Hb

f �−→ bf ⊕ (−af),

and

π∗ : L2 −→ Hb

g �−→ g ⊕ 0.

Theorem 23.17 The linear mapping Π = (π, π∗) : L2 ⊕ L2 −→ Hb is an
abstract functional embedding (AFE).

Proof For any f ∈ L2, we have

‖bf ⊕ (−af)‖2Hb
= ‖bf‖22 + ‖af‖22

=

∫
T

(|b|2 + |a|2)|f |2 dm

= ‖f‖22,

the last equality following from the fact that |a|2 + |b|2 = 1 a.e. on T. Thus
π is an isometry. The map π∗ is also clearly an isometry and one can easily
check that

π∗
∗(h1 ⊕ h2) = h1, h1 ⊕ h2 ∈ L2 ⊕ L2. (23.19)

Now let f ∈ H2 and g ∈ H2
−. We have

〈πf, π∗g〉Hb
= 〈bf ⊕ (−af), g ⊕ 0〉Hb

= 〈bf, g〉2 = 0,

because bf ∈ H2 and g ∈ H2
−. That proves that πH2 ⊥ π∗H

2
−. By (23.19),

we also clearly have

π∗
∗πf = π∗

∗(bf ⊕ (−af)) = bf.

Thus π∗
∗π is the multiplication operator by b and, in particular, it commutes

with the shift operator and maps H2 into H2.
Finally, note that Clos(aL2) is a reducing invariant subspace for the multi-

plication operator by z on L2. Hence, it follows from Theorem 8.29 that there
exists a measurable set E ⊂ T such that Clos(aL2) = χEL

2. Since a ∈ χEL
2,

a should vanish a.e. on T\E and then necessarily m(T\E) = 0. That implies
that Clos(aL2) = L2 and then the range of Π is dense in Hb.
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Let Kb be the subspace defined by (19.4), and let K′
b and K′′

b the subspaces
defined by (19.7) and (19.6). It will be useful to have the following more
explicit transcriptions.

Lemma 23.18 Let b be a nonextreme point of the closed unit ball of H∞. We
have:

(i) Kb = (H2 ⊕ L2)� {bf ⊕ (−af) : f ∈ L2} ;
(ii) K′′

b = 0⊕H2
− ;

(iii) K′
b = (H2 ⊕H2)� {bf ⊕ (−af) : f ∈ H2}.

Proof (i) Recall that

Kb = Hb � (π(H2)⊕ π∗(H
2
−)).

First note that

{bf ⊕ (−af) : f ∈ H2} = π(H2),

and since π is an isometry, this space is a closed subspace of H2 ⊕ L2. Now
let ϕ⊕ ψ ∈ L2 ⊕ L2. Then ϕ⊕ ψ ∈ Kb if and only if

ϕ⊕ ψ ⊥ {bf ⊕ (−af) : f ∈ H2}

and

ϕ⊕ ψ ⊥ π∗(H
2
−).

The second condition gives that, for any h ∈ H2
−, we have

0 = 〈ϕ⊕ ψ, π∗(h)〉Hb
= 〈ϕ⊕ ψ, h⊕ 0〉Hb

= 〈ϕ, h〉2.

This condition is thus equivalent to ϕ ∈ H2. Thus, we get that

Kb = {ϕ⊕ ψ : ϕ ∈ H2, ψ ∈ L2 and ϕ⊕ ψ ⊥ bf ⊕ (−af), f ∈ H2}.

(ii) According to Lemma 19.5, we have

K′′
b = Kb ∩ (π∗(H

2))⊥.

Then it is clear that 0 ⊕H2
− ⊂ K′′

b . Conversely, if ϕ ⊕ ψ ∈ K′′
b , using (i), we

first have ϕ ∈ H2 and

ϕ⊕ ψ ⊥ bf ⊕ (−af) (∀ f ∈ H2). (23.20)

On the other hand, since ϕ⊕ ψ ⊥ π∗(H
2), that gives ϕ⊕ ψ ⊥ f ⊕ 0, for any

f ∈ H2. Hence, 〈ϕ, f〉2 = 0, f ∈ H2, which implies that ϕ ⊥ H2. But, since
ϕ also belongs to H2, we get that ϕ = 0. Now, if we use (23.20), we obtain

〈ψ, af〉2 = 0 (f ∈ H2).

Since a is outer, aH2 is dense in H2. Hence, ψ ⊥ H2. We thus obtain that
ϕ⊕ ψ ∈ 0⊕H2

−.
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(iii) Recall that K′
b = Kb �K′′

b . Hence, ϕ⊕ ψ ∈ K′
b if and only if ϕ ∈ H2,

ϕ⊕ψ ⊥ bf ⊕ (−af), f ∈ H2 and ϕ⊕ψ ⊥ 0⊕g, g ∈ H2
−. The last condition

is equivalent to ψ ⊥ H2
−, which means that ψ ∈ H2 and that gives the desired

description of K′
b.

According to Theorem 19.8, we know that the map

Qb = π∗
∗|K′

b
: K′

b −→ H(b)

is a unitary map. It could be useful to compute its adjoint. We have the follow-
ing lemma.

Lemma 23.19 Let b be a nonextreme point of the closed unit ball of H∞. For
any h ∈ H(b), we have

Q∗
bh = h⊕ h+,

where we recall that h+ is the unique function in H2 such that Tb̄h = Tāh
+.

Proof Let ϕ⊕ψ ∈ K′
b and let h ∈ H(b). According to Lemma 23.18, ϕ,ψ ∈

H2 and

〈ϕ, bf〉2 = 〈ψ, af〉2 (f ∈ H2). (23.21)

Using Theorem 23.8, we have

〈ϕ⊕ ψ, Q∗
bh〉K′

b
= 〈Qb(ϕ⊕ ψ), h〉b
= 〈ϕ, h〉b = 〈ϕ, h〉2 + 〈ϕ+, h+〉2.

Let us check that ϕ+ = ψ. Using (23.21), for any f ∈ H2, we have

〈b̄ϕ, f〉2 = 〈āψ, f〉2,

which means that b̄ϕ− āψ ⊥ H2. In other words, P+(b̄ϕ) = P+(āψ). By the
uniqueness of ϕ+, we get that ϕ+ = ψ. Thus,

〈ϕ⊕ ψ, Q∗
bh〉K′

b
= 〈ϕ, h〉2 + 〈ψ, h+〉2 = 〈ϕ⊕ ψ, h⊕ h+〉Hb

.

It remains to note that h⊕ h+ ∈ K′
b. We have h⊕ h+ ∈ H2 ⊕H2. Moreover,

for any f ∈ H2, we have

〈h⊕ h+, bf ⊕ (−af)〉Hb
= 〈h, bf〉2 − 〈h+, af〉2
= 〈P+(b̄h), f〉2 − 〈P+(āh

+), f〉2,

and since P+(b̄h) = P+(āh
+), we get that h ⊕ h+ ⊥ bf ⊕ (−af) for any

f ∈ H2. According to Lemma 23.18, we can conclude that h⊕ h+ ∈ K′
b and

Q∗
bh = h⊕ h+.

Let
W : H2 ⊕H2 �−→ H2 ⊕H2

f ⊕ g �−→ zf ⊕ zg.
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Then W defines a bounded and linear operator on H2⊕H2 and it is clear that
W leaves the (closed) subspace {bf⊕ (−af) : f ∈ H2} invariant. Hence, W ∗

leaves K′
b invariant. Furthermore, it is easy to check that

W ∗ : H2 ⊕H2 �−→ H2 ⊕H2

f ⊕ g �−→ P+(z̄f)⊕ P+(z̄g).

In other words, W ∗ = S∗ ⊕ S∗.

Theorem 23.20 Let b be a nonextreme point of the closed unit ball of H∞.
Then the following diagram is commutative.

K′
b

S∗⊕S∗

��

Qb �� H(b)

Xb

��
K′

b Qb

�� H(b)

(23.22)

In particular, Xb is unitarily equivalent to (S∗ ⊕ S∗)|K′
b
.

Proof Let f ⊕ g ∈ K′
b. Then

QbW
∗(f ⊕ g) = Qb(S

∗f ⊕ S∗g)

= S∗f

= Xbf

= XbQb(f ⊕ g).

This completes the proof.

In Theorem 19.11, we have given a different representation of H(b) and a
different model for Xb. It is interesting to explore the link between these two
representations. This will be done in Exercise 23.6.2.

Exercises

Exercise 23.6.1 Let b be a nonextreme point of the closed unit ball of H∞

and define

TB : H2 −→ H2 ⊕H2

f �−→ bf ⊕ (−af).

Show that TB is an isometry and check thatH(TB) = K′
b.
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Exercise 23.6.2 Let b be a nonextreme point of the closed unit ball of H∞,
let Δ = (1− |b|2)1/2 on T, let K′

b be defined as in Lemma 23.18, and let

K′
b := H2 ⊕ Clos(ΔH2)� {bf ⊕Δf : f ∈ H2}.

For f, g ∈ H2, define

Ω(f ⊕ (−ag)) = f ⊕Δg.

(i) Show that Ω can be extended into a unitary operator from H2⊕H2 onto
H2 ⊕ Clos(ΔH2).

(ii) Show that ΩK′
b = K′

b.
(iii) Show that (S∗ ⊕ S∗)|K′

b
and (S∗ ⊕ V ∗

Δ)K′
b

are unitarily equivalent and
the unitary equivalence is given by Ω.

This result explains the link between the models of Xb given by Theorem 19.11
and Theorem 23.20.

23.7 A characterization of H(b)

In this section, we treat an analog of Theorem 17.24 that characterizes H(b)
spaces when b is a nonextreme point of the closed unit ball of H∞. To give the
motivation, we gather some properties of S∗ onH(b).

Lemma 23.21 Let b be a nonextreme point of the closed unit ball of H∞,
and b �≡ 0. Then the following assertions hold.

(i) H(b) is S∗-invariant (we recall that the restriction of S∗ to H(b) was
denoted by Xb).

(ii) I − XbX
∗
b and I − X∗

bXb, respectively, are operators of rank one and
rank two.

(iii) For every f ∈ H(b),

‖Xbf‖2b ≤ ‖f‖2b − |f(0)|2.

(iv) There is an element f ∈ H(b), with f(0) �= 0, such that

‖Xbf‖2b = ‖f‖2b − |f(0)|2.

Proof (i) This was established in Theorem 18.13.
(ii) This follows from Corollaries 18.23 and 23.15.
(iii) According to Theorem 23.14, for every function f ∈ H(b), we have

‖Xbf‖2b = ‖f‖2b − |f(0)|2 − |a(0)|2|〈f, b〉b|2. (23.23)

This gives the required inequality.
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(iv) Define

f = ‖b‖2bkb0 − b(0)b.

By Corollary 23.9, this function belongs toH(b). Moreover, we have

〈b, f〉b = ‖b‖2b〈b, kb0〉b − b(0)〈b, b〉b = ‖b‖2bb(0)− b(0)‖b‖2b = 0,

and thus, by (23.23),

‖Xbf‖2b = ‖f‖2b − |f(0)|2.

It remains to check that f(0) �= 0. Remembering that ‖b‖2b = |a(0)|−2 − 1

(Corollary 23.9), an easy computation shows that

f(0) =
1− |a(0)|2 − |b(0)|2

|a(0)|2 ,

and thus f(0) �= 0, because |a(0)|2 + |b(0)|2 < 1. In fact,

a(0) =

∫
T

a(ζ) dm(ζ) and b(0) =

∫
T

b(ζ) dm(ζ),

and thus, using the Cauchy–Schwarz inequality, we get

|a(0)|2 + |b(0)|2 ≤
∫
T

(|a(ζ)|2 + |b(ζ)|2) dm(ζ) = 1.

Hence, we have |a(0)|2 + |b(0)|2 = 1 if and only if∣∣∣∣∫
T

a(ζ) dm(ζ)

∣∣∣∣2 =

∫
T

|a(ζ)|2 dm(ζ)

and ∣∣∣∣∫
T

b(ζ) dm(ζ)

∣∣∣∣2 =

∫
T

|b(ζ)|2 dm(ζ).

The last two identities hold provided that b is a constant function, which is
absurd.

Lemma 23.21 provides the motivation for the following characterization of
H(b) spaces.

Theorem 23.22 Let H be a Hilbert space contained in H2. Assume that the
following hold.

(i) H is S∗-invariant (and denote the restriction of S∗ toH by T ).
(ii) The operators I − TT ∗ and I − T ∗T , respectively, are of rank one and

rank two.
(iii) For each f ∈ H,

‖Tf‖2H ≤ ‖f‖2H − |f(0)|2. (23.24)
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(iv) There is an element f ∈ H, with f(0) �= 0, such that

‖Tf‖2H = ‖f‖2H − |f(0)|2.

Then there is a nonextreme point b in the closed unit ball of H∞, unique up to
a unimodular constant, such thatH � H(b).

Proof According to Theorem 16.29, we know that H is contained contrac-
tively in H2 and, if M denotes its complementary space, then S acts as a
contraction onM (note that the notation is different in this theorem, and in fact
the roles ofM and H are exchanged). Our strategy is quite simple. We show
that S acts as an isometry onM. Then we apply Theorem 17.24 to deduce that
there exists a function b in the closed unit ball of H∞ such thatM �M(b),
and then Corollary 16.27 enables us to conclude thatH � H(b). However, the
proof is very long. To show that S acts as an isometry, we decompose the proof
into several steps, 14 in all.

Step 1: T is onto.

This is equivalent to saying that kerT ∗ = {0} and T has a closed range.
Assume that kerT ∗ �= {0}. Since kerT ∗ ⊂ R(I − TT ∗), by an argument
of dimension, we get kerT ∗ = R(I − TT ∗). It follows from Theorem 7.22
that T ∗ is a partial isometry and kerT = R(I − T ∗T ). Hence, by hypothesis,
dimkerT = 2. But, this is impossible because kerT ⊂ kerS∗ = C. Thus,
kerT ∗ = {0}.

Now, we show that T ∗T has a closed range. Indeed, according to the decom-
positionH = ker(I−T ∗T )⊕R(I−T ∗T ), the operator T ∗T admits the matrix
representation

T ∗T =

(
I 0

0 T ∗T

)
,

where T ∗T is restricted to R(I − T ∗T ). But, since R(I − T ∗T ) is of
finite dimension, the operator T ∗T|R(I−T∗T ) has a closed range and then, by
Lemma 1.38, the operator T ∗T also has a closed range. Then Corollary 1.35
ensures that T is onto.

Step 2: 1 ∈ H and f ∈ H =⇒ Sf ∈ H. In particular, all analytic poly-
nomials belong toH.

Argue by absurdity and assume that 1 �∈ H. Then we would have

kerT = kerS∗ ∩H = C ∩H = {0},

i.e. T is a bijection. But, since T (I − T ∗T ) = (I − TT ∗)T , we would obtain
dimR(I − T ∗T ) = dimR(I − TT ∗), which is a contradiction. Therefore,
1 ∈ H. Furthermore, if f ∈ H, then S∗Sf = f − f(0) ∈ H. Since T is
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onto, there exists h ∈ H such that S∗Sf = Th = S∗h. This is equivalent to
Sf − h ∈ kerS∗ = C. Thus, Sf = h− h(0), which implies that Sf ∈ H.

Step 3: The set

D = {f ∈ H : ‖Tf‖2H = ‖f‖2H − |f(0)|2}

is a closed subspace of H. Moreover, ker(I − T ∗T ) ⊂ {f ∈ D : f(0) = 0}.

It is clear that, if f ∈ D and λ ∈ C, then λf ∈ D. Now, let f, g ∈ D. We use
the parallelogram law twice below. First,

‖Tf + Tg‖2H + ‖T (f − g)‖2H = 2‖Tf‖2H + 2‖Tg‖2H.

Second, by the definition of D,

2‖Tf‖2H + 2‖Tg‖2H
= 2‖f‖2H − 2|f(0)|2 + 2‖g‖2H − 2|g(0)|2

= ‖f + g‖2H + ‖f − g‖2H − |(f + g)(0)|2 − |(f − g)(0)|2.

Thus,

‖Tf + Tg‖2H − ‖f + g‖2H + |(f + g)(0)|2

= ‖f − g‖2H − |(f − g)(0)|2 − ‖T (f − g)‖2H.

According to (23.24), on the one hand, we have

‖f − g‖2H − |(f − g)(0)|2 − ‖T (f − g)‖2H ≥ 0

and, on the other,

‖Tf + Tg‖2H = ‖T (f + g)‖2H ≤ ‖f + g‖2H − |(f + g)(0)|2,

which is equivalent to

‖Tf + Tg‖2H − ‖f + g‖2H + |(f + g)(0)|2 ≤ 0.

Hence, we get

‖T (f + g)‖2H = ‖f + g‖2H − |(f + g)(0)|2,

which means that f + g ∈ D. Therefore, D is a vector subspace ofH.
We proceed to prove that D is closed. Let f ∈ D. Then there exists a

sequence (fn)n≥1 inD that converges to f inH. Since T is continuous (in fact,
according to (23.24), it is a contraction), the sequence (Tfn)n≥1 converges to
Tf inH and, sinceH is contractively contained in H2, the sequence (fn)n≥1

is also convergent to f in H2. In particular, since evaluations at points of D
are continuous on D, the scalar sequence (fn(0))n≥1 converges to f(0). Since
fn ∈ D, we have

‖Tfn‖2H = ‖fn‖2H − |fn(0)|2.
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Letting n tend to∞, we thus get

‖Tf‖2H = ‖f‖2H − |f(0)|2,

which means that f ∈ D. Therefore, D is a closed subspace ofH.
It remains to check that ker(I − T ∗T ) ⊂ {f ∈ D : f(0) = 0}. Fix an

element f ∈ ker(I − T ∗T ). Then we have f = T ∗Tf , which implies that

‖f‖2H = 〈f, T ∗Tf〉H = ‖Tf‖2H ≤ ‖f‖2H − |f(0)|2 ≤ ‖f‖2H.

Thus, ‖Tf‖2H = ‖f‖2H and f(0) = 0. In particular, f ∈ D.

Step 4: There exists f0 ∈ D with f0(0) �= 0 and f0 ⊥ ker(I − T ∗T ).

By hypothesis, we know that there is a function f ∈ D such that f(0) �= 0.
Decompose f = f0+f1 such that f0 ⊥ ker(I−T ∗T ) and f1 ∈ ker(I−T ∗T ).
Using Step 3, we know that f1 ∈ D and f1(0) = 0. Thus, f0 ∈ D and
f0(0) = f(0) �= 0. The function f0 satisfies the required conditions.

To prove that S acts as an isometry on M, we now consider two situations:
1 �∈ D and 1 ∈ D. The verification of the latter is longer (Steps 6–13).

Step 5: S acts as an isometry onM (case 1 �∈ D).

Denote by V(1, f0) the vector space generated by 1 and f0. This vector space is
of dimension 2 because 1 and f0 are linearly independent (1 �∈ D and f0 ∈ D).
Moreover, since 1 = (I−T ∗T )1, the inclusion V(1, f0) ⊂ R(I−T ∗T ) holds.
Then, with an argument on dimension, we get

V(1, f0) = R(I − T ∗T ),

and this implies that

H = ker(I − T ∗T )⊕ V(1, f0). (23.25)

Using Steps 3 and 4, we have

ker(I − T ∗T )⊕ Cf0 ⊂ D.

Thus, appealing to Step 1 and (23.25)), we deduce that

H = TH = T (ker(I − T ∗T )⊕ Cf2) = TD.

Now, for each g ∈M, we have

‖g‖2M = sup
f∈H

(‖g + f‖22 − ‖f‖2H)

= sup
f∈D

(‖g + Tf‖22 − ‖Tf‖2H)

= sup
f∈D

(‖Sg + STf‖22 − ‖Tf‖2H)

= sup
f∈D

(‖Sg + f − f(0)‖22 − ‖Tf‖2H).
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But, for each f ∈ D,

‖Sg + f − f(0)‖22 = ‖Sg + f‖22 + |f(0)|2 − 2�〈Sg + f, f(0)〉
= ‖Sg + f‖22 − |f(0)|2

= ‖Sg + f‖22 + ‖Tf‖2H − ‖f‖2H.

Thus, we obtain

‖g‖2M = sup
f∈D

(‖Sg + f‖22 − ‖f‖2H)

≤ sup
f∈H

(‖Sg + f‖22 − ‖f‖2H) = ‖Sg‖2M.

But, from Theorem 16.29, we already know that S acts as a contraction onM
and hence we conclude that S acts as an isometry onM.

For the rest of proof, we assume that 1 ∈ D and our goal is to show that S still
acts as an isometry onM.

Step 6: Suppose that there exists an integer n ≥ 1 such that zm ∈ D, with
0 ≤ m ≤ n− 1. Then

‖zm‖H = 1 (0 ≤ m ≤ n− 1).

In particular, i∗H(zm) = zm, for all 0 ≤ m ≤ n−1, where iH is the canonical
injection fromH into H2.

We argue by induction. For m = 0, since 1 ∈ D, we have

‖T1‖2H = ‖1‖2H − 1.

But, T1 = S∗1 = 0, which gives ‖1‖H = 1. Assume that, for some m0 with
0 ≤ m0 < n − 1, the identity ‖zm‖H = 1 holds for all 0 ≤ m ≤ m0. Then,
using the fact that zm0+1 ∈ D, we get

‖Tzm0+1‖H = ‖zm0+1‖H.

However, Tzm0+1 = zm0 , and we deduce that ‖zm0+1‖H = ‖zm0‖H = 1.
Hence, the identity ‖zm‖H = 1 holds for all 0 ≤ m ≤ m0 + 1. Therefore, by
induction, it holds for all 0 ≤ m ≤ n− 1.

In the trivial decomposition zm = zm + 0, we have zm ∈ H, 0 ∈ M and
‖zm‖22 = ‖zm‖2H + ‖0‖2M. Thus, by Corollary 16.28, we have i∗Hzm = zm
for all 0 ≤ m ≤ n− 1.

Step 7: There exists an integer n ≥ 1 such that zm ∈ D, for all 0 ≤ m ≤ n−1,
but zn �∈ D.

Assume on the contrary that, for all k ≥ 0, zk ∈ D. Then, according to Step 6,
we get i∗Hzk = zk, for all k ≥ 0. Therefore, iHi∗Hzk = zk, for all k ≥ 0.
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But, zk is an orthonormal basis of H2 and thus iHi∗H = IH2 . In particular,
using Corollary 16.8, we get

H �M(iH) �M((iHi∗H)1/2) �M(IH2) � H2.

Thus, we have T = S∗, or equivalently T ∗ = S, which gives I − TT ∗ = 0.
This is absurd.

Step 8: Let n be as in Step 7. Then (I − TT ∗)zn−1 �= 0 and T ∗n1 �= zn.
Moreover, if n > 1, we also have

T ∗zm−1 = zm,

(I − TT ∗)zm−1 = 0,

T ∗kzm−k = zm,

for all 1 ≤ m ≤ n− 1 and 0 ≤ k ≤ m.

To prove the first relation, we again argue by absurdity. Assume that (I −
TT ∗)zn−1 = 0. Since

(I − TT ∗)zn−1 = (I − TT ∗)Tzn = T ((I − T ∗T )zn),

it would imply that (I − T ∗T )zn ∈ kerT . But the function (I − T ∗T )zn is
also orthogonal to the kernel of T . Indeed, we have kerT = kerS∗ ∩H = C1
and, since n ≥ 1,

〈(I − T ∗T )zn, 1〉H = 〈zn, (I − T ∗T )1〉H
= 〈zn, 1〉H
= 〈zn, i∗H1〉H
= 〈iH(zn), 1〉2
= 〈zn, 1〉2
= 0.

Thus, (I − T ∗T )zn ⊥ kerT , which is equivalent to (I − T ∗T )zn = 0. This
means that zn ∈ ker(I − T ∗T ). But, by Step 3, we conclude that zn ∈ D, a
contradiction with the definition of n. Therefore, (I − TT ∗)zn−1 �= 0.

If n = 1, then (I − TT ∗)1 �= 0, that is 1 �= TT ∗1. Hence, z �= T ∗1. Now,
assume that n > 1. We first prove that

T ∗zm−1 = zm, for every 1 ≤ m ≤ n− 1. (23.26)

We have

‖T ∗zm−1 − zm‖2H = ‖T ∗zm−1‖2H + ‖zm‖2H − 2�〈T ∗zm−1, zm〉H
and

〈T ∗zm−1, zm〉H = 〈zm−1, T zm〉H = ‖zm−1‖2H.
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Hence, using Step 6, we get

‖T ∗zm−1 − zm‖2H = ‖T ∗zm−1‖2H + 1− 2 = ‖T ∗zm−1‖2H − 1. (23.27)

But, since T is a contraction onH, we have

‖T ∗zm−1‖H ≤ ‖T ∗‖ ‖zm−1‖ ≤ 1.

Thus (23.27) implies that ‖T ∗zm−1 − zm‖H ≤ 0, which gives (23.26).
Since T ∗zm−1 = zm, we have TT ∗zm−1 = zm−1, and thus

(I − TT ∗)zm−1 = 0 (1 ≤ m ≤ n− 1).

To prove that T ∗n1 �= zn, we argue by absurdity. Assume that T ∗n1 = zn.
Then

‖zn‖2H = 〈zn, zn〉H = 〈zn, T ∗n1〉H = 〈Tnzn, 1〉H.

But, Tnzn = 1, whence

‖zn‖2H = ‖1‖2H = 1.

In particular, we deduce that

‖zn‖H = ‖zn−1‖H = ‖Tzn‖H.

This means that zn ∈ D, which is a contradiction. Thus, we have T ∗n1 �= zn.
Finally, it remains to prove that

T ∗kzm−k = zm (0 ≤ k ≤ m). (23.28)

We argue by induction. For k = 0, it is obvious. Now, assume that, for some
0 ≤ k < m, we have T ∗kzm−k = zm. Then using (23.26), we have

T ∗(k+1)zm−(k+1) = T ∗k(T ∗zm−k−1) = T ∗kzm−k = zm,

which proves (23.28).

Step 9: Let f ∈ H and write

f(z) =
n−1∑
m=0

amzm + zmTmf(z) (z ∈ D).

Then

‖f‖2H =

n−1∑
m=0

|am|2 + ‖znTnf‖2H.
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We have

‖f‖2H =

∥∥∥∥∥
n−1∑
m=0

amzm

∥∥∥∥∥
2

H

+ ‖znTnf‖2H + 2

n−1∑
m=0

�(am〈zm, znTnf〉H).

But, using Step 6,

〈zk, z
〉H = 〈i∗H(zk), z
〉H
= 〈zk, iH(z
)〉2
= 〈zk, z
〉2
= δk,
 (0 ≤ k, � ≤ n− 1).

Hence, ∥∥∥∥∥
n−1∑
m=0

amzm

∥∥∥∥∥
2

H

=
n−1∑
m=0

|am|2.

Moreover,

〈zm, znTnf〉H = 〈i∗H(zm), znTnf〉H
= 〈zm, iH(znTnf)〉2
= 〈zm, znTnf〉2 = 0 (0 ≤ m ≤ n− 1).

This proves Step 9.

Step 10: For every f ∈ H and g ∈M, we have

‖g + f‖22 − ‖f‖2H = ‖g + znTnf‖22 − ‖znTnf‖2H.

Write

f =

n−1∑
m=0

amzm + znTnf.

Then

‖g + f‖22 − ‖f‖2H =

∥∥∥∥∥g + znTnf +

n−1∑
m=0

amzm

∥∥∥∥∥
2

2

− ‖f‖2H

= ‖g + znTnf‖22 +
n−1∑
m=0

|am|2 − ‖f‖2H

+ 2
n−1∑
m=0

�(am〈zm, g + znTnf〉2).
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Using Step 9, we get

‖g + f‖22 − ‖f‖2H

= ‖g + znTnf‖22 − ‖znTnf‖2H + 2

n−1∑
m=0

�(am〈zm, g + znTnf〉2).

But, for every 0 ≤ m ≤ n− 1, we have

〈zm, g + znTnf〉2 = 〈zm, g〉2
= 〈zm, iM(g)〉2
= 〈i∗M(zm), g〉M = 0,

because i∗M(zm) = zm − i∗H(zm) = zm − zm = 0. This proves Step 10.

Step 11. For every f ∈ H, there exists f̂ ∈ ker(I − TnT ∗n) such that

‖g + f‖22 − ‖f‖2H = ‖g + f̂‖22 − ‖f̂‖2H (g ∈M).

Let f ∈ H, and define the constants c0, c1, . . . , cn−1 recursively by the formu-
las

αn = 〈zn−1, (I − TT ∗)zn−1〉H,

cn−1 = −〈f, (I − TT ∗)zn−1〉H
/
αn

and, if n > 1,

cn−k = −
〈
f +

n−1∑
m=n−k+1

cmzm, T k−1(I − TT ∗)T ∗k−1zn−k

〉
H

/
αn,

for 2 ≤ k ≤ n. Note that αn �= 0 and thus the sequence c0, c1, . . . , cn−1

is well defined. Indeed, since I − TT ∗ is a self-adjoint operator of rank one,
there exists an element g ∈ H such that I − TT ∗ = g ⊗ g, and thus αn =

|〈zn−1, g〉H|2. If αn = 0, then it would imply that 〈zn−1, g〉H = 0 and that
(I − TT ∗)zn−1 = 0, a contradiction with Step 8.

Then we define

f̂ = f +

n−1∑
m=0

cmzm,

and we show that f̂ satisfies the required properties. We obviously have Tnf̂ =

Tnf , whence, according to Step 10, we have

‖g + f‖22 − ‖f‖2H = ‖g + znTnf‖22 − ‖znTnf‖2H
= ‖g + znTnf̂‖22 − ‖znTnf̂‖2H
= ‖g + f̂‖22 − ‖f̂‖2H (g ∈M).
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Thus, it remains to check that f̂ ∈ ker(I − TnT ∗n), which is equivalent to
f̂ ⊥ R(I − TnT ∗n). But

I − TnT ∗n =
n∑

k=1

T k−1(I − TT ∗)T ∗k−1,

whence it is sufficient to prove that f̂ ⊥ R(T k−1(I − TT ∗)T ∗k−1). Define
uk = T k−1(I − TT ∗)T ∗k−1zn−k and note that uk �= 0. In fact, according to
Step 8, we have

〈zn−k, uk〉H = 〈T ∗k−1zn−k, (I − TT ∗)T ∗k−1zn−k〉H
= 〈zn−1, (I − TT ∗)zn−1〉H
= αn �= 0.

Hence, T k−1(I − TT ∗)T ∗k−1 is an operator of rank one and its range is
generated by uk. Therefore, f̂ ⊥ R(T k−1(I − TT ∗)T ∗k−1) is equivalent
to f̂ ⊥ uk, 1 ≤ k ≤ n. Now, note that

〈f̂ , uk〉H = 〈f, uk〉H +
n−1∑
m=0

cm〈zm, uk〉H.

But, according to the definitions of cm, we have

cn−kαn = −
〈
f +

n−1∑
m=n−k+1

cmzm, uk

〉
H
,

whence

〈f, uk〉H = −cn−kαn −
n−1∑

m=n−k+1

cm〈zm, uk〉H = −
n−1∑

m=n−k

cm〈zm, uk〉H.

Thus, we get

〈f̂ , uk〉H =
n−k−1∑
m=0

cm〈zm, uk〉H.

For every 0 ≤ m ≤ n− k − 1, we have

〈zm, uk〉H = 〈zm, T k−1(I − TT ∗)T ∗(k−1)zn−k〉H
= 〈zm+k−1, (I − TT ∗)zn−1〉H
= 〈(I − TT ∗)zm+k−1, zn−1〉H,

and, according to Step 8, we have (I − TT ∗)zm+k−1 = 0 (and note that
m + k − 1 ≤ n − 2). Thus, 〈zm, uk〉H = 0 and 〈f̂ , uk〉H = 0, for every
1 ≤ k ≤ n. This proves Step 11.
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Step 12: If h ∈ ker(I − TnT ∗n), then

‖h‖H = ‖znh‖H. (23.29)

Moreover, for every g ∈M, we have

‖g‖2M = sup{‖g+f‖22−‖znf‖2H : f ∈ H and (I−TnT ∗n)f = 0}. (23.30)

Take any h ∈ ker(I − TnT ∗n). Then, for every 0 ≤ m ≤ n− 1, we have

〈(I − T ∗nTn)(znh), zm〉H = 〈znh, (I − T ∗nTn)(zm)〉H
= 〈znh, zm〉H
= 〈znh, i∗H(zm)〉H
= 〈znh, zm〉2 = 0.

This proves that (I − T ∗nTn)(znh) ⊥ kerTn. Moreover,

Tn((I − T ∗nTn)(znh)) = (I − TnT ∗n)(Tnznh) = (I − TnT ∗n)h = 0.

Therefore, (I − T ∗nTn)(znh) = 0, that is znh = T ∗nTn(znh). Thus,

‖znh‖2H = 〈znh, T ∗nTn(znf)〉H
= ‖Tn(znh)‖2H = ‖h‖2H.

Now, using Step 11 and (23.29), we get

‖g‖2M = sup{‖g + f‖22 − ‖f‖2H : f ∈ H}
= sup{‖g + f‖22 − ‖f‖2H : f ∈ H and f ∈ ker(I − TnT ∗n)}
= sup{‖g + f‖22 − ‖znf‖2H : f ∈ H and f ∈ ker(I − TnT ∗n)},

which proves (23.30).

Step 13: S acts as an isometry onM (case 1 ∈ D).

Since ‖zg‖M ≤ ‖g‖M, for every g ∈ M and H = TnH, using Step 12, we
have

‖zng‖2M ≤ ‖zg‖2M ≤ ‖g‖2M.

But

‖g‖2M = sup
f∈H,

(I−TnT∗n)(Tnf)=0

‖g + Tnf‖22 − ‖znTnf‖2H

= sup
f∈H,

(I−TnT∗n)(Tnf)=0

‖zng + znTnf‖22 − ‖znTnf‖2H

≤ ‖zng‖2M.

Hence, ‖zg‖M = ‖g‖M, which proves Step 13.
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Step 14: There is a nonextreme point b in the closed unit ball of H∞, unique
up to a unimodular constant, such thatH � H(b).
According to Steps 5 and 13, S acts as an isometry onM. Therefore, Theorem
17.24 implies that there exists a function b in the closed unit ball of H∞ such
that M � M(b). Now Corollary 16.27 implies that H � H(b). Finally, b
cannot be an extreme point of the closed unit ball of H∞, since for instance
the analytic polynomials belongs toH(b) (see Exercise 18.9.4).

This completes the proof of Theorem 23.22.

23.8 More inhabitants of H(b)

In Section 18.6, we showed that

Qwb ∈ H(b) (w ∈ D).

It is trivial that the reproducing kernel kbw is also in H(b). In Section 23.4, we
saw that the analytic polynomials form a dense manifold inH(b). Now, we use
this information to find more objects inH(b). Moreover, we also discuss some
properties on the newly found elements.

Theorem 23.23 Let b be a nonextreme point of the closed unit ball of H∞,
and let w ∈ D. Then

kw ∈ H(b) and bkw ∈ H(b).

Moreover, for every f ∈ H(b), we have

〈f, kw〉b = f(w) +
b(w)

a(w)
f+(w) (23.31)

and

〈f, bkw〉b =
f+(w)

a(w)
. (23.32)

Proof According to Theorems 17.8 and 23.2, the Cauchy kernel kw belongs
toH(b) if and only if Tb̄kw belongs toM(ā). But, by (12.7), we have

Tb̄kw = b(w)kw and Tākw = a(w)kw,

which implies that

Tb̄kw = Tā

(
b(w)

a(w)
kw

)
.

This identity shows that kw ∈ H(b) and, moreover, that

k+w =
b(w)

a(w)
kw. (23.33)
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Thus, by Theorem 23.8, for every f ∈ H(b), we have

〈f, kw〉b = 〈f, kw〉2 + 〈f+, k+w 〉2

= 〈f, kw〉2 +
b(w)

a(w)
〈f+, kw〉2

= f(w) +
b(w)

a(w)
f+(w).

Remember that kw is the reproducing kernel of H2.
Similarly, the function bkw belongs to H(b) if and only if the function

Tb̄(bkw) belongs toM(ā). But, once more using Tākw = a(w)kw, we obtain

Tb̄(bkw) = P+(|b|2kw)
= P+((1− |a|2)kw)
= kw − Tā(akw)

= Tā

(
kw

a(w)
− akw

)
,

which shows that bkw ∈ H(b) and, moreover, that

(bkw)
+ =

(
1

a(w)
− a

)
kw. (23.34)

Thus, by Theorem 23.8, for every f ∈ H(b), we have

〈f, bkw〉b = 〈f, bkw〉2 + 〈f+, (bkw)
+〉2

= 〈f, bkw〉2 +
1

a(w)
〈f+, kw〉2 − 〈f+, akw〉2

= 〈f, bkw〉2 − 〈f+, akw〉2 +
f+(w)

a(w)
.

To finish the proof and get the equality (23.32), it remains to notice that, by
Lemma 4.8,

〈f, bkw〉2 = 〈b̄f, kw〉2
= 〈Tb̄f, kw〉2
= 〈Tāf

+, kw〉2
= 〈f+, akw〉2.

This completes the proof.

If we take w = 0 in Theorem 23.23, we obtain the following special case.
However, note that the first conclusion was already obtained in Corollary 23.9.

Corollary 23.24 Let b be a nonextreme point of the closed unit ball of H∞.
Then

b ∈ H(b).
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Moreover, for every f ∈ H(b), we have

〈f, 1〉b = f(0) +
b(0)

a(0)
f+(0)

and

〈f, b〉b =
f+(0)

a(0)
.

Corollary 23.25 Let z, w ∈ D. Then we have

〈kz, kw〉b =
(
1 +

b(z)b(w)

a(z)a(w)

)
kz(w), (23.35)

〈kz, bkw〉b =
b(z)

a(z)a(w)
kz(w), (23.36)

〈bkz, bkw〉b =
(

1

a(z)a(w)
− 1

)
kz(w). (23.37)

Proof Using (23.31) with f = kz , we get

〈kz, kw〉b = kz(w) +
b(w)

a(w)
k+z (w).

Now, apply (23.33) to obtain (23.35).
If we put f = kz in (23.32), we obtain

〈kz, bkw〉b =
k+z (w)

a(w)
=

b(z)

a(z)a(w)
kz(w).

Finally, to prove (23.37), we apply (23.32) with f = bkz and use (23.34).
Hence, we have

〈bkz, bkw〉b =
(bkz)

+(w)

a(w)
=

1

a(w)

(
1

a(z)
− a(w)

)
kz(w).

Note that if we take z = w in (23.35), then we get

‖kw‖2b =
1

1− |w|2
(
1 +
|b(w)|2
|a(w)|2

)
. (23.38)

In Theorem 23.13, we showed that analytic polynomials form a dense mani-
fold inH(b). Knowing that Cauchy kernels are also inH(b) (Theorem 23.23),
we expect to have a similar result for the manifold they create. The following
result provides an affirmative answer.

Corollary 23.26 Let b be a nonextreme point of the closed unit ball of H∞.
Then

Span(kw : w ∈ D) = H(b).
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Proof Let f ∈ H(b) be such that f ⊥ Span(kw : w ∈ D). Then, according
to Theorem 23.23, we have

f(w) +
b(w)

a(w)
f+(w) = 0 (w ∈ D).

This is equivalent to fa = −bf+ on T. Multiplying this equality by b̄ and
using the identity |a|2 + |b|2 = 1, we obtain

a(b̄f − āf+) = −f+. (23.39)

The relation Tb̄f = Tāf
+ can be rewritten as P+(b̄f−āf+) = 0, which means

that the function b̄f − āf+ belongs to H2
0 . In particular, by (23.39), we deduce

that f+/a belongs to L2. Now, on the one hand, it follows from Corollary 4.28
that f+/a belongs to H2, because a is outer. On the other hand, (23.39) also
implies that f+/a belongs to H2

0 , whence f+/a = 0. That is, f+ = 0 and
then f = 0, which proves that the linear span of Cauchy kernels kw, w ∈ D, is
dense inH(b).

Exercise

Exercise 23.8.1 Let (a, b) be a pair. Show that

(kbw)
+ = b(w)akw (w ∈ D).

Hint: Note that kbw = kw − b(w)bkw. Then use (23.33) and (23.34).

23.9 Unbounded Toeplitz operators and H(b) spaces

In this section, we explain the close relation between H(b) spaces and
unbounded Toeplitz operators with symbols in the Smirnov class. We first
recall that the Nevanlinna class N consists of holomorphic functions in D that
are quotients of functions in H∞, and the Smirnov class N+ consists of such
quotients in which the denominators are outer functions; see Section 5.1. The
representation of such functions as the quotient of two H∞ functions, even
if we assume the denominator is outer, is not unique. However, if we impose
some extra conditions, then the representation becomes unique.

Lemma 23.27 Let ϕ be a nonzero function in the Smirnov class N+. Then
there exists a unique pair (a, b) such that ϕ = b/a.

Proof By definition, we can write ϕ as ϕ = ψ1/ψ2, where ψ1, ψ2 ∈ H∞,
ψ1 �= 0 and ψ2 is outer. If the required pair (a, b) exists then, because |a|2 +
|b|2 = 1 a.e. on T, the function a must satisfy the identity

1− |a|2
|a|2 =

|ψ1|2
|ψ2|2

(a.e. on T),
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that is,

|a|2 =
|ψ2|2

|ψ1|2 + |ψ2|2
(a.e. on T). (23.40)

Since ψ2 ∈ H∞, the function |ψ2|2 is log-integrable on T and hence |ψ1|2 +
|ψ2|2 is also log-integrable on T. Thus there is a unique function a ∈ H∞ that
satisfies (23.40) and is positive at the origin. For the function b = aϕ, then we
have

|a|2 + |b|2 =
|ψ2|2

|ψ1|2 + |ψ2|2
+

|ψ2|2
|ψ1|2 + |ψ2|2

|ψ1|2
|ψ2|2

= 1 (a.e. on T).

Hence (a, b) is a pair and the existence of the desired representation of ϕ is
established. The uniqueness holds because the outer function a is uniquely
determined by (23.40) and a(0) > 0.

The representation of ϕ ∈ N+ given by Lemma 23.27 is called the canoni-
cal representation of ϕ.

We start now with a function ϕ that is holomorphic in D and define Tϕ to be
the operator of multiplication by ϕ on the domain

D(Tϕ) = {f ∈ H2 : ϕf ∈ H2}.

It is easily seen that Tϕ is a closed operator; see Section 7.7. Indeed, let fn ∈
D(Tϕ) such that fn −→ f in H2 and ϕfn −→ g in H2. In particular, for each
z ∈ D, we have fn(z) −→ f(z) and (ϕfn)(z) −→ g(z). Since (ϕfn)(z) also
tends to ϕ(z)f(z), we deduce that ϕf = g. In other words, f ∈ D(Tϕ) and
Tϕf = g. Hence, the graph of Tϕ, G(Tϕ) = {f ⊕ ϕf : f ∈ H2, ϕf ∈ H2},
is closed in H2 ⊕H2, which means that Tϕ is a closed operator.

Lemma 23.28 Let ϕ be a function holomorphic on D. Then the following are
equivalent:

(i) D(Tϕ) �= {0};
(ii) ϕ is in the Nevanlinna class N .

Proof Suppose that there exists a function f �= 0 that belongs to D(Tϕ).
Thus ϕ = ϕf/f is the quotient of two H2 functions, hence the quotient of two
functions inN . Thus, ϕ ∈ N . Conversely, if ϕ is in the Nevanlinna class, then
we can write ϕ = ψ1/ψ2, where ψ1 and ψ2 are in H∞. Then D(Tϕ) contains
the set ψ2H

2.

Lemma 23.29 Let ϕ be a function holomorphic on D. Then the following are
equivalent:

(i) D(Tϕ) is dense in H2;
(ii) ϕ is in the Smirnov class N+.
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Proof (i) =⇒ (ii) Since D(Tϕ) is dense, it is in particular not reduced to {0}.
Hence, according to Lemma 23.28, ϕ is in the Nevanlinna class. Write ϕ =

ψ/χ, where ψ and χ are functions in H∞, whose inner factors are relatively
prime. Assume that f is in D(Tϕ) and let g = ϕf . Then ψf = χg. Write
ψ = ψiψo, f = fifo, χ = χiχo and g = gigo, where ψi, fi, χi, gi are inner
and ψo, fo, χo, go are outer. By the uniqueness of the canonical factorization
for the inner and outer parts, we have ψifi = χigi. Since GCD(ψi, χi) = 1,
then χi divides fi, which means that there is an inner function θi such that
fi = θiχi. Hence, ψof = ψofifo = χiθiψofo. We get from this relation that
ψof ∈ χH2. Using once more the uniqueness of the canonical factorization,
we deduce that f ∈ χiH

2. Thus D(Tϕ) ⊂ χiH
2. Now, since D(Tϕ) is dense

in H2, we conclude by Theorem 8.16 that χi must be a constant. In other
words, χ must be outer and then ϕ ∈ N+.

(ii) =⇒ (i) If ϕ = ψ/χ, where ψ and χ are in H∞ and χ is outer, then, as
noted above, D(Tϕ) contains χH2, which is dense in H2 by Theorem 8.16.
Hence D(Tϕ) is also dense in H2.

We just have seen that, whenϕ ∈ N+, then the domain of Tϕ is dense inH2.
Using the canonical representation of ϕ, we can precisely identify D(Tϕ).

Lemma 23.30 Let ϕ be a nonzero function in N+ with canonical represen-
tation ϕ = b/a. Then

D(Tϕ) = aH2.

Proof The inclusion aH2 ⊂ D(Tϕ) is clear (as noted above). Suppose now
that f ∈ D(Tϕ). Then we have

|ϕf |2 =
|b|2|f2|
|a|2 =

∣∣∣∣fa
∣∣∣∣2 − |f |2 (a.e. on T),

which implies that f/a is in L2(T). Since a is outer, Corollary 4.28 implies
that f/a is in H2, giving the inclusion D(Tϕ) ⊂ aH2.

Since, whenever ϕ ∈ N+, the operator Tϕ is densely defined and closed,
its adjoint T ∗

ϕ is also densely defined and closed. The next result shows that
de Branges–Rovnyak spaces naturally occur as the domain of the adjoint of
Toeplitz operators with symbols in N+.

Theorem 23.31 Let ϕ be a nonzero function inN+ with canonical represen-
tation ϕ = b/a. Then the following assertions hold.

(i) D(T ∗
ϕ) = H(b).

(ii) For each f ∈ H(b), we have T ∗
ϕf = f+ and

‖f‖2b = ‖f‖22 + ‖T ∗
ϕf‖22. (23.41)
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Proof (i) By definition, a function f ∈ H2 belongs to D(T ∗
ϕ) if and only if

there is a function g ∈ H2 such that

〈Tϕh, f〉2 = 〈h, g〉2 (23.42)

for all h ∈ D(Tϕ). By Lemma 23.30, D(Tϕ) = aH2, which means that f ∈
D(T ∗

ϕ) if and only if there is g ∈ H2 such that

〈Tϕ(aψ), f〉2 = 〈aψ, g〉2 (23.43)

for all ψ ∈ H2. But

〈Tϕ(aψ), f〉2 = 〈bψ, f〉2.

Hence, (23.43) is equivalent to

〈bψ, f〉2 = 〈aψ, g〉2 (ψ ∈ H2),

which can be written as

〈ψ, b̄f − āg〉2 = 0 (ψ ∈ H2).

In other words, f ∈ D(T ∗
ϕ) if and only if there exists a function g ∈ H2 such

that

Tb̄f = Tāg. (23.44)

It follows from Theorems 17.8 and 23.2 that this is equivalent to saying that
f ∈ H(b).

(ii) If we compare (23.44) and (23.42), we have

f+ = g = T ∗
ϕf.

Then, (23.41) follows from Theorem 23.8.

Exercises

Exercise 23.9.1 Let ϕ be a rational function in the Smirnov class. Show that
the functions a and b in the canonical representation of ϕ are rational functions.
Hint: Assume that ϕ = p/q, where p and q are polynomials with GCD

(p, q) = 1, q has no roots in D and q(0) > 0. Note that the function |p|2 + |q|2
is a nonnegative trigonometric polynomial. Apply the Fejér–Riesz theorem
to get a polynomial r without roots in D, with r(0) > 0 and such that
|r|2 = |p|2 + |q|2; see Theorem 27.19. Note now that a = q/r is a rational
function and b = aϕ = p/r is also a rational function. Verify that (a, b) is a
pair and ϕ = b/a.
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Exercise 23.9.2 Let ϕ ∈ N+ and ψ ∈ H∞. We denote Tϕ̄ = T ∗
ϕ.

(i) Show that D(Tϕ) ⊂ D(Tϕ̄).
Hint: Use Theorem 23.31 and Lemma 23.30.

(ii) Show that, for any g ∈ D(Tϕ), we have

Tϕ̄g = P+(ϕ̄g).

Hint: Note that, for any f ∈ D(Tϕ),

〈Tϕ̄g, f〉2 = 〈g, ϕf〉2 = 〈ϕ̄g, f〉2 = 〈P+(ϕ̄g), f〉2.

Exercise 23.9.3 Let ϕ ∈ N+ and ψ ∈ H∞. Show that, for any f ∈ D(Tϕ̄),
we have

Tϕ̄Tψ̄f = Tϕ̄ψ̄f = Tψ̄Tϕ̄f.

Hint: Note that, if ϕ = a/b is the canonical representation of ϕ, thenD(Tϕ̄) =

H(b) is invariant under Tψ̄ . Hence Tψ̄f ∈ D(Tϕ̄). For g ∈ D(Tϕ), we have

〈Tϕ̄Tψ̄f, g〉2 = 〈Tψ̄f, ϕg〉2
= 〈f, ψϕg〉2
= 〈Tψ̄ϕ̄f, g〉2,

which shows that Tϕ̄Tψ̄f = Tϕ̄ψ̄f . Argue similarly to prove that Tψ̄Tϕ̄f =

Tϕ̄ψ̄f .

Notes on Chapter 23

Section 23.1

Theorems 23.2 and 23.3 are due to Sarason [159, lemmas 3, 4 and 5].

Section 23.3

Theorem 23.8 is due to Sarason [159, lemma 2]. The idea of using the element
f+ to compute the norm is very useful and has also been introduced by Sarason
in [159]. The power of the method is illustrated by Corollary 23.9. It illustrates
very well that the computation of the norm of an element f ∈ H(b) is trans-
formed into the resolution of a system Tb̄f = Tāg, where we are looking
for a solution g ∈ H2. For instance, the norm of S∗b has been computed by
Sarason in [160] using another more difficult method; see Exercise 18.9.5. The
computation presented here and based on f+ is from Sarason’s book [166].

In [159], Sarason proved the density ofH(b̄) inH(b), when b is nonextreme;
see Corollary 23.10.
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The formula of Theorem 23.11 to find the element f+ by a limiting process
is due to Sarason [159].

Exercises 23.3.1, 23.3.2 and 23.3.3 come also from [159].

Section 23.4

The density of polynomials inM(ā) andH(b) (in the nonextreme case) proved
in Theorem 23.13 is due to Sarason [159, corollary 1].

Section 23.5

Theorem 23.14 and Corollary 23.15 are due to Sarason [160]. In that paper, he
is motivated by relating de Branges and Rovnyak’s model theory with that of
Sz.-Nagy and Foiaş. Thus, he constructs the Sz.-Nagy–Foiaş model of Xb and,
for that, he needs to determine the defect operators of the contraction Xb.

Section 23.6

Lemma 23.19 is from [166]. Theorem 23.20 is also due to Sarason [160] and
can be rephrased in the context of Sz.-Nagy–Foiaş theory. Indeed, in the case
when b is nonextreme, then dimDXb

= 2 and dimDX∗
b
= 1. Let u1 and u2

be a pair of orthogonal unit vectors in DXb
and let v = ‖S∗b‖−1

b S∗b be the
unit vector spanning DX∗

b
. Then, the operator function ΘXb

is determined by
the 1× 2 matrix function (θ1, θ2), where θj is defined by

ΘXb
(λ)uj = θj(λ)v (j = 1, 2).

If we replace u1, u2 by another orthonormal basis forDXb
, then it will multiply

the matrix function (θ1, θ2) from the right by a constant 2 × 2 unit matrix. In
[160], Sarason shows that there is a choice of basis (u1, u2) such that θ1(λ) =
b(λ̄) and θ2(λ) = a(λ̄). In this context, Theorem 23.20 says exactly that S∗ ⊕
S∗
|K′

b
is the Sz.-Nagy–Foiaş model of Xb and the projection Qb implements the

unitary equivalence between the operator Xb and its Sz.-Nagy–Foiaş model.

Section 23.7

Theorem 23.22 is due to Guyker [96]. It answers a question raised by de
Branges and Rovnyak [65, p. 39]. See also the paper of Leech [116], who
obtained other equivalent conditions for a Hilbert space H to coincide with a
de Branges–Rovnyak spaceH(b) for some nonextreme function b.
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Section 23.8

The fact that the Cauchy kernel kw belongs to H(b) when b is nonextreme, as
well as the computation of the norm of kw, are due to Sarason [160, proposi-
tion 1]. The two formulas (23.31) and (23.32) that appear in Theorem 23.23
are also due to Sarason [164, proposition].

Corollary 23.26 is from [159], but we have given a different proof.

Section 23.9

Unbounded Toeplitz operators on the Hardy space H2 arise often with symbols
belonging to L2(T). However, there are natural questions that lead to Toeplitz
operators having more restrictive symbols, in particular with symbols in the
Smirnov class. We mention interesting works of Helson [101], Suárez [182]
and Seubert [174]. The links between H(b) spaces and the domain of the
adjoint of Toeplitz operators with symbols in the Smirnov class are due to
Sarason [170].
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