23

$\mathcal{H}(b)$ spaces generated by a nonextreme symbol b

As we have already said, many properties of $\mathcal{H}(b)$ depend on whether b is or is not an extreme point of the closed unit ball of H^{∞}. Recall that, by the de Leeuw-Rudin theorem (Theorem 6.7), b is a nonextreme point of the closed unit ball of H^{∞} if and only if $\log \left(1-|b|^{2}\right) \in L^{1}(\mathbb{T})$, i.e.

$$
\begin{equation*}
\int_{\mathbb{T}} \log \left(1-|b|^{2}\right) d m>-\infty \tag{23.1}
\end{equation*}
$$

In this chapter, we study some specific properties of the space $\mathcal{H}(b)$ when b is a nonextreme point. Roughly speaking, when b is a nonextreme point, the space $\mathcal{H}(b)$ looks like the Hardy space H^{2}.

In this situation, an important property is the existence of an outer function a such that $a(0)>0$ and which satisfies $|a|^{2}+|b|^{2}=1$ a.e. on \mathbb{T}. This function a is introduced in Section 23.1 and we will see that $\mathcal{H}(\bar{b})=\mathcal{M}(\bar{a})$. In Section 23.2, we characterize the inclusion $\mathcal{M}(u) \subset \mathcal{H}(b)$ where $u \in H^{\infty}$. An important object in the nonextreme case is the associated function f^{+} introduced in Section 23.3. This function, which is defined via the equation $T_{\bar{b}} f=T_{\bar{a}} f^{+}$, enables us to give a useful formula for the scalar product in $\mathcal{H}(b)$. We also show, in Section 23.3, that $b \in \mathcal{H}(b)$ and we compute its norm. It turns out that the analytic polynomials belong to and are dense in $\mathcal{H}(b)$. This is the content of Section 23.4. Then, in Section 23.5, we give a formula for $\left\|X_{b} f\right\|_{b}, f \in \mathcal{H}(b)$, and we compute the defect operator $D_{X_{b}}$. Recall that, in Section 19.2, we gave a geometric representation of $\mathcal{H}(b)$ space based on the abstract functional embedding. In Section 23.6, we obtain another representation, which corresponds to the Sz.-Nagy-Foiaş model for the contraction X_{b}. In Section 23.7, we characterize $\mathcal{H}(b)$ spaces when b is a nonextreme point. The analog for the extreme case will be done in Section 25.8. In Section 23.8, we exhibit some new inhabitants of $\mathcal{H}(b)$. In the last section, we finally show that the $\mathcal{H}(b)$ space can be viewed as the domain of the adjoint of an unbounded Toeplitz operator with symbol in the Smirnov class.

23.1 The pair (a, b)

If b satisfies the condition (23.1), then we define a to be the unique outer function whose modulus on \mathbb{T} is $\left(1-|b|^{2}\right)^{1 / 2}$ and is positive at the origin. Hence, on the open unit disk, a is given by the formula

$$
\begin{equation*}
a(z)=\exp \left(\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \left(1-|b(\zeta)|^{2}\right)^{1 / 2} d m(\zeta)\right) \quad(z \in \mathbb{D}) \tag{23.2}
\end{equation*}
$$

Clearly, $a \in H^{\infty}$ with $\|a\|_{\infty} \leq 1$ and

$$
\begin{equation*}
|a|^{2}+|b|^{2}=1 \quad \text { (a.e. on } \mathbb{T} \text {). } \tag{23.3}
\end{equation*}
$$

Whenever we use the pair (a, b), we mean that they are related as described above. We sometimes say that a is the Pythagorean mate associated with b.

Theorem 23.1 For each pair (a, b), we have

$$
\frac{a}{1-b} \in H^{2} .
$$

Proof By Corollary 4.26, $1 /(1-b)$ is an outer function in H^{p} for each $0<$ $p<1$. Since a is an outer function in H^{∞}, then $a /(1-b)$ is also an outer function in H^{p} for each $0<p<1$. But, by (13.50) and (23.3),

$$
\frac{|a|^{2}}{|1-b|^{2}}=\frac{1-|b|^{2}}{|1-b|^{2}} \in L^{1}(\mathbb{T})
$$

or equivalently $a /(1-b) \in L^{2}(\mathbb{T})$. Hence, Corollary 4.28 ensures that $a /(1-b) \in H^{2}$.

Theorem 23.2 Let be a nonextreme point of the closed unit ball of H^{∞}. Then

$$
\mathcal{M}(\bar{a})=\mathcal{H}(\bar{b}) .
$$

Moreover,

$$
\mathcal{M}(a) \hookrightarrow \mathcal{M}(\bar{a}) \hookrightarrow \mathcal{H}(b)
$$

i.e. both inclusions are contractive. In particular, $\mathcal{M}(a)$ is contractively contained in $\mathcal{H}(b)$.

Proof The relation $\mathcal{M}(a) \hookrightarrow \mathcal{M}(\bar{a})$ follows from Theorem 17.17. Using Theorem 12.4 and (23.3), we see that

$$
T_{\bar{a}} T_{a}=T_{|a|^{2}}=T_{1-|b|^{2}}=I-T_{\bar{b}} T_{b}
$$

Hence, Corollary 16.8 implies that $\mathcal{M}(\bar{a})=\mathcal{M}\left(T_{\bar{a}}\right)=\mathcal{M}\left(\left(I-T_{\bar{b}} T_{b}\right)^{1 / 2}\right)=$ $\mathcal{H}(\bar{b})$. The contractive inclusion $\mathcal{H}(\bar{b}) \hookrightarrow \mathcal{H}(b)$ is contained in Theorem 17.9.

Theorem 23.2 ensures that $\mathcal{M}(\bar{a})$ embeds contractively in $\mathcal{H}(b)$. The following result provides another contraction between these spaces.

Theorem 23.3 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then the operator T_{b} maps $\mathcal{M}(\bar{a})$ contractively into $\mathcal{H}(b)$.

Proof According to Lemma 16.20, the operator T_{b} acts as a contraction from $\mathcal{H}(\bar{b})$ into $\mathcal{H}(b)$. The result follows since, by Theorem 23.2, we have $\mathcal{H}(\bar{b})=$ $\mathcal{M}(\bar{a})$.

According to Theorem 23.2, $\mathcal{H}(\bar{b})=\mathcal{M}(\bar{a})$, and thus, if $f \in \mathcal{H}(\bar{b})$, then there exists a unique $g \in H^{2}$ such that

$$
\begin{equation*}
f=T_{\bar{a}} g \tag{23.4}
\end{equation*}
$$

The uniqueness of g follows from the fact that $T_{\bar{a}}$ is injective; see Theorem 12.19(ii). In other words, $T_{\bar{a}}$ is an isometry from H^{2} onto $\mathcal{M}(\bar{a})$. Therefore, if $f_{1}=T_{\bar{a}} g_{1}$ and $f_{2}=T_{\bar{a}} g_{2}$, with $g_{1}, g_{2} \in H^{2}$, then

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{\bar{b}}=\left\langle T_{\bar{a}} g_{1}, T_{\bar{a}} g_{2}\right\rangle_{\mathcal{M}(\bar{a})}=\left\langle g_{1}, g_{2}\right\rangle_{2} . \tag{23.5}
\end{equation*}
$$

We recall that k_{w} denotes the Cauchy kernel.
Theorem 23.4 Let (a, b) be a pair. Then

$$
k_{w} \in \mathcal{H}(\bar{b}) \quad(w \in \mathbb{D})
$$

and, for every function $f \in \mathcal{H}(\bar{b})$, we have

$$
\left\langle f, k_{w}\right\rangle_{\bar{b}}=\frac{g(w)}{a(w)},
$$

where $g \in H^{2}$ is related to f via (23.4). Moreover, we have

$$
\begin{equation*}
\left\|k_{w}\right\|_{\bar{b}}=\frac{1}{|a(w)|\left(1-|w|^{2}\right)^{1 / 2}} \tag{23.6}
\end{equation*}
$$

Proof According to (12.7), we have $T_{\bar{a}} k_{w}=\overline{a(w)} k_{w}$. Since a is outer, then $a(w) \neq 0$ and we can write the last identity as

$$
\begin{equation*}
k_{w}=T_{\bar{a}}\left(\frac{k_{w}}{\overline{a(w)}}\right) . \tag{23.7}
\end{equation*}
$$

This representation shows that $k_{w} \in \mathcal{M}(\bar{a})=\mathcal{H}(\bar{b})$ and the function corresponding to k_{w} via (23.4) is equal to $k_{w} / \overline{a(w)}$. Therefore, for each $f \in \mathcal{H}(\bar{b})$, by (23.5), we have

$$
\left\langle f, k_{w}\right\rangle_{\bar{b}}=a(w)^{-1}\left\langle g, k_{w}\right\rangle_{2}=a(w)^{-1} g(w)
$$

In particular, if we take $f=k_{w}$, we obtain

$$
\left\|k_{w}\right\|_{\bar{b}}^{2}=a(w)^{-1} k_{w}(w) / \overline{a(w)}=|a(w)|^{-2}\left(1-|w|^{2}\right)^{-1}
$$

Remember, as we established in (4.19), that $k_{w}(w)=1 /\left(1-|w|^{2}\right)$.
Recall that, in Section 17.5, we studied the question of inclusion of different $\mathcal{H}(\bar{b})$ spaces. In the case when b is nonextreme, we can state the condition (17.12) in terms of the associated function a.

Corollary 23.5 Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two pairs. Then the following are equivalent:
(i) $\mathcal{H}\left(\bar{b}_{2}\right) \subset \mathcal{H}\left(\bar{b}_{1}\right)$;
(ii) $a_{2} / a_{1} \in H^{\infty}$.

Proof (i) \Longrightarrow (ii) By Theorem 17.12, there is a constant $c>0$ such that

$$
1-\left|b_{2}(\zeta)\right|^{2} \leq c\left(1-\left|b_{1}(\zeta)\right|^{2}\right) \quad(\text { a.e. on } \mathbb{T})
$$

Hence,

$$
\left|a_{2}\right|^{2} \leq c\left|a_{1}\right|^{2} \quad(\text { a.e. on } \mathbb{T})
$$

This means that $a_{2} / a_{1} \in L^{\infty}(\mathbb{T})$. But, since a_{1} is outer, the function a_{2} / a_{1} in fact belongs to H^{∞}.
(ii) \Longrightarrow (i) Assume that $a_{2}=a_{1} g$, with some function $g \in H^{\infty}$. Then we have $T_{\bar{a}_{2}}=T_{\bar{a}_{1}} T_{\bar{g}}$, which trivially implies that $\mathcal{M}\left(\bar{a}_{2}\right) \subset \mathcal{M}\left(\bar{a}_{1}\right)$. The conclusion follows now from Theorem 23.2, because we have $\mathcal{H}\left(\bar{b}_{k}\right)=\mathcal{M}\left(\bar{a}_{k}\right)$, $k=1,2$.

Exercises

Exercise 23.1.1 Let (a, b) be a pair. Show that

$$
|a(\lambda)|^{2}+|b(\lambda)|^{2} \leq 1 \quad(\lambda \in \mathbb{D})
$$

Moreover, if b is not constant, the inequality is strict.
Hint: (First method) Note that $|a|^{2}+|b|^{2}$ is harmonic and apply the maximum principle for harmonic functions.
(Second method) By Theorem 12.10, we know that, for any $\varphi \in H^{\infty}$, we have $T_{\varphi} T_{\bar{\varphi}} \leq T_{\bar{\varphi}} T_{\varphi}$. Apply this inequality to get $\left\|T_{\bar{a}} k_{\lambda}\right\|_{2}^{2}+\left\|T_{\bar{b}} k_{\lambda}\right\|_{2}^{2} \leq$ $\left\|k_{\lambda}\right\|_{2}^{2}$.

Exercise 23.1.2 Let b be a nonextreme point of the closed unit ball of H^{∞}, and let a be the associated outer function. Show that $a / b \in H^{\infty}$ if and only if $\|b\|_{\infty}<1$.

23.2 Inclusion of $\mathcal{M}(u)$ into $\mathcal{H}(b)$

Theorem 23.2 reveals that $\mathcal{M}(a)$ is a linear manifold in $\mathcal{H}(b)$. Generally speaking, it is important to distinguish a submanifold of $\mathcal{H}(b)$ that is of the form $\mathcal{M}(u)$ for a certain bounded analytic function u. The following result is a characterization of this type.

Theorem 23.6 Let (a, b) be a pair, and let u be a function in H^{∞}. Then the following are equivalent:
(i) $u / a \in H^{\infty}$;
(ii) $\mathcal{M}(u) \subset \mathcal{M}(a)$;
(iii) $\mathcal{M}(u) \subset \mathcal{H}(b)$.

Proof $($ i) \Longleftrightarrow (ii) This is already contained in Theorem 17.1.
(ii) \Longrightarrow (iii) This follows from Theorem 23.2.
(iii) \Longrightarrow (i) According to Lemma 16.6, there is a constant $c>0$ such that

$$
\begin{equation*}
\|f\|_{b} \leq c\|f\|_{\mathcal{M}(u)} \tag{23.8}
\end{equation*}
$$

for every function $f \in \mathcal{M}(u)$. Now applying Theorem 16.7 gives

$$
\begin{equation*}
T_{u} T_{\bar{u}} \leq c^{2}\left(I-T_{b} T_{\bar{b}}\right) \tag{23.9}
\end{equation*}
$$

Applying (23.9) to $k_{w}, w \in \mathbb{D}$, gives

$$
\left\|T_{\bar{u}} k_{w}\right\|_{2}^{2} \leq c\left(\left\|k_{w}\right\|_{2}^{2}-\left\|T_{\bar{b}} k_{w}\right\|_{2}^{2}\right)
$$

But, by (12.7), $T_{\bar{u}} k_{w}=\overline{u(w)} k_{w}$ and $T_{\bar{b}} k_{w}=\overline{b(w)} k_{w}$, and thus we obtain

$$
|u(w)|^{2} \leq c\left(1-|b(w)|^{2}\right) \quad(w \in \mathbb{D})
$$

In particular, we deduce from this inequality that

$$
|u(\zeta)|^{2} \leq c\left(1-|b(\zeta)|^{2}\right) \quad(\text { a.e. } \zeta \in \mathbb{T})
$$

By definition, we have $|a|^{2}=1-|b|^{2}$ almost everywhere on \mathbb{T} and thus we get

$$
|u(\zeta)|^{2} \leq c|a(\zeta)|^{2} \quad(\text { a.e. } \zeta \in \mathbb{T})
$$

Hence, u / a belongs to $L^{\infty}(\mathbb{T})$. But, since a is outer, Corollary 4.28 ensures that u / a belongs to H^{∞}.

Considering the set-theoretic inclusion, Theorem 23.6 also reveals that among spaces $\mathcal{M}(u), u \in H^{\infty}$, that fulfill $\mathcal{M}(u) \subset \mathcal{H}(b)$, the space $\mathcal{M}(a)$ is the largest one.

Exercise

Exercise 23.2.1 Let (a, b) be a pair, and let u be a function in H^{∞}. Show that the following are equivalent.
(i) $u / a \in H^{\infty}$ and $\|u / a\|_{\infty} \leq 1$.
(ii) $\mathcal{M}(u) \hookrightarrow \mathcal{M}(a)$.
(iii) $\mathcal{M}(u) \hookrightarrow \mathcal{H}(b)$.

Hint: See the proof of Theorem 23.6.

23.3 The element f^{+}

Let $f \in \mathcal{H}(b)$. Thus, using Theorems 17.8 and 23.2, we know that $T_{\bar{b}} f \in$ $\mathcal{H}(\bar{b})=\mathcal{M}(\bar{a})$. Theorem 12.19 (ii) says that $T_{\bar{a}}$ is injective. Therefore, there is a unique element of H^{2}, henceforth denoted by f^{+}, such that

$$
\begin{equation*}
T_{\bar{b}} f=T_{\bar{a}} f^{+} . \tag{23.10}
\end{equation*}
$$

It is also useful to mention that, if a function $f \in H^{2}$ satisfies $T_{\bar{b}} f=T_{\bar{a}} g$, for some function $g \in H^{2}$, then it follows from Theorems 17.8 and 23.2 that f surely belongs to $\mathcal{H}(b)$ and $g=f^{+}$. The element f^{+}is a useful tool in studying the properties of $f \in \mathcal{H}(b)$. In this section, we study some elementary properties of f^{+}.

Looking at the definition in (23.10), it is no wonder that this operation is invariant under a Toeplitz operator with a conjugate-analytic symbol.

Lemma 23.7 Let b be a nonextreme point of the closed unit ball of H^{∞}, let $f \in \mathcal{H}(b)$ and let $\varphi \in H^{\infty}$. Then

$$
\left(T_{\bar{\varphi}} f\right)^{+}=T_{\bar{\varphi}} f^{+} .
$$

Proof We know from Theorem 18.13 that $\mathcal{H}(b)$ is invariant under $T_{\bar{\varphi}}$. Consequently, we have $T_{\bar{\varphi}} f \in \mathcal{H}(b)$. Then, according to Theorem 12.4,

$$
T_{\bar{b}} T_{\bar{\varphi}} f=T_{\bar{\varphi}} T_{\bar{b}} f=T_{\bar{\varphi}} T_{\bar{a}} f^{+}=T_{\bar{a}} T_{\bar{\varphi}} f^{+} .
$$

Hence, remembering the uniqueness of $\left(T_{\bar{\varphi}} f\right)^{+}$, the identity $T_{\bar{b}}\left(T_{\bar{\varphi}} f\right)=$ $T_{\bar{a}}\left(T_{\bar{\varphi}} f^{+}\right)$means that $\left(T_{\bar{\varphi}} f\right)^{+}=T_{\bar{\varphi}} f^{+}$.

Theorem 23.8 Let $f_{1}, f_{2} \in \mathcal{H}(b)$. Then we have

$$
\left\langle f_{1}, f_{2}\right\rangle_{b}=\left\langle f_{1}, f_{2}\right\rangle_{2}+\left\langle f_{1}^{+}, f_{2}^{+}\right\rangle_{2}
$$

In particular, for each $f \in \mathcal{H}(b)$,

$$
\|f\|_{b}^{2}=\|f\|_{2}^{2}+\left\|f^{+}\right\|_{2}^{2}
$$

Proof Using Theorem 17.8, we can write

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle_{b} & =\left\langle f_{1}, f_{2}\right\rangle_{2}+\left\langle T_{\bar{b}} f_{1}, T_{\bar{b}} f_{2}\right\rangle_{\bar{b}} \\
& =\left\langle f_{1}, f_{2}\right\rangle_{2}+\left\langle T_{\bar{a}} f_{1}^{+}, T_{\bar{a}} f_{2}^{+}\right\rangle_{\bar{b}} .
\end{aligned}
$$

Since $\mathcal{H}(\bar{b})=\mathcal{M}(\bar{a})$, we have

$$
\left\langle T_{\bar{a}} f_{1}^{+}, T_{\bar{a}} f_{2}^{+}\right\rangle_{\bar{b}}=\left\langle T_{\bar{a}} f_{1}^{+}, T_{\bar{a}} f_{2}^{+}\right\rangle_{\mathcal{M}(\bar{a})} .
$$

Since, according to Theorem 12.19 (ii), $T_{\bar{a}}$ is injective, it follows that

$$
\left\langle T_{\bar{a}} f_{1}^{+}, T_{\bar{a}} f_{2}^{+}\right\rangle_{\mathcal{M}(\bar{a})}=\left\langle f_{1}^{+}, f_{2}^{+}\right\rangle_{2}
$$

and this implies

$$
\left\langle f_{1}, f_{2}\right\rangle_{b}=\left\langle f_{1}, f_{2}\right\rangle_{2}+\left\langle f_{1}^{+}, f_{2}^{+}\right\rangle_{2}
$$

Theorem 23.8 is very useful in computing the norm of elements of $\mathcal{H}(b)$. Two such computations are discussed below.

Corollary 23.9 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then $b \in \mathcal{H}(b)$, with

$$
b^{+}=\frac{1}{\overline{a(0)}}-a,
$$

and, moreover, we have

$$
\begin{aligned}
\|b\|_{b}^{2} & =|a(0)|^{-2}-1 \\
\left\|S^{*} b\right\|_{b}^{2} & =1-|b(0)|^{2}-|a(0)|^{2} .
\end{aligned}
$$

Proof According to Theorems 18.1 and 23.2, we have $b \in \mathcal{H}(b)$ if and only if $T_{\bar{b}} b \in \mathcal{H}(\bar{b})=\mathcal{M}(\bar{a})$. But

$$
T_{\bar{b}} b=P_{+}|b|^{2}=P_{+}\left(1-|a|^{2}\right)=1-T_{\bar{a}} a,
$$

and we can write $1=P_{+}(\bar{a} / \overline{a(0)})=T_{\bar{a}}(1 / \overline{a(0)})$. Therefore, we obtain

$$
T_{\bar{b}} b=T_{\bar{a}}\left(\frac{1}{\overline{a(0)}}-a\right) \in \mathcal{M}(\bar{a})
$$

This fact ensures that $b \in \mathcal{H}(b)$. Moreover, the last identity also reveals that

$$
\begin{equation*}
b^{+}=\frac{1}{\overline{a(0)}}-a . \tag{23.11}
\end{equation*}
$$

A simple calculation shows that

$$
\left\|b^{+}\right\|_{2}^{2}=\|a\|_{2}^{2}+\frac{1}{|a(0)|^{2}}-2
$$

Hence, by Theorem 23.8 and the fact that $\|a\|_{2}^{2}+\|b\|_{2}^{2}=1$, we obtain

$$
\begin{aligned}
\|b\|_{b}^{2} & =\|b\|_{2}^{2}+\left\|b^{+}\right\|_{2}^{2} \\
& =\|b\|_{2}^{2}+\|a\|_{2}^{2}+\frac{1}{|a(0)|^{2}}-2 \\
& =\frac{1}{|a(0)|^{2}}-1
\end{aligned}
$$

By Lemma 23.7 and (23.11), we see that

$$
\begin{equation*}
\left(S^{*} b\right)^{+}=-S^{*} a \tag{23.12}
\end{equation*}
$$

According to Theorem 23.8 and (8.16), we thus have

$$
\begin{aligned}
\left\|S^{*} b\right\|_{b}^{2} & =\left\|S^{*} b\right\|_{2}^{2}+\left\|S^{*} a\right\|_{2}^{2} \\
& =\|b\|_{2}^{2}+\|a\|_{2}^{2}-|b(0)|^{2}-|a(0)|^{2} \\
& =1-|b(0)|^{2}-|a(0)|^{2} .
\end{aligned}
$$

This completes the proof.
By Theorem 23.2, we know that $\mathcal{M}(\bar{a})=\mathcal{H}(\bar{b}) \subset \mathcal{H}(b)$. The following result reveals that, in a sense, $\mathcal{M}(\bar{a})$ is a large subset of $\mathcal{H}(b)$. In the extreme case, this is far from being true. For example, if b is inner, then $\mathcal{H}(\bar{b})=\{0\}$.

Corollary 23.10 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then, relative to the topology of $\mathcal{H}(b)$, the space $\mathcal{H}(\bar{b})$ is a dense submanifold of $\mathcal{H}(b)$.

Proof By Theorem 23.2, $\mathcal{M}(\bar{a})=\mathcal{H}(\bar{b}) \hookrightarrow \mathcal{H}(b)$. Let $f \in \mathcal{H}(b)$ and assume that, relative to the inner product of $\mathcal{H}(b), f$ is orthogonal to $\mathcal{M}(\bar{a})$. Thus, in particular, we have

$$
\begin{equation*}
\left\langle f, T_{\bar{a}} S^{* n} f\right\rangle_{b}=0 \tag{23.13}
\end{equation*}
$$

for all $n \geq 0$. Using Theorem 12.4 , we can write

$$
T_{\bar{a}} S^{* n} f=T_{\bar{a}} T_{\bar{z}^{n}} f=T_{\bar{a} \bar{z}^{n}} f
$$

Again, since $z^{n} a(z) \in H^{\infty}$, by Lemma 23.7,

$$
\left(T_{\bar{a}} S^{* n} f\right)^{+}=T_{\bar{a} \bar{z}^{n}} f^{+} .
$$

Therefore, according to Lemma 4.8 and Theorem 23.8, we have

$$
\begin{aligned}
\left\langle f, T_{\bar{a}} S^{* n} f\right\rangle_{b} & =\left\langle f, T_{\bar{a} \bar{z}^{n}} f\right\rangle_{2}+\left\langle f^{+}, T_{\bar{a} \bar{z}^{n}} f^{+}\right\rangle_{2} \\
& =\left\langle T_{a z^{n}} f, f\right\rangle_{2}+\left\langle T_{a z^{n}} f^{+}, f^{+}\right\rangle_{2} \\
& =\left\langle a z^{n} f, f\right\rangle_{2}+\left\langle a z^{n} f^{+}, f^{+}\right\rangle_{2} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} a\left(e^{i \theta}\right)\left[\left|f\left(e^{i \theta}\right)\right|^{2}+\left|f^{+}\left(e^{i \theta}\right)\right|^{2}\right] e^{i n \theta} d \theta \\
& =\hat{\varphi}(-n)
\end{aligned}
$$

where φ denotes the L^{1} function defined by $\varphi=\left(|f|^{2}+\left|f^{+}\right|^{2}\right) a$ (the function φ belongs to $L^{1}(\mathbb{T})$ since it is the product of the H^{∞} function a and the L^{1} function $\left(|f|^{2}+\left|f^{+}\right|^{2}\right)$). Thus, (23.13) and the previous computation imply that $\hat{\varphi}(n)=0$ for all $n \leq 0$. This precisely means that $\varphi \in H_{0}^{1}$. Since a is an outer function and $|f|^{2}+\left|f^{+}\right|^{2} \in L^{1}(\mathbb{T})$, we deduce from Corollary 4.28 that $|f|^{2}+\left|f^{+}\right|^{2} \in H_{0}^{1}$. Since this function is real-valued, (4.12) implies that $|f|^{2}+\left|f^{+}\right|^{2} \equiv 0$. In particular, $f \equiv 0$. Therefore, $\mathcal{M}(\bar{a})$ is dense in $\mathcal{H}(b)$.

Recall that, if $0<r<1$, then, by definition, a_{r} is the unique outer function whose modulus on \mathbb{T} is $\left(1-r^{2}|b|^{2}\right)^{1 / 2}$ and $a_{r}(0)>0$. In other words, $\left(a_{r}, r b\right)$ is a pair. Note that, on \mathbb{T}, we have

$$
|a|^{2}=1-|b|^{2} \leq 1-r^{2}|b|^{2}=\left|a_{r}\right|^{2},
$$

which implies that $a / a_{r} \in L^{\infty}(\mathbb{T})$. Then, according to Corollary 4.28, the function a / a_{r} belongs to H^{∞} and we have

$$
\begin{equation*}
\left\|\frac{a}{a_{r}}\right\|_{\infty} \leq 1 \tag{23.14}
\end{equation*}
$$

A similar argument shows that a_{r}^{-1} belongs to H^{∞}.
Given a function f in $\mathcal{H}(b)$, the next result gives a method to find the associated function f^{+}. To give the motivation for the following result, note that, if incidentally $b f / a \in L^{2}(\mathbb{T})$, then

$$
\begin{equation*}
f^{+}=P_{+}(\bar{b} f / \bar{a}) . \tag{23.15}
\end{equation*}
$$

Indeed, we have

$$
T_{\bar{a}} P_{+}(\bar{b} f / \bar{a})=P_{+}\left(\bar{a} P_{+}(\bar{b} f / \bar{a})\right)=P_{+}(\bar{a} \bar{b} f / \bar{a})=T_{\bar{b}} f
$$

which, by uniqueness of f^{+}, gives the formula (23.15). However, if $b f / a$ does not belong to $L^{2}(\mathbb{T})$, we appeal to a limiting process to get a similar result.

Theorem 23.11 Let $f \in \mathcal{H}(b)$. Then

$$
\lim _{r \rightarrow 1}\left\|T_{\bar{b} / \bar{a}_{r}} f-f^{+}\right\|_{2}=0 .
$$

Proof Since $a_{r}^{-1} \in H^{\infty}$, multiplying both sides of $T_{\bar{b}} f=T_{\bar{a}} f^{+}$by $T_{1 / \bar{a}_{r}}$ gives

$$
T_{\bar{b} / \bar{a}_{r}} f=T_{\bar{a} / \bar{a}_{r}} f^{+} .
$$

Hence, by (23.14), we have

$$
\begin{equation*}
\left\|T_{\bar{b} / \bar{a}_{r}} f\right\|_{2}=\left\|T_{\bar{a} / \bar{a}_{r}} f^{+}\right\|_{2} \leq\left\|\frac{a}{a_{r}}\right\|_{\infty}\left\|f^{+}\right\|_{2} \leq\left\|f^{+}\right\|_{2} \tag{23.16}
\end{equation*}
$$

for all $r \in(0,1)$. Let us now prove that a / a_{r} tends to 1 , as $r \longrightarrow 1$, in the weak-star topology of H^{∞}. According to Theorem 4.16, this is equivalent to saying that

$$
\sup _{0 \leq r<1}\left\|\frac{a}{a_{r}}\right\|_{\infty}<+\infty
$$

and

$$
\lim _{r \rightarrow 1} \frac{a(z)}{a_{r}(z)}=1 \quad(z \in \mathbb{D})
$$

The first fact follows immediately from (23.14). To verify the second fact, recall that

$$
a_{r}(z)=\exp \left(\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \left|a_{r}(\zeta)\right| d m(\zeta)\right)
$$

and then an application of the dominated convergence theorem gives the result. Consequently, for every $\phi \in L^{1}(\mathbb{T})$, we have

$$
\lim _{r \rightarrow 1} \int_{\mathbb{T}} \frac{\bar{a}}{\bar{a}_{r}} \phi d m=\int_{\mathbb{T}} \phi d m
$$

Now, let $u, v \in H^{2}$. Since $u \bar{v} \in L^{1}(\mathbb{T})$, the last identity gives

$$
\begin{aligned}
\lim _{r \rightarrow 1}\left\langle T_{\bar{a} / \bar{a}_{r}} u, v\right\rangle_{2} & =\lim _{r \rightarrow 1}\left\langle\bar{a} u / \bar{a}_{r}, v\right\rangle_{2} \\
& =\lim _{r \rightarrow 1} \int_{\mathbb{T}} \frac{\bar{a}}{\bar{a}_{r}} u \bar{v} d m=\int_{\mathbb{T}} u \bar{v} d m=\langle u, v\rangle_{2}
\end{aligned}
$$

This means that $T_{\bar{a} / \bar{a}_{r}} u$ is weakly convergent to u in H^{2}. Therefore, $T_{\bar{b} / \bar{a}_{r}} f=$ $T_{\bar{a} / \bar{a}_{r}} f^{+}$weakly converges to f^{+}in H^{2}, as $r \longrightarrow 1$. But, according to (23.16), we have

$$
\begin{aligned}
\left\|T_{\bar{b} / \bar{a}_{r}} f-f^{+}\right\|_{2}^{2} & =\left\|T_{\bar{b} / \bar{a}_{r}} f\right\|_{2}^{2}+\|f\|_{2}^{2}-2 \Re\left\langle T_{\bar{b} / \bar{a}_{r}} f, f^{+}\right\rangle_{2} \\
& \leq 2\left\|f^{+}\right\|_{2}^{2}-2 \Re\left\langle T_{\bar{b} / \bar{a}_{r}} f, f^{+}\right\rangle_{2} .
\end{aligned}
$$

Hence, we get

$$
\limsup _{r \rightarrow 1}\left\|T_{\bar{b} / \bar{a}_{r}} f-f^{+}\right\|_{2}^{2} \leq 2\left\|f^{+}\right\|_{2}^{2}-2 \lim _{r \rightarrow 1} \Re\left\langle T_{\bar{b} / \bar{a}_{r}} f, f^{+}\right\rangle_{2}=0
$$

from which we deduce that $T_{\bar{b} / \bar{a}_{r}} f$ actually converges to f^{+}in H^{2} norm, as $r \longrightarrow 1$.

Using this fact and Theorem 23.8, we can give another proof of formula (18.20) in the nonextreme case.

Theorem 23.12 The map $\mathfrak{G}: h \longmapsto h^{+}$is a partial isometry of $\mathcal{H}(b)$ onto $\mathcal{H}(a)$, and its kernel is $\operatorname{ker} T_{\bar{b}} \cap \mathcal{H}(b)$.

Proof Let $h \in \mathcal{H}(b)$. Note that $h^{+} \in H^{2}$ and then $h^{+} \in \mathcal{H}(a)$ if and only if $T_{\bar{a}} h^{+} \in \mathcal{H}(\bar{a})$. By applying Theorem 23.2 to a (which is of course also a nonextreme point of the closed unit ball of H^{∞}), then $\mathcal{M}(\bar{b})=\mathcal{H}(\bar{a})$ and we deduce that

$$
T_{\bar{a}} h^{+}=T_{\bar{b}} h \in \mathcal{H}(\bar{a})
$$

Hence $h^{+} \in \mathcal{H}(a)$. Now, let $\varphi \in \mathcal{H}(a)$. Then $T_{\bar{a}} \varphi \in \mathcal{H}(\bar{a})$. Using Theorem 23.2 once more, there exists $h \in H^{2}$ such that $T_{\bar{a}} \varphi=T_{\bar{b}} h$. Since $T_{\bar{b}} h \in$ $\mathcal{M}(\bar{a})=\mathcal{H}(\bar{b})$, we deduce that $h \in \mathcal{H}(b)$ and the last equation gives that $h^{+}=\varphi$. That means that \mathfrak{G} is a surjective map from $\mathcal{H}(b)$ onto $\mathcal{H}(a)$.

Let $h \in \mathcal{H}(b)$. Since $T_{\bar{a}}$ is one-to-one, we have

$$
\begin{aligned}
\mathfrak{G}(h)=0 & \Longleftrightarrow h^{+}=0 \\
& \Longleftrightarrow T_{\bar{a}} h^{+}=0 \\
& \Longleftrightarrow T_{\bar{b}} h=0 \\
& \Longleftrightarrow h \in \operatorname{ker} T_{\bar{b}} .
\end{aligned}
$$

Hence ker $\mathfrak{G}=\operatorname{ker} T_{\bar{b}} \cap \mathcal{H}(b)$.
It remains to check that \mathfrak{G} is a partial isometry. So let $h \in \mathcal{H}(b), h \perp \operatorname{ker} T_{\bar{b}}$. On the one hand, we have

$$
\|h\|_{b}^{2}=\|h\|_{2}^{2}+\left\|h^{+}\right\|_{2}^{2}
$$

and on the other,

$$
\left\|h^{+}\right\|_{a}^{2}=\left\|h^{+}\right\|_{2}^{2}+\left\|T_{\bar{a}} h^{+}\right\|_{\bar{a}}^{2}=\left\|h^{+}\right\|_{2}^{2}+\left\|T_{\bar{b}} h\right\|_{\mathcal{M}(\bar{b})}^{2}
$$

Since $h \in \operatorname{ker} T_{\bar{b}}$, we have $\left\|T_{\bar{b}} h\right\|_{\mathcal{M}(\bar{b})}^{2}=\|h\|_{2}^{2}$, which gives

$$
\left\|h^{+}\right\|_{a}^{2}=\left\|h^{+}\right\|_{2}^{2}+\|h\|_{2}^{2}=\|h\|_{b}^{2} .
$$

In other words, \mathfrak{G} is a partial isometry.

Exercises

Exercise 23.3.1 Assume that b is not an extreme point of the closed unit ball of H^{∞}.
(i) Prove that

$$
r T_{r \bar{b} / \bar{a}_{r}} b=\overline{a_{r}^{-1}(0)}-a_{r} .
$$

(ii) Deduce that

$$
\|b\|_{b}^{2}=|a(0)|^{-2}-1
$$

(iii) Prove that, for $n \geq 1$, we have

$$
r T_{r \bar{b} / \bar{a}_{r}} X^{n} b=-S^{* n} a_{r}
$$

(iv) Show that $T_{\bar{b} / \bar{a}_{r}} 1=\overline{b(0)} / \overline{a_{r}(0)}$.
(v) Deduce that

$$
\left\langle X^{n} b, 1\right\rangle_{b}=\hat{b}(n)-b(0) \hat{a}(n) a(0)^{-1} \quad(n \geq 1)
$$

Hint: Use (iii) and (iv).
Exercise 23.3.2 Assume that b is not an extreme point of the closed unit ball of H^{∞} and assume that b has a zero of order m at the origin. Show that

$$
\left\langle X^{n} b, z^{m}\right\rangle_{b}=\hat{b}(n+m)-\hat{b}(m) \hat{a}(n) a(0)^{-1} \quad(n \geq 1)
$$

Hint: Use Exercise 23.3.1(iii) and Exercise 18.9.3(ii).
Exercise 23.3.3 Assume that b has a zero of order m (possibly 0) at the origin and assume that b is not an extreme point of the closed unit ball of H^{∞}. Show that

$$
\left\langle X^{n} b, b\right\rangle_{b}=-\hat{a}(n) / a(0) \quad(n \geq 1)
$$

Hint: Use Exercise 18.9.1 with $f=X^{n} b$ and Exercise 23.3.2.

23.4 Analytic polynomials are dense in $\mathcal{H}(b)$

Theorem 17.4 tells us that the analytic polynomials are dense in $\mathcal{M}(\bar{a})$. Then Theorem 23.2 says that the latter linear manifold is dense and contractively contained in $\mathcal{H}(b)$. Hence, it is natural to deduce some result about the family of analytic polynomials in $\mathcal{H}(b)$.

Theorem 23.13 Let b be a nonextreme point of the closed unit ball of H^{∞}, and let \mathcal{P} denote the linear manifold of analytic polynomials. Then the following hold.
(i) $\mathcal{P} \subset \mathcal{M}(\bar{a}) \subset \mathcal{H}(b)$.
(ii) \mathcal{P} is a dense manifold in $\mathcal{M}(\bar{a})$.
(iii) \mathcal{P} is a dense manifold in $\mathcal{H}(b)$.

Proof (i) The inclusion $\mathcal{P} \subset \mathcal{M}(\bar{a})$ was shown in Theorem 17.4, and $\mathcal{M}(\bar{a}) \subset \mathcal{H}(b)$ was established in Theorem 23.2.
(ii) This is also from Theorem 17.4.
(iii) Let $f \in \mathcal{H}(b)$ and let $\varepsilon>0$. According to Corollary 23.10, there exists $g \in \mathcal{M}(\bar{a})$ such that

$$
\|f-g\|_{b} \leq \frac{\varepsilon}{2}
$$

and, appealing to part (ii), there is a $p \in \mathcal{P}$ such that

$$
\|g-p\|_{\mathcal{M}(\bar{a})} \leq \frac{\varepsilon}{2} .
$$

But, by Theorem 23.2,

$$
\|g-p\|_{b} \leq\|g-p\|_{\mathcal{M}(\bar{a})}
$$

The three inequalities above imply that $\|f-p\|_{b} \leq \varepsilon$.
Let u_{o} be the inner part and b_{o} be the outer part of a function b in the closed unit ball of H^{∞}. Since $\left|b_{o}\right|=|b|$ a.e. on \mathbb{T}, if b is nonextreme, then b_{o} is also nonextreme. In particular, we will have, according to Theorems 23.13 and 18.7,

$$
\mathcal{P} \subset \mathcal{H}\left(b_{o}\right) \subset \mathcal{H}(b) .
$$

Since \mathcal{P} is dense in $\mathcal{H}(b)$, we immediately get that $\mathcal{H}\left(b_{o}\right)$ is also dense in $\mathcal{H}(b)$. The situation in the extreme case is dramatically different because we will see in Section 25.6 that $\mathcal{H}\left(b_{o}\right)$ is a closed subspace of $\mathcal{H}(b)$ and, if u_{o} is not a finite Blaschke product, the orthogonal complement of $\mathcal{H}\left(b_{o}\right)$ in $\mathcal{H}(b)$ is of infinite dimension.

23.5 A formula for $\left\|X_{b} f\right\|_{b}$

We recall that $\mathcal{H}(b)$ is invariant under the backward shift S^{*} and that the restriction of S^{*} to $\mathcal{H}(b)$ was denoted by X_{b}. In this section, we give a formula for $\left\|X_{b} f\right\|_{b}$.

Theorem 23.14 Assume that b is a nonextreme point of the closed unit ball of H^{∞}. Then we have

$$
X_{b}^{*} X_{b}=I-k_{0}^{b} \otimes k_{0}^{b}-|a(0)|^{2} b \otimes b
$$

Moreover, for every $f \in \mathcal{H}(b)$, we have

$$
\begin{equation*}
\left\|X_{b} f\right\|_{b}^{2}=\|f\|_{b}^{2}-|f(0)|^{2}-|a(0)|^{2}\left|\langle f, b\rangle_{b}\right|^{2} . \tag{23.17}
\end{equation*}
$$

Proof According to Corollary 18.23, we have

$$
\begin{align*}
X_{b}^{*} X_{b} f & =S S^{*} f-\left\langle X_{b} f, S^{*} b\right\rangle_{b} b \\
& =f-f(0)-\left\langle X_{b} f, X_{b} b\right\rangle_{b} b \\
& =f-f(0)-\left\langle f, X_{b}^{*} X_{b} b\right\rangle_{b} b \tag{23.18}
\end{align*}
$$

for every $f \in \mathcal{H}(b)$. By Corollary 23.9, $b \in \mathcal{H}(b)$, and thus by setting $f=b$ in (23.18), we obtain

$$
X_{b}^{*} X_{b} b=b-b(0)-\left\langle b, X_{b}^{*} X_{b} b\right\rangle_{b} b=b-b(0)-\left\|X_{b} b\right\|_{b}^{2} b .
$$

Using Corollary 23.9 again and the formula for $X_{b} b=S^{*} b$, we simplify the preceding identity to get

$$
X_{b}^{*} X_{b} b=\left(|b(0)|^{2}+|a(0)|^{2}\right) b-b(0)
$$

Plugging the preceding expression for $X_{b}^{*} X_{b} b$ and the formula $f(0)=\left\langle f, k_{0}^{b}\right\rangle_{b}$ into (23.18) gives

$$
\begin{aligned}
X_{b}^{*} X_{b} f & =f-\left\langle f, k_{0}^{b}\right\rangle_{b}-\left(|b(0)|^{2}+|a(0)|^{2}\right)\langle f, b\rangle_{b} b+\overline{b(0)}\langle f, 1\rangle_{b} \\
& =f-\left\langle f, k_{0}^{b}\right\rangle_{b}-|a(0)|^{2}\langle f, b\rangle_{b} b+\overline{b(0)}\left(\langle f, 1\rangle_{b}-b(0)\langle f, b\rangle_{b}\right) b \\
& =f-\left\langle f, k_{0}^{b}\right\rangle_{b}-|a(0)|^{2}\langle f, b\rangle_{b} b+\overline{b(0)}\langle f, 1-\overline{b(0)} b\rangle_{b} b \\
& =f-|a(0)|^{2}\langle f, b\rangle_{b} b-\left\langle f, k_{0}^{b}\right\rangle_{b} k_{0}^{b} \\
& =\left(I-k_{0}^{b} \otimes k_{0}^{b}-|a(0)|^{2} b \otimes b\right) f .
\end{aligned}
$$

Using this formula for $X_{b}^{*} X_{b}$, we can write

$$
\begin{aligned}
\left\|X_{b} f\right\|_{b}^{2} & =\left\langle X_{b} f, X_{b} f\right\rangle_{b} \\
& =\left\langle X_{b}^{*} X_{b} f, f\right\rangle_{b} \\
& \left.=\left.\left\langle f-\left\langle f, k_{0}^{b}\right\rangle_{b} k_{0}^{b}-\right| a(0)\right|^{2}\langle f, b\rangle_{b} b, f\right\rangle_{b} \\
& =\|f\|_{b}^{2}-\left|\left\langle f, k_{0}^{b}\right\rangle_{b}\right|^{2}-|a(0)|^{2}\left|\langle f, b\rangle_{b}\right|^{2} \\
& =\|f\|_{b}^{2}-|f(0)|^{2}-|a(0)|^{2}\left|\langle f, b\rangle_{b}\right|^{2} .
\end{aligned}
$$

This completes the proof.
We recall that, in Corollary 18.27, we proved that the defect operator $D_{X_{b}^{*}}=$ $\left(I-X_{b} X_{b}^{*}\right)^{1 / 2}$ has rank one, its range is spanned by $S^{*} b$ and its nonzero eigenvalue equals $\left\|S^{*} b\right\|_{b}$. The analogous result for $D_{X_{b}}$ depends on whether b is an extreme or nonextreme point of the closed unit ball of H^{∞}.

Corollary 23.15 Let b be a nonextreme point of the closed unit ball of H^{∞}. The operator $D_{X_{b}}^{2}=I-X_{b}^{*} X_{b}$ has rank two. It has two eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=1-|b(0)|^{2}-|a(0)|^{2}$. Moreover, if $e_{1}=1$ and $e_{2}=-b(0) k_{0}^{b}+$ $|a(0)|^{2} b$, then

$$
\operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{1} I\right)=\mathbb{C} e_{1} \quad \text { and } \quad \operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{2} I\right)=\mathbb{C} e_{2}
$$

Proof Using Theorem 23.17, we have

$$
D_{X_{b}}^{2}=k_{0}^{b} \otimes k_{0}^{b}+|a(0)|^{2} b \otimes b
$$

Since b and k_{0}^{b} are linearly independent, $D_{X_{b}}^{2}$ has rank two, and it is sufficient to study its restriction to the two-dimensional space $\mathbb{C} k_{0}^{b} \oplus \mathbb{C} b$. Relative to the basis $\left(k_{0}^{b}, b\right)$, this restriction has the following matrix:

$$
A=\left(\begin{array}{cc}
\left\|k_{0}^{b}\right\|_{b}^{2} & \left\langle b, k_{0}^{b}\right\rangle_{b} \\
|a(0)|^{2}\left\langle k_{0}^{b}, b\right\rangle_{b} & |a(0)|^{2}\|b\|_{b}^{2}
\end{array}\right) .
$$

According to (18.8), Theorem 18.11 and Corollary 23.9, we have

$$
\left\|k_{0}^{b}\right\|_{b}^{2}=1-|b(0)|^{2}, \quad\left\langle b, k_{0}^{b}\right\rangle_{b}=b(0) \quad \text { and } \quad|a(0)|^{2}\|b\|_{b}^{2}=1-|a(0)|^{2} .
$$

Hence,

$$
A=\left(\begin{array}{cc}
1-|b(0)|^{2} & b(0) \\
\overline{b(0)}|a(0)|^{2} & 1-|a(0)|^{2}
\end{array}\right) .
$$

It is now easy to compute the eigenvalue and eigenvectors of this matrix. The characteristic polynomial is given by

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda\left(2-|a(0)|^{2}-|b(0)|^{2}\right)+1-|a(0)|^{2}-|b(0)|^{2}
$$

As already noted, we have $1-|a(0)|^{2}-|b(0)|^{2}>0$. Hence, there are two real roots, which are 1 and $1-|a(0)|^{2}-|b(0)|^{2}$. Therefore, $\lambda_{1}=1$ and $\lambda_{2}=1-$ $|a(0)|^{2}-|b(0)|^{2}$ are the two eigenvalues. To compute the eigenvectors, we need to solve linear systems. Let $u=\alpha k_{0}^{b}+\beta b, \alpha, \beta \in \mathbb{C}$. Then $u \in \operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{1} I\right)$ if and only if

$$
\left(\begin{array}{cc}
1-|b(0)|^{2} & b(0) \\
\overline{b(0)}|a(0)|^{2} & 1-|a(0)|^{2}
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{\beta} .
$$

This equivalent to

$$
\left\{\begin{array}{l}
\alpha|b(0)|^{2}=\beta b(0) \\
\alpha \overline{b(0)}|a(0)|^{2}=\beta|a(0)|^{2}
\end{array}\right.
$$

Since $a(0) \neq 0$, this equivalent to $\beta=\alpha \overline{b(0)}$ and we get that $u \in \operatorname{ker}\left(D_{X_{b}}^{2}-\right.$ $\lambda_{1} I$) if and only if $u=\alpha k_{0}^{b}+\alpha \overline{b(0)} b=\alpha$. This proves that

$$
\operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{1}\right)=\mathbb{C} 1
$$

Similarly, $u \in \operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{2} I\right)$ if and only if

$$
\left(\begin{array}{cc}
1-|b(0)|^{2} & b(0) \\
\overline{b(0)}|a(0)|^{2} & 1-|a(0)|^{2}
\end{array}\right)\binom{\alpha}{\beta}=\lambda_{2}\binom{\alpha}{\beta},
$$

which is equivalent to

$$
\left\{\begin{array}{l}
\beta b(0)=\alpha\left(\lambda_{2}-1+|b(0)|^{2}\right) \\
\alpha \overline{b(0)}|a(0)|^{2}=\beta\left(\lambda_{2}-1+|a(0)|^{2}\right)
\end{array}\right.
$$

Using the fact that $\lambda_{2}=1-|a(0)|^{2}-|b(0)|^{2}$, we see that the system is equivalent to $\alpha=-\beta b(0) /|a(0)|^{2}$. Hence, $u \in \operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{1} I\right)$ if and only if

$$
u=-\beta \frac{b(0)}{|a(0)|^{2}} k_{0}^{b}+\beta b=\frac{\beta}{|a(0)|^{2}}\left(-b(0) k_{0}^{b}+|a(0)|^{2} b\right)
$$

which gives

$$
\operatorname{ker}\left(D_{X_{b}}^{2}-\lambda_{2} I\right)=\mathbb{C}\left(-b(0) k_{0}^{b}+|a(0)|^{2} b\right)
$$

We are now ready to explicitly determine the defect operator $D_{X_{b}}$.
Corollary 23.16 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then the following hold.
(i) The operator $D_{X_{b}}$ has rank two and it has two eigenvalues $\mu_{1}=1$ and $\mu_{2}=\left(1-|b(0)|^{2}-|a(0)|^{2}\right)^{1 / 2}$.
(ii) If $e_{1}=1$ and $e_{2}=-b(0) k_{0}^{b}+|a(0)|^{2} b$, then we have

$$
\operatorname{ker}\left(D_{X_{b}}-\mu_{1} I\right)=\mathbb{C} e_{1} \quad \text { and } \quad \operatorname{ker}\left(D_{X_{b}}-\mu_{2} I\right)=\mathbb{C} e_{2}
$$

(iii) We have

$$
D_{X_{b}}=\frac{1}{|a(0)|^{2}+|b(0)|^{2}}\left(|a(0)|^{2} e_{1} \otimes e_{1}+\frac{1}{\mu_{2}} e_{2} \otimes e_{2}\right) .
$$

Proof Parts (i) and (ii) follow immediately from Corollary 23.15 and the fact that $\mu_{\ell}=\sqrt{\lambda_{\ell}}, \ell=1,2$.

To prove (iii), note that $\left\langle e_{1}, e_{2}\right\rangle_{b}=0$ since they correspond to eigenvectors associated with different eigenvalues of a self-adjoint operator. With respect to the orthogonal basis $\left(e_{1}, e_{2}\right)$, the operator $D_{X_{b}}$ can then be written as

$$
D_{X_{b}}=\frac{1}{\left\|e_{1}\right\|_{b}^{2}} e_{1} \otimes e_{1}+\frac{\mu_{2}}{\left\|e_{2}\right\|_{b}^{2}} e_{2} \otimes e_{2}
$$

It remains to compute $\left\|e_{1}\right\|_{b}$ and $\left\|e_{2}\right\|_{b}$. First, note that $e_{1}^{+}=\overline{b(0)} / \overline{a(0)}$, which gives, using Theorem 23.8,

$$
\left\|e_{1}\right\|_{b}^{2}=\left\|e_{1}\right\|_{2}^{2}+\left\|e_{1}^{+}\right\|_{2}^{2}=1+\frac{|b(0)|^{2}}{|a(0)|^{2}}=\frac{|a(0)|^{2}+|b(0)|^{2}}{|a(0)|^{2}}
$$

On the other hand, using Corollary 23.9, we have

$$
\begin{aligned}
\left\|e_{2}\right\|_{b}^{2} & =|b(0)|^{2}\left\|k_{0}^{b}\right\|_{b}^{2}+|a(0)|^{4}\|b\|_{b}^{2}-2|a(0)|^{2} \Re\left(b(0)\left\langle k_{0}^{b}, b\right\rangle_{b}\right) \\
& =|b(0)|^{2}\left(1-|b(0)|^{2}\right)+|a(0)|^{4}\left(\frac{1}{|a(0)|^{2}}-1\right)-2|a(0)|^{2}|b(0)|^{2} \\
& =\left(1-|b(0)|^{2}-|a(0)|^{2}\right)\left(|b(0)|^{2}+|a(0)|^{2}\right) \\
& =\mu_{2}^{2}\left(|b(0)|^{2}+|a(0)|^{2}\right) .
\end{aligned}
$$

Finally, we get

$$
D_{X_{b}}=\frac{|a(0)|^{2}}{|a(0)|^{2}+|b(0)|^{2}} e_{1} \otimes e_{1}+\frac{1}{\mu_{2}\left(|b(0)|^{2}+|a(0)|^{2}\right)} e_{2} \otimes e_{2}
$$

23.6 Another representation of $\mathcal{H}(b)$

In Section 19.2, we saw a representation of the $\mathcal{H}(b)$ space based on an abstract functional embedding. In the nonextreme case, we can also give a slightly different representation. Let b be a nonextreme point of the closed unit ball of H^{∞} and let a be the outer function defined by (23.2). Denote $\mathbb{H}_{b}=L^{2} \oplus L^{2}$ along with

$$
\begin{aligned}
\pi: \quad L^{2} & \longrightarrow \mathbb{H}_{b} \\
f & \longmapsto b f \oplus(-a f),
\end{aligned}
$$

and

$$
\begin{aligned}
\pi_{*}: \quad L^{2} & \longrightarrow \mathbb{H}_{b} \\
g & \longmapsto g \oplus 0 .
\end{aligned}
$$

Theorem 23.17 The linear mapping $\Pi=\left(\pi, \pi_{*}\right): L^{2} \oplus L^{2} \longrightarrow \mathbb{H}_{b}$ is an abstract functional embedding (AFE).

Proof For any $f \in L^{2}$, we have

$$
\begin{aligned}
\|b f \oplus(-a f)\|_{\mathbb{H}_{b}}^{2} & =\|b f\|_{2}^{2}+\|a f\|_{2}^{2} \\
& =\int_{\mathbb{T}}\left(|b|^{2}+|a|^{2}\right)|f|^{2} d m \\
& =\|f\|_{2}^{2},
\end{aligned}
$$

the last equality following from the fact that $|a|^{2}+|b|^{2}=1$ a.e. on \mathbb{T}. Thus π is an isometry. The map π_{*} is also clearly an isometry and one can easily check that

$$
\begin{equation*}
\pi_{*}^{*}\left(h_{1} \oplus h_{2}\right)=h_{1}, \quad h_{1} \oplus h_{2} \in L^{2} \oplus L^{2} \tag{23.19}
\end{equation*}
$$

Now let $f \in H^{2}$ and $g \in H_{-}^{2}$. We have

$$
\left\langle\pi f, \pi_{*} g\right\rangle_{\mathbb{H}_{b}}=\langle b f \oplus(-a f), g \oplus 0\rangle_{\mathbb{H}_{b}}=\langle b f, g\rangle_{2}=0,
$$

because bf $\in H^{2}$ and $g \in H_{-}^{2}$. That proves that $\pi H^{2} \perp \pi_{*} H_{-}^{2}$. By (23.19), we also clearly have

$$
\pi_{*}^{*} \pi f=\pi_{*}^{*}(b f \oplus(-a f))=b f
$$

Thus $\pi_{*}^{*} \pi$ is the multiplication operator by b and, in particular, it commutes with the shift operator and maps H^{2} into H^{2}.

Finally, note that $\operatorname{Clos}\left(a L^{2}\right)$ is a reducing invariant subspace for the multiplication operator by z on L^{2}. Hence, it follows from Theorem 8.29 that there exists a measurable set $E \subset \mathbb{T}$ such that $\operatorname{Clos}\left(a L^{2}\right)=\chi_{E} L^{2}$. Since $a \in \chi_{E} L^{2}$, a should vanish a.e. on $\mathbb{T} \backslash E$ and then necessarily $m(\mathbb{T} \backslash E)=0$. That implies that $\operatorname{Clos}\left(a L^{2}\right)=L^{2}$ and then the range of Π is dense in \mathbb{H}_{b}.

Let \mathbb{K}_{b} be the subspace defined by (19.4), and let \mathbb{K}_{b}^{\prime} and $\mathbb{K}_{b}^{\prime \prime}$ the subspaces defined by (19.7) and (19.6). It will be useful to have the following more explicit transcriptions.

Lemma 23.18 Let b be a nonextreme point of the closed unit ball of H^{∞}. We have:
(i) $\mathbb{K}_{b}=\left(H^{2} \oplus L^{2}\right) \ominus\left\{b f \oplus(-a f): f \in L^{2}\right\}$;
(ii) $\mathbb{K}_{b}^{\prime \prime}=0 \oplus H_{-}^{2}$;
(iii) $\mathbb{K}_{b}^{\prime}=\left(H^{2} \oplus H^{2}\right) \ominus\left\{b f \oplus(-a f): f \in H^{2}\right\}$.

Proof (i) Recall that

$$
\mathbb{K}_{b}=\mathbb{H}_{b} \ominus\left(\pi\left(H^{2}\right) \oplus \pi_{*}\left(H_{-}^{2}\right)\right)
$$

First note that

$$
\left\{b f \oplus(-a f): f \in H^{2}\right\}=\pi\left(H^{2}\right)
$$

and since π is an isometry, this space is a closed subspace of $H^{2} \oplus L^{2}$. Now let $\varphi \oplus \psi \in L^{2} \oplus L^{2}$. Then $\varphi \oplus \psi \in \mathbb{K}_{b}$ if and only if

$$
\varphi \oplus \psi \perp\left\{b f \oplus(-a f): f \in H^{2}\right\}
$$

and

$$
\varphi \oplus \psi \perp \pi_{*}\left(H_{-}^{2}\right)
$$

The second condition gives that, for any $h \in H_{-}^{2}$, we have

$$
0=\left\langle\varphi \oplus \psi, \pi_{*}(h)\right\rangle_{\mathbb{H}_{b}}=\langle\varphi \oplus \psi, h \oplus 0\rangle_{\mathbb{H}_{b}}=\langle\varphi, h\rangle_{2} .
$$

This condition is thus equivalent to $\varphi \in H^{2}$. Thus, we get that

$$
\mathbb{K}_{b}=\left\{\varphi \oplus \psi: \varphi \in H^{2}, \psi \in L^{2} \text { and } \varphi \oplus \psi \perp b f \oplus(-a f), f \in H^{2}\right\}
$$

(ii) According to Lemma 19.5, we have

$$
\mathbb{K}_{b}^{\prime \prime}=\mathbb{K}_{b} \cap\left(\pi_{*}\left(H^{2}\right)\right)^{\perp}
$$

Then it is clear that $0 \oplus H_{-}^{2} \subset \mathbb{K}_{b}^{\prime \prime}$. Conversely, if $\varphi \oplus \psi \in \mathbb{K}_{b}^{\prime \prime}$, using (i), we first have $\varphi \in H^{2}$ and

$$
\begin{equation*}
\varphi \oplus \psi \perp b f \oplus(-a f) \quad\left(\forall f \in H^{2}\right) \tag{23.20}
\end{equation*}
$$

On the other hand, since $\varphi \oplus \psi \perp \pi_{*}\left(H^{2}\right)$, that gives $\varphi \oplus \psi \perp f \oplus 0$, for any $f \in H^{2}$. Hence, $\langle\varphi, f\rangle_{2}=0, f \in H^{2}$, which implies that $\varphi \perp H^{2}$. But, since φ also belongs to H^{2}, we get that $\varphi=0$. Now, if we use (23.20), we obtain

$$
\langle\psi, a f\rangle_{2}=0 \quad\left(f \in H^{2}\right)
$$

Since a is outer, $a H^{2}$ is dense in H^{2}. Hence, $\psi \perp H^{2}$. We thus obtain that $\varphi \oplus \psi \in 0 \oplus H_{-}^{2}$.
(iii) Recall that $\mathbb{K}_{b}^{\prime}=\mathbb{K}_{b} \ominus \mathbb{K}_{b}^{\prime \prime}$. Hence, $\varphi \oplus \psi \in \mathbb{K}_{b}^{\prime}$ if and only if $\varphi \in H^{2}$, $\varphi \oplus \psi \perp b f \oplus(-a f), f \in H^{2}$ and $\varphi \oplus \psi \perp 0 \oplus g, g \in H_{-}^{2}$. The last condition is equivalent to $\psi \perp H_{-}^{2}$, which means that $\psi \in H^{2}$ and that gives the desired description of \mathbb{K}_{b}^{\prime}.

According to Theorem 19.8, we know that the map

$$
Q_{b}=\pi_{* \mid \mathbb{K}_{b}^{\prime}}^{*}: \mathbb{K}_{b}^{\prime} \longrightarrow \mathcal{H}(b)
$$

is a unitary map. It could be useful to compute its adjoint. We have the following lemma.

Lemma 23.19 Let b be a nonextreme point of the closed unit ball of H^{∞}. For any $h \in \mathcal{H}(b)$, we have

$$
Q_{b}^{*} h=h \oplus h^{+},
$$

where we recall that h^{+}is the unique function in H^{2} such that $T_{\bar{b}} h=T_{\bar{a}} h^{+}$.
Proof Let $\varphi \oplus \psi \in \mathbb{K}_{b}^{\prime}$ and let $h \in \mathcal{H}(b)$. According to Lemma 23.18, $\varphi, \psi \in$ H^{2} and

$$
\begin{equation*}
\langle\varphi, b f\rangle_{2}=\langle\psi, a f\rangle_{2} \quad\left(f \in H^{2}\right) \tag{23.21}
\end{equation*}
$$

Using Theorem 23.8, we have

$$
\begin{aligned}
\left\langle\varphi \oplus \psi, Q_{b}^{*} h\right\rangle_{\mathbb{K}_{b}^{\prime}} & =\left\langle Q_{b}(\varphi \oplus \psi), h\right\rangle_{b} \\
& =\langle\varphi, h\rangle_{b}=\langle\varphi, h\rangle_{2}+\left\langle\varphi^{+}, h^{+}\right\rangle_{2}
\end{aligned}
$$

Let us check that $\varphi^{+}=\psi$. Using (23.21), for any $f \in H^{2}$, we have

$$
\langle\bar{b} \varphi, f\rangle_{2}=\langle\bar{a} \psi, f\rangle_{2},
$$

which means that $\bar{b} \varphi-\bar{a} \psi \perp H^{2}$. In other words, $P_{+}(\bar{b} \varphi)=P_{+}(\bar{a} \psi)$. By the uniqueness of φ^{+}, we get that $\varphi^{+}=\psi$. Thus,

$$
\left\langle\varphi \oplus \psi, Q_{b}^{*} h\right\rangle_{\mathbb{K}_{b}^{\prime}}=\langle\varphi, h\rangle_{2}+\left\langle\psi, h^{+}\right\rangle_{2}=\left\langle\varphi \oplus \psi, h \oplus h^{+}\right\rangle_{\mathbb{H}_{b}}
$$

It remains to note that $h \oplus h^{+} \in \mathbb{K}_{b}^{\prime}$. We have $h \oplus h^{+} \in H^{2} \oplus H^{2}$. Moreover, for any $f \in H^{2}$, we have

$$
\begin{aligned}
\left\langle h \oplus h^{+}, b f \oplus(-a f)\right\rangle_{\mathbb{H}_{b}} & =\langle h, b f\rangle_{2}-\left\langle h^{+}, a f\right\rangle_{2} \\
& =\left\langle P_{+}(\bar{b} h), f\right\rangle_{2}-\left\langle P_{+}\left(\bar{a} h^{+}\right), f\right\rangle_{2}
\end{aligned}
$$

and since $P_{+}(\bar{b} h)=P_{+}\left(\bar{a} h^{+}\right)$, we get that $h \oplus h^{+} \perp b f \oplus(-a f)$ for any $f \in H^{2}$. According to Lemma 23.18, we can conclude that $h \oplus h^{+} \in \mathbb{K}_{b}^{\prime}$ and $Q_{b}^{*} h=h \oplus h^{+}$.

Let

$$
\begin{aligned}
W: H^{2} \oplus H^{2} & \longmapsto H^{2} \oplus H^{2} \\
f \oplus g & \longmapsto z f \oplus z g .
\end{aligned}
$$

Then W defines a bounded and linear operator on $H^{2} \oplus H^{2}$ and it is clear that W leaves the (closed) subspace $\left\{b f \oplus(-a f): f \in H^{2}\right\}$ invariant. Hence, W^{*} leaves \mathbb{K}_{b}^{\prime} invariant. Furthermore, it is easy to check that

$$
\begin{aligned}
W^{*}: H^{2} \oplus H^{2} & \longmapsto H^{2} \oplus H^{2} \\
f \oplus g & \longmapsto P_{+}(\bar{z} f) \oplus P_{+}(\bar{z} g) .
\end{aligned}
$$

In other words, $W^{*}=S^{*} \oplus S^{*}$.
Theorem 23.20 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then the following diagram is commutative.

In particular, X_{b} is unitarily equivalent to $\left(S^{*} \oplus S^{*}\right)_{\mid \mathbb{K}_{b}^{\prime}}$.
Proof Let $f \oplus g \in \mathbb{K}_{b}^{\prime}$. Then

$$
\begin{aligned}
Q_{b} W^{*}(f \oplus g) & =Q_{b}\left(S^{*} f \oplus S^{*} g\right) \\
& =S^{*} f \\
& =X_{b} f \\
& =X_{b} Q_{b}(f \oplus g)
\end{aligned}
$$

This completes the proof.
In Theorem 19.11, we have given a different representation of $\mathcal{H}(b)$ and a different model for X_{b}. It is interesting to explore the link between these two representations. This will be done in Exercise 23.6.2.

Exercises

Exercise 23.6.1 Let b be a nonextreme point of the closed unit ball of H^{∞} and define

$$
\begin{aligned}
T_{B}: H^{2} & \longrightarrow H^{2} \oplus H^{2} \\
f & \longmapsto b f \oplus(-a f) .
\end{aligned}
$$

Show that T_{B} is an isometry and check that $\mathcal{H}\left(T_{B}\right)=\mathbb{K}_{b}^{\prime}$.

Exercise 23.6.2 Let b be a nonextreme point of the closed unit ball of H^{∞}, let $\Delta=\left(1-|b|^{2}\right)^{1 / 2}$ on \mathbb{T}, let \mathbb{K}_{b}^{\prime} be defined as in Lemma 23.18, and let

$$
\mathcal{K}_{b}^{\prime}:=H^{2} \oplus \operatorname{Clos}\left(\Delta H^{2}\right) \ominus\left\{b f \oplus \Delta f: f \in H^{2}\right\} .
$$

For $f, g \in H^{2}$, define

$$
\Omega(f \oplus(-a g))=f \oplus \Delta g
$$

(i) Show that Ω can be extended into a unitary operator from $H^{2} \oplus H^{2}$ onto $H^{2} \oplus \operatorname{Clos}\left(\Delta H^{2}\right)$.
(ii) Show that $\Omega \mathbb{K}_{b}^{\prime}=\mathcal{K}_{b}^{\prime}$.
(iii) Show that $\left(S^{*} \oplus S^{*}\right)_{\mathbb{K}_{b}^{\prime}}$ and $\left(S^{*} \oplus V_{\Delta}^{*}\right)_{\mathcal{K}_{b}^{\prime}}$ are unitarily equivalent and the unitary equivalence is given by Ω.

This result explains the link between the models of X_{b} given by Theorem 19.11 and Theorem 23.20.

23.7 A characterization of $\mathcal{H}(b)$

In this section, we treat an analog of Theorem 17.24 that characterizes $\mathcal{H}(b)$ spaces when b is a nonextreme point of the closed unit ball of H^{∞}. To give the motivation, we gather some properties of S^{*} on $\mathcal{H}(b)$.

Lemma 23.21 Let b be a nonextreme point of the closed unit ball of H^{∞}, and $b \not \equiv 0$. Then the following assertions hold.
(i) $\mathcal{H}(b)$ is S^{*}-invariant (we recall that the restriction of S^{*} to $\mathcal{H}(b)$ was denoted by X_{b}).
(ii) $I-X_{b} X_{b}^{*}$ and $I-X_{b}^{*} X_{b}$, respectively, are operators of rank one and rank two.
(iii) For every $f \in \mathcal{H}(b)$,

$$
\left\|X_{b} f\right\|_{b}^{2} \leq\|f\|_{b}^{2}-|f(0)|^{2} .
$$

(iv) There is an element $f \in \mathcal{H}(b)$, with $f(0) \neq 0$, such that

$$
\left\|X_{b} f\right\|_{b}^{2}=\|f\|_{b}^{2}-|f(0)|^{2} .
$$

Proof (i) This was established in Theorem 18.13.
(ii) This follows from Corollaries 18.23 and 23.15.
(iii) According to Theorem 23.14, for every function $f \in \mathcal{H}(b)$, we have

$$
\begin{equation*}
\left\|X_{b} f\right\|_{b}^{2}=\|f\|_{b}^{2}-|f(0)|^{2}-|a(0)|^{2}\left|\langle f, b\rangle_{b}\right|^{2} . \tag{23.23}
\end{equation*}
$$

This gives the required inequality.
(iv) Define

$$
f=\|b\|_{b}^{2} k_{0}^{b}-\overline{b(0)} b
$$

By Corollary 23.9, this function belongs to $\mathcal{H}(b)$. Moreover, we have

$$
\langle b, f\rangle_{b}=\|b\|_{b}^{2}\left\langle b, k_{0}^{b}\right\rangle_{b}-b(0)\langle b, b\rangle_{b}=\|b\|_{b}^{2} b(0)-b(0)\|b\|_{b}^{2}=0
$$

and thus, by (23.23),

$$
\left\|X_{b} f\right\|_{b}^{2}=\|f\|_{b}^{2}-|f(0)|^{2}
$$

It remains to check that $f(0) \neq 0$. Remembering that $\|b\|_{b}^{2}=|a(0)|^{-2}-1$ (Corollary 23.9), an easy computation shows that

$$
f(0)=\frac{1-|a(0)|^{2}-|b(0)|^{2}}{|a(0)|^{2}}
$$

and thus $f(0) \neq 0$, because $|a(0)|^{2}+|b(0)|^{2}<1$. In fact,

$$
a(0)=\int_{\mathbb{T}} a(\zeta) d m(\zeta) \quad \text { and } \quad b(0)=\int_{\mathbb{T}} b(\zeta) d m(\zeta)
$$

and thus, using the Cauchy-Schwarz inequality, we get

$$
|a(0)|^{2}+|b(0)|^{2} \leq \int_{\mathbb{T}}\left(|a(\zeta)|^{2}+|b(\zeta)|^{2}\right) d m(\zeta)=1
$$

Hence, we have $|a(0)|^{2}+|b(0)|^{2}=1$ if and only if

$$
\left|\int_{\mathbb{T}} a(\zeta) d m(\zeta)\right|^{2}=\int_{\mathbb{T}}|a(\zeta)|^{2} d m(\zeta)
$$

and

$$
\left|\int_{\mathbb{T}} b(\zeta) d m(\zeta)\right|^{2}=\int_{\mathbb{T}}|b(\zeta)|^{2} d m(\zeta)
$$

The last two identities hold provided that b is a constant function, which is absurd.

Lemma 23.21 provides the motivation for the following characterization of $\mathcal{H}(b)$ spaces.

Theorem 23.22 Let \mathcal{H} be a Hilbert space contained in H^{2}. Assume that the following hold.
(i) \mathcal{H} is S^{*}-invariant (and denote the restriction of S^{*} to \mathcal{H} by T).
(ii) The operators $I-T T^{*}$ and $I-T^{*} T$, respectively, are of rank one and rank two.
(iii) For each $f \in \mathcal{H}$,

$$
\begin{equation*}
\|T f\|_{\mathcal{H}}^{2} \leq\|f\|_{\mathcal{H}}^{2}-|f(0)|^{2} \tag{23.24}
\end{equation*}
$$

(iv) There is an element $f \in \mathcal{H}$, with $f(0) \neq 0$, such that

$$
\|T f\|_{\mathcal{H}}^{2}=\|f\|_{\mathcal{H}}^{2}-|f(0)|^{2} .
$$

Then there is a nonextreme point b in the closed unit ball of H^{∞}, unique up to a unimodular constant, such that $\mathcal{H}=\mathcal{H}(b)$.

Proof According to Theorem 16.29, we know that \mathcal{H} is contained contractively in H^{2} and, if \mathcal{M} denotes its complementary space, then S acts as a contraction on \mathcal{M} (note that the notation is different in this theorem, and in fact the roles of \mathcal{M} and \mathcal{H} are exchanged). Our strategy is quite simple. We show that S acts as an isometry on \mathcal{M}. Then we apply Theorem 17.24 to deduce that there exists a function b in the closed unit ball of H^{∞} such that $\mathcal{M}=\mathcal{M}(b)$, and then Corollary 16.27 enables us to conclude that $\mathcal{H}=\mathcal{H}(b)$. However, the proof is very long. To show that S acts as an isometry, we decompose the proof into several steps, 14 in all.

Step 1: T is onto.
This is equivalent to saying that $\operatorname{ker} T^{*}=\{0\}$ and T has a closed range. Assume that $\operatorname{ker} T^{*} \neq\{0\}$. Since $\operatorname{ker} T^{*} \subset \mathcal{R}\left(I-T T^{*}\right)$, by an argument of dimension, we get $\operatorname{ker} T^{*}=\mathcal{R}\left(I-T T^{*}\right)$. It follows from Theorem 7.22 that T^{*} is a partial isometry and $\operatorname{ker} T=\mathcal{R}\left(I-T^{*} T\right)$. Hence, by hypothesis, $\operatorname{dim} \operatorname{ker} T=2$. But, this is impossible because $\operatorname{ker} T \subset \operatorname{ker} S^{*}=\mathbb{C}$. Thus, $\operatorname{ker} T^{*}=\{0\}$.

Now, we show that $T^{*} T$ has a closed range. Indeed, according to the decomposition $\mathcal{H}=\operatorname{ker}\left(I-T^{*} T\right) \oplus \mathcal{R}\left(I-T^{*} T\right)$, the operator $T^{*} T$ admits the matrix representation

$$
T^{*} T=\left(\begin{array}{cc}
I & 0 \\
0 & T^{*} T
\end{array}\right),
$$

where $T^{*} T$ is restricted to $\mathcal{R}\left(I-T^{*} T\right)$. But, since $\mathcal{R}\left(I-T^{*} T\right)$ is of finite dimension, the operator $T^{*} T_{\mid \mathcal{R}\left(I-T^{*} T\right)}$ has a closed range and then, by Lemma 1.38, the operator $T^{*} T$ also has a closed range. Then Corollary 1.35 ensures that T is onto.

Step 2: $1 \in \mathcal{H}$ and $f \in \mathcal{H} \Longrightarrow S f \in \mathcal{H}$. In particular, all analytic polynomials belong to \mathcal{H}.

Argue by absurdity and assume that $1 \notin \mathcal{H}$. Then we would have

$$
\operatorname{ker} T=\operatorname{ker} S^{*} \cap \mathcal{H}=\mathbb{C} \cap \mathcal{H}=\{0\}
$$

i.e. T is a bijection. But, since $T\left(I-T^{*} T\right)=\left(I-T T^{*}\right) T$, we would obtain $\operatorname{dim} \mathcal{R}\left(I-T^{*} T\right)=\operatorname{dim} \mathcal{R}\left(I-T T^{*}\right)$, which is a contradiction. Therefore, $1 \in \mathcal{H}$. Furthermore, if $f \in \mathcal{H}$, then $S^{*} S f=f-f(0) \in \mathcal{H}$. Since T is
onto, there exists $h \in \mathcal{H}$ such that $S^{*} S f=T h=S^{*} h$. This is equivalent to $S f-h \in \operatorname{ker} S^{*}=\mathbb{C}$. Thus, $S f=h-h(0)$, which implies that $S f \in \mathcal{H}$.

Step 3: The set

$$
\mathcal{D}=\left\{f \in \mathcal{H}:\|T f\|_{\mathcal{H}}^{2}=\|f\|_{\mathcal{H}}^{2}-|f(0)|^{2}\right\}
$$

is a closed subspace of \mathcal{H}. Moreover, $\operatorname{ker}\left(I-T^{*} T\right) \subset\{f \in \mathcal{D}: f(0)=0\}$.
It is clear that, if $f \in \mathcal{D}$ and $\lambda \in \mathbb{C}$, then $\lambda f \in \mathcal{D}$. Now, let $f, g \in \mathcal{D}$. We use the parallelogram law twice below. First,

$$
\|T f+T g\|_{\mathcal{H}}^{2}+\|T(f-g)\|_{\mathcal{H}}^{2}=2\|T f\|_{\mathcal{H}}^{2}+2\|T g\|_{\mathcal{H}}^{2}
$$

Second, by the definition of \mathcal{D},

$$
\begin{aligned}
& 2\|T f\|_{\mathcal{H}}^{2}+2\|T g\|_{\mathcal{H}}^{2} \\
& \quad=2\|f\|_{\mathcal{H}}^{2}-2|f(0)|^{2}+2\|g\|_{\mathcal{H}}^{2}-2|g(0)|^{2} \\
& \quad=\|f+g\|_{\mathcal{H}}^{2}+\|f-g\|_{\mathcal{H}}^{2}-|(f+g)(0)|^{2}-|(f-g)(0)|^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \|T f+T g\|_{\mathcal{H}}^{2}-\|f+g\|_{\mathcal{H}}^{2}+|(f+g)(0)|^{2} \\
& \quad=\|f-g\|_{\mathcal{H}}^{2}-|(f-g)(0)|^{2}-\|T(f-g)\|_{\mathcal{H}}^{2} .
\end{aligned}
$$

According to (23.24), on the one hand, we have

$$
\|f-g\|_{\mathcal{H}}^{2}-|(f-g)(0)|^{2}-\|T(f-g)\|_{\mathcal{H}}^{2} \geq 0
$$

and, on the other,

$$
\|T f+T g\|_{\mathcal{H}}^{2}=\|T(f+g)\|_{\mathcal{H}}^{2} \leq\|f+g\|_{\mathcal{H}}^{2}-|(f+g)(0)|^{2}
$$

which is equivalent to

$$
\|T f+T g\|_{\mathcal{H}}^{2}-\|f+g\|_{\mathcal{H}}^{2}+|(f+g)(0)|^{2} \leq 0
$$

Hence, we get

$$
\|T(f+g)\|_{\mathcal{H}}^{2}=\|f+g\|_{\mathcal{H}}^{2}-|(f+g)(0)|^{2}
$$

which means that $f+g \in \mathcal{D}$. Therefore, \mathcal{D} is a vector subspace of \mathcal{H}.
We proceed to prove that \mathcal{D} is closed. Let $f \in \overline{\mathcal{D}}$. Then there exists a sequence $\left(f_{n}\right)_{n \geq 1}$ in \mathcal{D} that converges to f in \mathcal{H}. Since T is continuous (in fact, according to (23.24), it is a contraction), the sequence $\left(T f_{n}\right)_{n \geq 1}$ converges to $T f$ in \mathcal{H} and, since \mathcal{H} is contractively contained in H^{2}, the sequence $\left(f_{n}\right)_{n \geq 1}$ is also convergent to f in H^{2}. In particular, since evaluations at points of \mathbb{D} are continuous on \mathbb{D}, the scalar sequence $\left(f_{n}(0)\right)_{n \geq 1}$ converges to $f(0)$. Since $f_{n} \in \mathcal{D}$, we have

$$
\left\|T f_{n}\right\|_{\mathcal{H}}^{2}=\left\|f_{n}\right\|_{\mathcal{H}}^{2}-\left|f_{n}(0)\right|^{2}
$$

Letting n tend to ∞, we thus get

$$
\|T f\|_{\mathcal{H}}^{2}=\|f\|_{\mathcal{H}}^{2}-|f(0)|^{2}
$$

which means that $f \in \mathcal{D}$. Therefore, \mathcal{D} is a closed subspace of \mathcal{H}.
It remains to check that $\operatorname{ker}\left(I-T^{*} T\right) \subset\{f \in \mathcal{D}: f(0)=0\}$. Fix an element $f \in \operatorname{ker}\left(I-T^{*} T\right)$. Then we have $f=T^{*} T f$, which implies that

$$
\|f\|_{\mathcal{H}}^{2}=\left\langle f, T^{*} T f\right\rangle_{\mathcal{H}}=\|T f\|_{\mathcal{H}}^{2} \leq\|f\|_{\mathcal{H}}^{2}-|f(0)|^{2} \leq\|f\|_{\mathcal{H}}^{2} .
$$

Thus, $\|T f\|_{\mathcal{H}}^{2}=\|f\|_{\mathcal{H}}^{2}$ and $f(0)=0$. In particular, $f \in \mathcal{D}$.
Step 4: There exists $f_{0} \in \mathcal{D}$ with $f_{0}(0) \neq 0$ and $f_{0} \perp \operatorname{ker}\left(I-T^{*} T\right)$.
By hypothesis, we know that there is a function $f \in \mathcal{D}$ such that $f(0) \neq 0$. Decompose $f=f_{0}+f_{1}$ such that $f_{0} \perp \operatorname{ker}\left(I-T^{*} T\right)$ and $f_{1} \in \operatorname{ker}\left(I-T^{*} T\right)$. Using Step 3 , we know that $f_{1} \in \mathcal{D}$ and $f_{1}(0)=0$. Thus, $f_{0} \in \mathcal{D}$ and $f_{0}(0)=f(0) \neq 0$. The function f_{0} satisfies the required conditions.

To prove that S acts as an isometry on \mathcal{M}, we now consider two situations: $1 \notin \mathcal{D}$ and $1 \in \mathcal{D}$. The verification of the latter is longer (Steps 6-13).

Step 5: S acts as an isometry on \mathcal{M} (case $1 \notin \mathcal{D}$).
Denote by $\mathrm{V}\left(1, f_{0}\right)$ the vector space generated by 1 and f_{0}. This vector space is of dimension 2 because 1 and f_{0} are linearly independent $\left(1 \notin \mathcal{D}\right.$ and $\left.f_{0} \in \mathcal{D}\right)$. Moreover, since $1=\left(I-T^{*} T\right) 1$, the inclusion $\mathrm{V}\left(1, f_{0}\right) \subset \mathcal{R}\left(I-T^{*} T\right)$ holds. Then, with an argument on dimension, we get

$$
\mathrm{V}\left(1, f_{0}\right)=\mathcal{R}\left(I-T^{*} T\right)
$$

and this implies that

$$
\begin{equation*}
\mathcal{H}=\operatorname{ker}\left(I-T^{*} T\right) \oplus \mathrm{V}\left(1, f_{0}\right) \tag{23.25}
\end{equation*}
$$

Using Steps 3 and 4, we have

$$
\operatorname{ker}\left(I-T^{*} T\right) \oplus \mathbb{C} f_{0} \subset \mathcal{D}
$$

Thus, appealing to Step 1 and (23.25)), we deduce that

$$
\mathcal{H}=T \mathcal{H}=T\left(\operatorname{ker}\left(I-T^{*} T\right) \oplus \mathbb{C} f_{2}\right)=T \mathcal{D}
$$

Now, for each $g \in \mathcal{M}$, we have

$$
\begin{aligned}
\|g\|_{\mathcal{M}}^{2} & =\sup _{f \in \mathcal{H}}\left(\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}\right) \\
& =\sup _{f \in \mathcal{D}}\left(\|g+T f\|_{2}^{2}-\|T f\|_{\mathcal{H}}^{2}\right) \\
& =\sup _{f \in \mathcal{D}}\left(\|S g+S T f\|_{2}^{2}-\|T f\|_{\mathcal{H}}^{2}\right) \\
& =\sup _{f \in \mathcal{D}}\left(\|S g+f-f(0)\|_{2}^{2}-\|T f\|_{\mathcal{H}}^{2}\right) .
\end{aligned}
$$

But, for each $f \in \mathcal{D}$,

$$
\begin{aligned}
\|S g+f-f(0)\|_{2}^{2} & =\|S g+f\|_{2}^{2}+|f(0)|^{2}-2 \Re\langle S g+f, f(0)\rangle \\
& =\|S g+f\|_{2}^{2}-|f(0)|^{2} \\
& =\|S g+f\|_{2}^{2}+\|T f\|_{\mathcal{H}}^{2}-\|f\|_{\mathcal{H}}^{2} .
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
\|g\|_{\mathcal{M}}^{2} & =\sup _{f \in \mathcal{D}}\left(\|S g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}\right) \\
& \leq \sup _{f \in \mathcal{H}}\left(\|S g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}\right)=\|S g\|_{\mathcal{M}}^{2}
\end{aligned}
$$

But, from Theorem 16.29, we already know that S acts as a contraction on \mathcal{M} and hence we conclude that S acts as an isometry on \mathcal{M}.

For the rest of proof, we assume that $1 \in \mathcal{D}$ and our goal is to show that S still acts as an isometry on \mathcal{M}.

Step 6: Suppose that there exists an integer $n \geq 1$ such that $z^{m} \in \mathcal{D}$, with $0 \leq m \leq n-1$. Then

$$
\left\|z^{m}\right\|_{\mathcal{H}}=1 \quad(0 \leq m \leq n-1)
$$

In particular, $i_{\mathcal{H}}^{*}\left(z^{m}\right)=z^{m}$, for all $0 \leq m \leq n-1$, where $i_{\mathcal{H}}$ is the canonical injection from \mathcal{H} into H^{2}.

We argue by induction. For $m=0$, since $1 \in \mathcal{D}$, we have

$$
\|T 1\|_{\mathcal{H}}^{2}=\|1\|_{\mathcal{H}}^{2}-1
$$

But, $T 1=S^{*} 1=0$, which gives $\|1\|_{\mathcal{H}}=1$. Assume that, for some m_{0} with $0 \leq m_{0}<n-1$, the identity $\left\|z^{m}\right\|_{\mathcal{H}}=1$ holds for all $0 \leq m \leq m_{0}$. Then, using the fact that $z^{m_{0}+1} \in \mathcal{D}$, we get

$$
\left\|T z^{m_{0}+1}\right\|_{\mathcal{H}}=\left\|z^{m_{0}+1}\right\|_{\mathcal{H}}
$$

However, $T z^{m_{0}+1}=z^{m_{0}}$, and we deduce that $\left\|z^{m_{0}+1}\right\|_{\mathcal{H}}=\left\|z^{m_{0}}\right\|_{\mathcal{H}}=1$. Hence, the identity $\left\|z^{m}\right\|_{\mathcal{H}}=1$ holds for all $0 \leq m \leq m_{0}+1$. Therefore, by induction, it holds for all $0 \leq m \leq n-1$.

In the trivial decomposition $z^{m}=z^{m}+0$, we have $z^{m} \in \mathcal{H}, 0 \in \mathcal{M}$ and $\left\|z^{m}\right\|_{2}^{2}=\left\|z^{m}\right\|_{\mathcal{H}}^{2}+\|0\|_{\mathcal{M}}^{2}$. Thus, by Corollary 16.28 , we have $i_{\mathcal{H}}^{*} z_{m}=z_{m}$ for all $0 \leq m \leq n-1$.

Step 7: There exists an integer $n \geq 1$ such that $z^{m} \in \mathcal{D}$, for all $0 \leq m \leq n-1$, but $z^{n} \notin \mathcal{D}$.

Assume on the contrary that, for all $k \geq 0, z^{k} \in \mathcal{D}$. Then, according to Step 6, we get $i_{\mathcal{H}}^{*} z_{k}=z_{k}$, for all $k \geq 0$. Therefore, $i_{\mathcal{H}} i_{\mathcal{H}}^{*} z^{k}=z^{k}$, for all $k \geq 0$.

But, z^{k} is an orthonormal basis of H^{2} and thus $i_{\mathcal{H}} i_{\mathcal{H}}^{*}=I_{H^{2}}$. In particular, using Corollary 16.8, we get

$$
\mathcal{H}=\mathcal{M}\left(i_{\mathcal{H}}\right)=\mathcal{M}\left(\left(i_{\mathcal{H}} i_{\mathcal{H}}^{*}\right)^{1 / 2}\right)=\mathcal{M}\left(I_{H^{2}}\right)=H^{2}
$$

Thus, we have $T=S^{*}$, or equivalently $T^{*}=S$, which gives $I-T T^{*}=0$. This is absurd.

Step 8: Let n be as in Step 7. Then $\left(I-T T^{*}\right) z^{n-1} \neq 0$ and $T^{* n} 1 \neq z^{n}$. Moreover, if $n>1$, we also have

$$
\begin{aligned}
T^{*} z^{m-1} & =z^{m} \\
\left(I-T T^{*}\right) z^{m-1} & =0 \\
T^{* k} z^{m-k} & =z^{m}
\end{aligned}
$$

for all $1 \leq m \leq n-1$ and $0 \leq k \leq m$.
To prove the first relation, we again argue by absurdity. Assume that ($I-$ $\left.T T^{*}\right) z^{n-1}=0$. Since

$$
\left(I-T T^{*}\right) z^{n-1}=\left(I-T T^{*}\right) T z^{n}=T\left(\left(I-T^{*} T\right) z^{n}\right)
$$

it would imply that $\left(I-T^{*} T\right) z^{n} \in \operatorname{ker} T$. But the function $\left(I-T^{*} T\right) z^{n}$ is also orthogonal to the kernel of T. Indeed, we have $\operatorname{ker} T=\operatorname{ker} S^{*} \cap \mathcal{H}=\mathbb{C} 1$ and, since $n \geq 1$,

$$
\begin{aligned}
\left\langle\left(I-T^{*} T\right) z^{n}, 1\right\rangle_{\mathcal{H}} & =\left\langle z^{n},\left(I-T^{*} T\right) 1\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{n}, 1\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{n}, i_{\mathcal{H}}^{*} 1\right\rangle_{\mathcal{H}} \\
& =\left\langle i_{\mathcal{H}}\left(z^{n}\right), 1\right\rangle_{2} \\
& =\left\langle z^{n}, 1\right\rangle_{2} \\
& =0
\end{aligned}
$$

Thus, $\left(I-T^{*} T\right) z^{n} \perp \operatorname{ker} T$, which is equivalent to $\left(I-T^{*} T\right) z^{n}=0$. This means that $z^{n} \in \operatorname{ker}\left(I-T^{*} T\right)$. But, by Step 3, we conclude that $z^{n} \in \mathcal{D}$, a contradiction with the definition of n. Therefore, $\left(I-T T^{*}\right) z^{n-1} \neq 0$.

If $n=1$, then $\left(I-T T^{*}\right) 1 \neq 0$, that is $1 \neq T T^{*} 1$. Hence, $z \neq T^{*} 1$. Now, assume that $n>1$. We first prove that

$$
\begin{equation*}
T^{*} z^{m-1}=z^{m}, \quad \text { for every } 1 \leq m \leq n-1 \tag{23.26}
\end{equation*}
$$

We have

$$
\left\|T^{*} z^{m-1}-z^{m}\right\|_{\mathcal{H}}^{2}=\left\|T^{*} z^{m-1}\right\|_{\mathcal{H}}^{2}+\left\|z^{m}\right\|_{\mathcal{H}}^{2}-2 \Re\left\langle T^{*} z^{m-1}, z^{m}\right\rangle_{\mathcal{H}}
$$

and

$$
\left\langle T^{*} z^{m-1}, z^{m}\right\rangle_{\mathcal{H}}=\left\langle z^{m-1}, T z^{m}\right\rangle_{\mathcal{H}}=\left\|z^{m-1}\right\|_{\mathcal{H}}^{2}
$$

Hence, using Step 6, we get

$$
\begin{equation*}
\left\|T^{*} z^{m-1}-z^{m}\right\|_{\mathcal{H}}^{2}=\left\|T^{*} z^{m-1}\right\|_{\mathcal{H}}^{2}+1-2=\left\|T^{*} z^{m-1}\right\|_{\mathcal{H}}^{2}-1 \tag{23.27}
\end{equation*}
$$

But, since T is a contraction on \mathcal{H}, we have

$$
\left\|T^{*} z^{m-1}\right\|_{\mathcal{H}} \leq\left\|T^{*}\right\|\left\|z^{m-1}\right\| \leq 1
$$

Thus (23.27) implies that $\left\|T^{*} z^{m-1}-z^{m}\right\|_{\mathcal{H}} \leq 0$, which gives (23.26).
Since $T^{*} z^{m-1}=z^{m}$, we have $T T^{*} z^{m-1}=z^{m-1}$, and thus

$$
\left(I-T T^{*}\right) z^{m-1}=0 \quad(1 \leq m \leq n-1)
$$

To prove that $T^{* n} 1 \neq z^{n}$, we argue by absurdity. Assume that $T^{* n} 1=z^{n}$. Then

$$
\left\|z^{n}\right\|_{\mathcal{H}}^{2}=\left\langle z^{n}, z^{n}\right\rangle_{\mathcal{H}}=\left\langle z^{n}, T^{* n} 1\right\rangle_{\mathcal{H}}=\left\langle T^{n} z^{n}, 1\right\rangle_{\mathcal{H}}
$$

But, $T^{n} z^{n}=1$, whence

$$
\left\|z^{n}\right\|_{\mathcal{H}}^{2}=\|1\|_{\mathcal{H}}^{2}=1
$$

In particular, we deduce that

$$
\left\|z^{n}\right\|_{\mathcal{H}}=\left\|z^{n-1}\right\|_{\mathcal{H}}=\left\|T z^{n}\right\|_{\mathcal{H}}
$$

This means that $z^{n} \in \mathcal{D}$, which is a contradiction. Thus, we have $T^{* n} 1 \neq z^{n}$.
Finally, it remains to prove that

$$
\begin{equation*}
T^{* k} z^{m-k}=z^{m} \quad(0 \leq k \leq m) \tag{23.28}
\end{equation*}
$$

We argue by induction. For $k=0$, it is obvious. Now, assume that, for some $0 \leq k<m$, we have $T^{* k} z^{m-k}=z^{m}$. Then using (23.26), we have

$$
T^{*(k+1)} z^{m-(k+1)}=T^{* k}\left(T^{*} z^{m-k-1}\right)=T^{* k} z^{m-k}=z^{m}
$$

which proves (23.28).
Step 9: Let $f \in \mathcal{H}$ and write

$$
f(z)=\sum_{m=0}^{n-1} a_{m} z^{m}+z^{m} T^{m} f(z) \quad(z \in \mathbb{D})
$$

Then

$$
\|f\|_{\mathcal{H}}^{2}=\sum_{m=0}^{n-1}\left|a_{m}\right|^{2}+\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2}
$$

We have

$$
\|f\|_{\mathcal{H}}^{2}=\left\|\sum_{m=0}^{n-1} a_{m} z^{m}\right\|_{\mathcal{H}}^{2}+\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2}+2 \sum_{m=0}^{n-1} \Re\left(a_{m}\left\langle z^{m}, z^{n} T^{n} f\right\rangle_{\mathcal{H}}\right) .
$$

But, using Step 6,

$$
\begin{aligned}
\left\langle z^{k}, z^{\ell}\right\rangle_{\mathcal{H}} & =\left\langle i_{\mathcal{H}}^{*}\left(z^{k}\right), z^{\ell}\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{k}, i_{\mathcal{H}}\left(z^{\ell}\right)\right\rangle_{2} \\
& =\left\langle z^{k}, z^{\ell}\right\rangle_{2} \\
& =\delta_{k, \ell} \quad(0 \leq k, \ell \leq n-1)
\end{aligned}
$$

Hence,

$$
\left\|\sum_{m=0}^{n-1} a_{m} z^{m}\right\|_{\mathcal{H}}^{2}=\sum_{m=0}^{n-1}\left|a_{m}\right|^{2} .
$$

Moreover,

$$
\begin{aligned}
\left\langle z^{m}, z^{n} T^{n} f\right\rangle_{\mathcal{H}} & =\left\langle i_{\mathcal{H}}^{*}\left(z^{m}\right), z^{n} T^{n} f\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{m}, i_{\mathcal{H}}\left(z^{n} T^{n} f\right)\right\rangle_{2} \\
& =\left\langle z^{m}, z^{n} T^{n} f\right\rangle_{2}=0 \quad(0 \leq m \leq n-1) .
\end{aligned}
$$

This proves Step 9.
Step 10: For every $f \in \mathcal{H}$ and $g \in \mathcal{M}$, we have

$$
\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}=\left\|g+z^{n} T^{n} f\right\|_{2}^{2}-\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2} .
$$

Write

$$
f=\sum_{m=0}^{n-1} a_{m} z^{m}+z^{n} T^{n} f
$$

Then

$$
\begin{aligned}
\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}= & \left\|g+z^{n} T^{n} f+\sum_{m=0}^{n-1} a_{m} z^{m}\right\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2} \\
= & \left\|g+z^{n} T^{n} f\right\|_{2}^{2}+\sum_{m=0}^{n-1}\left|a_{m}\right|^{2}-\|f\|_{\mathcal{H}}^{2} \\
& +2 \sum_{m=0}^{n-1} \Re\left(a_{m}\left\langle z^{m}, g+z^{n} T^{n} f\right\rangle_{2}\right) .
\end{aligned}
$$

Using Step 9, we get

$$
\begin{aligned}
& \|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2} \\
& \quad=\left\|g+z^{n} T^{n} f\right\|_{2}^{2}-\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2}+2 \sum_{m=0}^{n-1} \Re\left(a_{m}\left\langle z^{m}, g+z^{n} T^{n} f\right\rangle_{2}\right)
\end{aligned}
$$

But, for every $0 \leq m \leq n-1$, we have

$$
\begin{aligned}
\left\langle z^{m}, g+z^{n} T^{n} f\right\rangle_{2} & =\left\langle z^{m}, g\right\rangle_{2} \\
& =\left\langle z^{m}, i_{\mathcal{M}}(g)\right\rangle_{2} \\
& =\left\langle i_{\mathcal{M}}^{*}\left(z^{m}\right), g\right\rangle_{\mathcal{M}}=0
\end{aligned}
$$

because $i_{\mathcal{M}}^{*}\left(z^{m}\right)=z^{m}-i_{\mathcal{H}}^{*}\left(z^{m}\right)=z^{m}-z^{m}=0$. This proves Step 10 .
Step 11. For every $f \in \mathcal{H}$, there exists $\hat{f} \in \operatorname{ker}\left(I-T^{n} T^{* n}\right)$ such that

$$
\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}=\|g+\hat{f}\|_{2}^{2}-\|\hat{f}\|_{\mathcal{H}}^{2} \quad(g \in \mathcal{M})
$$

Let $f \in \mathcal{H}$, and define the constants $c_{0}, c_{1}, \ldots, c_{n-1}$ recursively by the formulas

$$
\begin{aligned}
\alpha_{n} & =\left\langle z^{n-1},\left(I-T T^{*}\right) z^{n-1}\right\rangle_{\mathcal{H}} \\
c_{n-1} & =-\left\langle f,\left(I-T T^{*}\right) z^{n-1}\right\rangle_{\mathcal{H}} / \alpha_{n}
\end{aligned}
$$

and, if $n>1$,

$$
c_{n-k}=-\left\langle f+\sum_{m=n-k+1}^{n-1} c_{m} z^{m}, T^{k-1}\left(I-T T^{*}\right) T^{* k-1} z^{n-k}\right\rangle_{\mathcal{H}} / \alpha_{n},
$$

for $2 \leq k \leq n$. Note that $\alpha_{n} \neq 0$ and thus the sequence $c_{0}, c_{1}, \ldots, c_{n-1}$ is well defined. Indeed, since $I-T T^{*}$ is a self-adjoint operator of rank one, there exists an element $g \in \mathcal{H}$ such that $I-T T^{*}=g \otimes g$, and thus $\alpha_{n}=$ $\left|\left\langle z^{n-1}, g\right\rangle_{\mathcal{H}}\right|^{2}$. If $\alpha_{n}=0$, then it would imply that $\left\langle z^{n-1}, g\right\rangle_{\mathcal{H}}=0$ and that $\left(I-T T^{*}\right) z^{n-1}=0$, a contradiction with Step 8.

Then we define

$$
\hat{f}=f+\sum_{m=0}^{n-1} c_{m} z^{m}
$$

and we show that \hat{f} satisfies the required properties. We obviously have $T^{n} \hat{f}=$ $T^{n} f$, whence, according to Step 10, we have

$$
\begin{aligned}
\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2} & =\left\|g+z^{n} T^{n} f\right\|_{2}^{2}-\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2} \\
& =\left\|g+z^{n} T^{n} \hat{f}\right\|_{2}^{2}-\left\|z^{n} T^{n} \hat{f}\right\|_{\mathcal{H}}^{2} \\
& =\|g+\hat{f}\|_{2}^{2}-\|\hat{f}\|_{\mathcal{H}}^{2} \quad(g \in \mathcal{M}) .
\end{aligned}
$$

Thus, it remains to check that $\hat{f} \in \operatorname{ker}\left(I-T^{n} T^{* n}\right)$, which is equivalent to $\hat{f} \perp \mathcal{R}\left(I-T^{n} T^{* n}\right)$. But

$$
I-T^{n} T^{* n}=\sum_{k=1}^{n} T^{k-1}\left(I-T T^{*}\right) T^{* k-1}
$$

whence it is sufficient to prove that $\hat{f} \perp \mathcal{R}\left(T^{k-1}\left(I-T T^{*}\right) T^{* k-1}\right)$. Define $u_{k}=T^{k-1}\left(I-T T^{*}\right) T^{* k-1} z^{n-k}$ and note that $u_{k} \neq 0$. In fact, according to Step 8, we have

$$
\begin{aligned}
\left\langle z^{n-k}, u_{k}\right\rangle_{\mathcal{H}} & =\left\langle T^{* k-1} z^{n-k},\left(I-T T^{*}\right) T^{* k-1} z^{n-k}\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{n-1},\left(I-T T^{*}\right) z^{n-1}\right\rangle_{\mathcal{H}} \\
& =\alpha_{n} \neq 0 .
\end{aligned}
$$

Hence, $T^{k-1}\left(I-T T^{*}\right) T^{* k-1}$ is an operator of rank one and its range is generated by u_{k}. Therefore, $\hat{f} \perp \mathcal{R}\left(T^{k-1}\left(I-T T^{*}\right) T^{* k-1}\right)$ is equivalent to $\hat{f} \perp u_{k}, 1 \leq k \leq n$. Now, note that

$$
\left\langle\hat{f}, u_{k}\right\rangle_{\mathcal{H}}=\left\langle f, u_{k}\right\rangle_{\mathcal{H}}+\sum_{m=0}^{n-1} c_{m}\left\langle z^{m}, u_{k}\right\rangle_{\mathcal{H}}
$$

But, according to the definitions of c_{m}, we have

$$
c_{n-k} \alpha_{n}=-\left\langle f+\sum_{m=n-k+1}^{n-1} c_{m} z^{m}, u_{k}\right\rangle_{\mathcal{H}},
$$

whence

$$
\left\langle f, u_{k}\right\rangle_{\mathcal{H}}=-c_{n-k} \alpha_{n}-\sum_{m=n-k+1}^{n-1} c_{m}\left\langle z^{m}, u_{k}\right\rangle_{\mathcal{H}}=-\sum_{m=n-k}^{n-1} c_{m}\left\langle z^{m}, u_{k}\right\rangle_{\mathcal{H}}
$$

Thus, we get

$$
\left\langle\hat{f}, u_{k}\right\rangle_{\mathcal{H}}=\sum_{m=0}^{n-k-1} c_{m}\left\langle z^{m}, u_{k}\right\rangle_{\mathcal{H}} .
$$

For every $0 \leq m \leq n-k-1$, we have

$$
\begin{aligned}
\left\langle z^{m}, u_{k}\right\rangle_{\mathcal{H}} & =\left\langle z^{m}, T^{k-1}\left(I-T T^{*}\right) T^{*(k-1)} z^{n-k}\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{m+k-1},\left(I-T T^{*}\right) z^{n-1}\right\rangle_{\mathcal{H}} \\
& =\left\langle\left(I-T T^{*}\right) z^{m+k-1}, z^{n-1}\right\rangle_{\mathcal{H}},
\end{aligned}
$$

and, according to Step 8 , we have $\left(I-T T^{*}\right) z^{m+k-1}=0$ (and note that $m+k-1 \leq n-2$). Thus, $\left\langle z^{m}, u_{k}\right\rangle_{\mathcal{H}}=0$ and $\left\langle\hat{f}, u_{k}\right\rangle_{\mathcal{H}}=0$, for every $1 \leq k \leq n$. This proves Step 11 .

Step 12: If $h \in \operatorname{ker}\left(I-T^{n} T^{* n}\right)$, then

$$
\begin{equation*}
\|h\|_{\mathcal{H}}=\left\|z^{n} h\right\|_{\mathcal{H}} . \tag{23.29}
\end{equation*}
$$

Moreover, for every $g \in \mathcal{M}$, we have

$$
\begin{equation*}
\|g\|_{\mathcal{M}}^{2}=\sup \left\{\|g+f\|_{2}^{2}-\left\|z^{n} f\right\|_{\mathcal{H}}^{2}: f \in \mathcal{H} \text { and }\left(I-T^{n} T^{* n}\right) f=0\right\} . \tag{23.30}
\end{equation*}
$$

Take any $h \in \operatorname{ker}\left(I-T^{n} T^{* n}\right)$. Then, for every $0 \leq m \leq n-1$, we have

$$
\begin{aligned}
\left\langle\left(I-T^{* n} T^{n}\right)\left(z^{n} h\right), z^{m}\right\rangle_{\mathcal{H}} & =\left\langle z^{n} h,\left(I-T^{* n} T^{n}\right)\left(z^{m}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{n} h, z^{m}\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{n} h, i_{\mathcal{H}}^{*}\left(z^{m}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle z^{n} h, z^{m}\right\rangle_{2}=0 .
\end{aligned}
$$

This proves that $\left(I-T^{* n} T^{n}\right)\left(z^{n} h\right) \perp \operatorname{ker} T^{n}$. Moreover,

$$
T^{n}\left(\left(I-T^{* n} T^{n}\right)\left(z^{n} h\right)\right)=\left(I-T^{n} T^{* n}\right)\left(T^{n} z^{n} h\right)=\left(I-T^{n} T^{* n}\right) h=0 .
$$

Therefore, $\left(I-T^{* n} T^{n}\right)\left(z^{n} h\right)=0$, that is $z^{n} h=T^{* n} T^{n}\left(z^{n} h\right)$. Thus,

$$
\begin{aligned}
\left\|z^{n} h\right\|_{\mathcal{H}}^{2} & =\left\langle z^{n} h, T^{* n} T^{n}\left(z^{n} f\right)\right\rangle_{\mathcal{H}} \\
& =\left\|T^{n}\left(z^{n} h\right)\right\|_{\mathcal{H}}^{2}=\|h\|_{\mathcal{H}}^{2} .
\end{aligned}
$$

Now, using Step 11 and (23.29), we get

$$
\begin{aligned}
\|g\|_{\mathcal{M}}^{2} & =\sup \left\{\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}: f \in \mathcal{H}\right\} \\
& =\sup \left\{\|g+f\|_{2}^{2}-\|f\|_{\mathcal{H}}^{2}: f \in \mathcal{H} \text { and } f \in \operatorname{ker}\left(I-T^{n} T^{* n}\right)\right\} \\
& =\sup \left\{\|g+f\|_{2}^{2}-\left\|z^{n} f\right\|_{\mathcal{H}}^{2}: f \in \mathcal{H} \text { and } f \in \operatorname{ker}\left(I-T^{n} T^{* n}\right)\right\},
\end{aligned}
$$

which proves (23.30).
Step 13: S acts as an isometry on \mathcal{M} (case $1 \in \mathcal{D})$.
Since $\|z g\|_{\mathcal{M}} \leq\|g\|_{\mathcal{M}}$, for every $g \in \mathcal{M}$ and $\mathcal{H}=T^{n} \mathcal{H}$, using Step 12, we have

$$
\left\|z^{n} g\right\|_{\mathcal{M}}^{2} \leq\|z g\|_{\mathcal{M}}^{2} \leq\|g\|_{\mathcal{M}}^{2}
$$

But

$$
\begin{aligned}
\|g\|_{\mathcal{M}}^{2} & =\sup _{\substack{f \in \mathcal{H},\left(I-T^{n} T^{* n}\right)\left(T^{n} f\right)=0}}\left\|g+T^{n} f\right\|_{2}^{2}-\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2} \\
& =\sup _{\substack{f \in \mathcal{H},\left(I-T^{n} T^{* n}\right)\left(T^{n} f\right)=0}}\left\|z^{n} g+z^{n} T^{n} f\right\|_{2}^{2}-\left\|z^{n} T^{n} f\right\|_{\mathcal{H}}^{2} \\
\leq & \left\|z^{n} g\right\|_{\mathcal{M}}^{2} .
\end{aligned}
$$

Hence, $\|z g\|_{\mathcal{M}}=\|g\|_{\mathcal{M}}$, which proves Step 13 .

Step 14: There is a nonextreme point b in the closed unit ball of H^{∞}, unique up to a unimodular constant, such that $\mathcal{H}=\mathcal{H}(b)$.

According to Steps 5 and 13, S acts as an isometry on \mathcal{M}. Therefore, Theorem 17.24 implies that there exists a function b in the closed unit ball of H^{∞} such that $\mathcal{M}=\mathcal{M}(b)$. Now Corollary 16.27 implies that $\mathcal{H}=\mathcal{H}(b)$. Finally, b cannot be an extreme point of the closed unit ball of H^{∞}, since for instance the analytic polynomials belongs to $\mathcal{H}(b)$ (see Exercise 18.9.4).

This completes the proof of Theorem 23.22.

23.8 More inhabitants of $\mathcal{H}(b)$

In Section 18.6, we showed that

$$
Q_{w} b \in \mathcal{H}(b) \quad(w \in \mathbb{D})
$$

It is trivial that the reproducing kernel k_{w}^{b} is also in $\mathcal{H}(b)$. In Section 23.4, we saw that the analytic polynomials form a dense manifold in $\mathcal{H}(b)$. Now, we use this information to find more objects in $\mathcal{H}(b)$. Moreover, we also discuss some properties on the newly found elements.

Theorem 23.23 Let b be a nonextreme point of the closed unit ball of H^{∞}, and let $w \in \mathbb{D}$. Then

$$
k_{w} \in \mathcal{H}(b) \quad \text { and } \quad b k_{w} \in \mathcal{H}(b) .
$$

Moreover, for every $f \in \mathcal{H}(b)$, we have

$$
\begin{equation*}
\left\langle f, k_{w}\right\rangle_{b}=f(w)+\frac{b(w)}{a(w)} f^{+}(w) \tag{23.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle f, b k_{w}\right\rangle_{b}=\frac{f^{+}(w)}{a(w)} \tag{23.32}
\end{equation*}
$$

Proof According to Theorems 17.8 and 23.2, the Cauchy kernel k_{w} belongs to $\mathcal{H}(b)$ if and only if $T_{\bar{b}} k_{w}$ belongs to $\mathcal{M}(\bar{a})$. But, by (12.7), we have

$$
T_{\bar{b}} k_{w}=\overline{b(w)} k_{w} \quad \text { and } \quad T_{\bar{a}} k_{w}=\overline{a(w)} k_{w}
$$

which implies that

$$
T_{\bar{b}} k_{w}=T_{\bar{a}}\left(\frac{\overline{b(w)}}{\overline{a(w)}} k_{w}\right) .
$$

This identity shows that $k_{w} \in \mathcal{H}(b)$ and, moreover, that

$$
\begin{equation*}
k_{w}^{+}=\frac{\overline{b(w)}}{\overline{a(w)}} k_{w} \tag{23.33}
\end{equation*}
$$

Thus, by Theorem 23.8, for every $f \in \mathcal{H}(b)$, we have

$$
\begin{aligned}
\left\langle f, k_{w}\right\rangle_{b} & =\left\langle f, k_{w}\right\rangle_{2}+\left\langle f^{+}, k_{w}^{+}\right\rangle_{2} \\
& =\left\langle f, k_{w}\right\rangle_{2}+\frac{b(w)}{a(w)}\left\langle f^{+}, k_{w}\right\rangle_{2} \\
& =f(w)+\frac{b(w)}{a(w)} f^{+}(w) .
\end{aligned}
$$

Remember that k_{w} is the reproducing kernel of H^{2}.
Similarly, the function $b k_{w}$ belongs to $\mathcal{H}(b)$ if and only if the function $T_{\bar{b}}\left(b k_{w}\right)$ belongs to $\mathcal{M}(\bar{a})$. But, once more using $T_{\bar{a}} k_{w}=\overline{a(w)} k_{w}$, we obtain

$$
\begin{aligned}
T_{\bar{b}}\left(b k_{w}\right) & =P_{+}\left(|b|^{2} k_{w}\right) \\
& =P_{+}\left(\left(1-|a|^{2}\right) k_{w}\right) \\
& =k_{w}-T_{\bar{a}}\left(a k_{w}\right) \\
& =T_{\bar{a}}\left(\frac{k_{w}}{\overline{a(w)}}-a k_{w}\right),
\end{aligned}
$$

which shows that $b k_{w} \in \mathcal{H}(b)$ and, moreover, that

$$
\begin{equation*}
\left(b k_{w}\right)^{+}=\left(\frac{1}{\overline{a(w)}}-a\right) k_{w} . \tag{23.34}
\end{equation*}
$$

Thus, by Theorem 23.8, for every $f \in \mathcal{H}(b)$, we have

$$
\begin{aligned}
\left\langle f, b k_{w}\right\rangle_{b} & =\left\langle f, b k_{w}\right\rangle_{2}+\left\langle f^{+},\left(b k_{w}\right)^{+}\right\rangle_{2} \\
& =\left\langle f, b k_{w}\right\rangle_{2}+\frac{1}{a(w)}\left\langle f^{+}, k_{w}\right\rangle_{2}-\left\langle f^{+}, a k_{w}\right\rangle_{2} \\
& =\left\langle f, b k_{w}\right\rangle_{2}-\left\langle f^{+}, a k_{w}\right\rangle_{2}+\frac{f^{+}(w)}{a(w)}
\end{aligned}
$$

To finish the proof and get the equality (23.32), it remains to notice that, by Lemma 4.8,

$$
\begin{aligned}
\left\langle f, b k_{w}\right\rangle_{2} & =\left\langle\bar{b} f, k_{w}\right\rangle_{2} \\
& =\left\langle T_{\bar{b}} f, k_{w}\right\rangle_{2} \\
& =\left\langle T_{\bar{a}} f^{+}, k_{w}\right\rangle_{2} \\
& =\left\langle f^{+}, a k_{w}\right\rangle_{2} .
\end{aligned}
$$

This completes the proof.
If we take $w=0$ in Theorem 23.23, we obtain the following special case. However, note that the first conclusion was already obtained in Corollary 23.9.

Corollary 23.24 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then

$$
b \in \mathcal{H}(b)
$$

Moreover, for every $f \in \mathcal{H}(b)$, we have

$$
\langle f, 1\rangle_{b}=f(0)+\frac{b(0)}{a(0)} f^{+}(0)
$$

and

$$
\langle f, b\rangle_{b}=\frac{f^{+}(0)}{a(0)} .
$$

Corollary 23.25 Let $z, w \in \mathbb{D}$. Then we have

$$
\begin{align*}
\left\langle k_{z}, k_{w}\right\rangle_{b} & =\left(1+\frac{\overline{b(z)} b(w)}{\overline{a(z)} a(w)}\right) k_{z}(w), \tag{23.35}\\
\left\langle k_{z}, b k_{w}\right\rangle_{b} & =\frac{\overline{b(z)}}{\overline{a(z)} a(w)} k_{z}(w) \tag{23.36}\\
\left\langle b k_{z}, b k_{w}\right\rangle_{b} & =\left(\frac{1}{\overline{a(z)} a(w)}-1\right) k_{z}(w) . \tag{23.37}
\end{align*}
$$

Proof Using (23.31) with $f=k_{z}$, we get

$$
\left\langle k_{z}, k_{w}\right\rangle_{b}=k_{z}(w)+\frac{b(w)}{a(w)} k_{z}^{+}(w)
$$

Now, apply (23.33) to obtain (23.35).
If we put $f=k_{z}$ in (23.32), we obtain

$$
\left\langle k_{z}, b k_{w}\right\rangle_{b}=\frac{k_{z}^{+}(w)}{a(w)}=\frac{\overline{b(z)}}{\overline{a(z)} a(w)} k_{z}(w) .
$$

Finally, to prove (23.37), we apply (23.32) with $f=b k_{z}$ and use (23.34). Hence, we have

$$
\left\langle b k_{z}, b k_{w}\right\rangle_{b}=\frac{\left(b k_{z}\right)^{+}(w)}{a(w)}=\frac{1}{a(w)}\left(\frac{1}{\overline{a(z)}}-a(w)\right) k_{z}(w) .
$$

Note that if we take $z=w$ in (23.35), then we get

$$
\begin{equation*}
\left\|k_{w}\right\|_{b}^{2}=\frac{1}{1-|w|^{2}}\left(1+\frac{|b(w)|^{2}}{|a(w)|^{2}}\right) . \tag{23.38}
\end{equation*}
$$

In Theorem 23.13, we showed that analytic polynomials form a dense manifold in $\mathcal{H}(b)$. Knowing that Cauchy kernels are also in $\mathcal{H}(b)$ (Theorem 23.23), we expect to have a similar result for the manifold they create. The following result provides an affirmative answer.

Corollary 23.26 Let b be a nonextreme point of the closed unit ball of H^{∞}. Then

$$
\operatorname{Span}\left(k_{w}: w \in \mathbb{D}\right)=\mathcal{H}(b)
$$

Proof Let $f \in \mathcal{H}(b)$ be such that $f \perp \operatorname{Span}\left(k_{w}: w \in \mathbb{D}\right)$. Then, according to Theorem 23.23, we have

$$
f(w)+\frac{b(w)}{a(w)} f^{+}(w)=0 \quad(w \in \mathbb{D})
$$

This is equivalent to $f a=-b f^{+}$on \mathbb{T}. Multiplying this equality by \bar{b} and using the identity $|a|^{2}+|b|^{2}=1$, we obtain

$$
\begin{equation*}
a\left(\bar{b} f-\bar{a} f^{+}\right)=-f^{+} \tag{23.39}
\end{equation*}
$$

The relation $T_{\bar{b}} f=T_{\bar{a}} f^{+}$can be rewritten as $P_{+}\left(\bar{b} f-\bar{a} f^{+}\right)=0$, which means that the function $\bar{b} f-\bar{a} f^{+}$belongs to $\overline{H_{0}^{2}}$. In particular, by (23.39), we deduce that f^{+} / a belongs to L^{2}. Now, on the one hand, it follows from Corollary 4.28 that f^{+} / a belongs to H^{2}, because a is outer. On the other hand, (23.39) also implies that f^{+} / a belongs to $\overline{H_{0}^{2}}$, whence $f^{+} / a=0$. That is, $f^{+}=0$ and then $f=0$, which proves that the linear span of Cauchy kernels $k_{w}, w \in \mathbb{D}$, is dense in $\mathcal{H}(b)$.

Exercise

Exercise 23.8.1 Let (a, b) be a pair. Show that

$$
\left(k_{w}^{b}\right)^{+}=\overline{b(w)} a k_{w} \quad(w \in \mathbb{D})
$$

Hint: Note that $k_{w}^{b}=k_{w}-\overline{b(w)} b k_{w}$. Then use (23.33) and (23.34).

23.9 Unbounded Toeplitz operators and $\mathcal{H}(b)$ spaces

In this section, we explain the close relation between $\mathcal{H}(b)$ spaces and unbounded Toeplitz operators with symbols in the Smirnov class. We first recall that the Nevanlinna class \mathcal{N} consists of holomorphic functions in \mathbb{D} that are quotients of functions in H^{∞}, and the Smirnov class \mathcal{N}^{+}consists of such quotients in which the denominators are outer functions; see Section 5.1. The representation of such functions as the quotient of two H^{∞} functions, even if we assume the denominator is outer, is not unique. However, if we impose some extra conditions, then the representation becomes unique.

Lemma 23.27 Let φ be a nonzero function in the Smirnov class \mathcal{N}^{+}. Then there exists a unique pair (a, b) such that $\varphi=b / a$.

Proof By definition, we can write φ as $\varphi=\psi_{1} / \psi_{2}$, where $\psi_{1}, \psi_{2} \in H^{\infty}$, $\psi_{1} \neq 0$ and ψ_{2} is outer. If the required pair (a, b) exists then, because $|a|^{2}+$ $|b|^{2}=1$ a.e. on \mathbb{T}, the function a must satisfy the identity

$$
\frac{1-|a|^{2}}{|a|^{2}}=\frac{\left|\psi_{1}\right|^{2}}{\left|\psi_{2}\right|^{2}} \quad(\text { a.e. on } \mathbb{T})
$$

that is,

$$
\begin{equation*}
\left.|a|^{2}=\frac{\left|\psi_{2}\right|^{2}}{\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}} \quad \text { (a.e. on } \mathbb{T}\right) \tag{23.40}
\end{equation*}
$$

Since $\psi_{2} \in H^{\infty}$, the function $\left|\psi_{2}\right|^{2}$ is log-integrable on \mathbb{T} and hence $\left|\psi_{1}\right|^{2}+$ $\left|\psi_{2}\right|^{2}$ is also log-integrable on \mathbb{T}. Thus there is a unique function $a \in H^{\infty}$ that satisfies (23.40) and is positive at the origin. For the function $b=a \varphi$, then we have

$$
\left.|a|^{2}+|b|^{2}=\frac{\left|\psi_{2}\right|^{2}}{\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}}+\frac{\left|\psi_{2}\right|^{2}}{\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}} \frac{\left|\psi_{1}\right|^{2}}{\left|\psi_{2}\right|^{2}}=1 \quad \text { (a.e. on } \mathbb{T}\right) .
$$

Hence (a, b) is a pair and the existence of the desired representation of φ is established. The uniqueness holds because the outer function a is uniquely determined by (23.40) and $a(0)>0$.

The representation of $\varphi \in \mathcal{N}^{+}$given by Lemma 23.27 is called the canonical representation of φ.

We start now with a function φ that is holomorphic in \mathbb{D} and define T_{φ} to be the operator of multiplication by φ on the domain

$$
\mathcal{D}\left(T_{\varphi}\right)=\left\{f \in H^{2}: \varphi f \in H^{2}\right\} .
$$

It is easily seen that T_{φ} is a closed operator; see Section 7.7. Indeed, let $f_{n} \in$ $\mathcal{D}\left(T_{\varphi}\right)$ such that $f_{n} \longrightarrow f$ in H^{2} and $\varphi f_{n} \longrightarrow g$ in H^{2}. In particular, for each $z \in \mathbb{D}$, we have $f_{n}(z) \longrightarrow f(z)$ and $\left(\varphi f_{n}\right)(z) \longrightarrow g(z)$. Since $\left(\varphi f_{n}\right)(z)$ also tends to $\varphi(z) f(z)$, we deduce that $\varphi f=g$. In other words, $f \in \mathcal{D}\left(T_{\varphi}\right)$ and $T_{\varphi} f=g$. Hence, the graph of $T_{\varphi}, \mathcal{G}\left(T_{\varphi}\right)=\left\{f \oplus \varphi f: f \in H^{2}, \varphi f \in H^{2}\right\}$, is closed in $H^{2} \oplus H^{2}$, which means that T_{φ} is a closed operator.

Lemma 23.28 Let φ be a function holomorphic on \mathbb{D}. Then the following are equivalent:
(i) $\mathcal{D}\left(T_{\varphi}\right) \neq\{0\}$;
(ii) φ is in the Nevanlinna class \mathcal{N}.

Proof Suppose that there exists a function $f \neq 0$ that belongs to $\mathcal{D}\left(T_{\varphi}\right)$. Thus $\varphi=\varphi f / f$ is the quotient of two H^{2} functions, hence the quotient of two functions in \mathcal{N}. Thus, $\varphi \in \mathcal{N}$. Conversely, if φ is in the Nevanlinna class, then we can write $\varphi=\psi_{1} / \psi_{2}$, where ψ_{1} and ψ_{2} are in H^{∞}. Then $\mathcal{D}\left(T_{\varphi}\right)$ contains the set $\psi_{2} H^{2}$.

Lemma 23.29 Let φ be a function holomorphic on \mathbb{D}. Then the following are equivalent:
(i) $\mathcal{D}\left(T_{\varphi}\right)$ is dense in H^{2};
(ii) φ is in the Smirnov class \mathcal{N}^{+}.

Proof (i) \Longrightarrow (ii) Since $\mathcal{D}\left(T_{\varphi}\right)$ is dense, it is in particular not reduced to $\{0\}$. Hence, according to Lemma 23.28, φ is in the Nevanlinna class. Write $\varphi=$ ψ / χ, where ψ and χ are functions in H^{∞}, whose inner factors are relatively prime. Assume that f is in $\mathcal{D}\left(T_{\varphi}\right)$ and let $g=\varphi f$. Then $\psi f=\chi g$. Write $\psi=\psi_{i} \psi_{o}, f=f_{i} f_{o}, \chi=\chi_{i} \chi_{o}$ and $g=g_{i} g_{o}$, where $\psi_{i}, f_{i}, \chi_{i}, g_{i}$ are inner and $\psi_{o}, f_{o}, \chi_{o}, g_{o}$ are outer. By the uniqueness of the canonical factorization for the inner and outer parts, we have $\psi_{i} f_{i}=\chi_{i} g_{i}$. Since $G C D\left(\psi_{i}, \chi_{i}\right)=1$, then χ_{i} divides f_{i}, which means that there is an inner function θ_{i} such that $f_{i}=\theta_{i} \chi_{i}$. Hence, $\psi_{o} f=\psi_{o} f_{i} f_{o}=\chi_{i} \theta_{i} \psi_{o} f_{o}$. We get from this relation that $\psi_{o} f \in \chi H^{2}$. Using once more the uniqueness of the canonical factorization, we deduce that $f \in \chi_{i} H^{2}$. Thus $\mathcal{D}\left(T_{\varphi}\right) \subset \chi_{i} H^{2}$. Now, since $\mathcal{D}\left(T_{\varphi}\right)$ is dense in H^{2}, we conclude by Theorem 8.16 that χ_{i} must be a constant. In other words, χ must be outer and then $\varphi \in \mathcal{N}^{+}$.
(ii) \Longrightarrow (i) If $\varphi=\psi / \chi$, where ψ and χ are in H^{∞} and χ is outer, then, as noted above, $\mathcal{D}\left(T_{\varphi}\right)$ contains χH^{2}, which is dense in H^{2} by Theorem 8.16. Hence $\mathcal{D}\left(T_{\varphi}\right)$ is also dense in H^{2}.

We just have seen that, when $\varphi \in \mathcal{N}^{+}$, then the domain of T_{φ} is dense in H^{2}. Using the canonical representation of φ, we can precisely identify $\mathcal{D}\left(T_{\varphi}\right)$.

Lemma 23.30 Let φ be a nonzero function in \mathcal{N}^{+}with canonical representation $\varphi=b / a$. Then

$$
\mathcal{D}\left(T_{\varphi}\right)=a H^{2}
$$

Proof The inclusion $a H^{2} \subset \mathcal{D}\left(T_{\varphi}\right)$ is clear (as noted above). Suppose now that $f \in \mathcal{D}\left(T_{\varphi}\right)$. Then we have

$$
|\varphi f|^{2}=\frac{|b|^{2}\left|f^{2}\right|}{|a|^{2}}=\left|\frac{f}{a}\right|^{2}-|f|^{2} \quad(\text { a.e. on } \mathbb{T})
$$

which implies that f / a is in $L^{2}(\mathbb{T})$. Since a is outer, Corollary 4.28 implies that f / a is in H^{2}, giving the inclusion $\mathcal{D}\left(T_{\varphi}\right) \subset a H^{2}$.

Since, whenever $\varphi \in \mathcal{N}^{+}$, the operator T_{φ} is densely defined and closed, its adjoint T_{φ}^{*} is also densely defined and closed. The next result shows that de Branges-Rovnyak spaces naturally occur as the domain of the adjoint of Toeplitz operators with symbols in \mathcal{N}^{+}.

Theorem 23.31 Let φ be a nonzero function in \mathcal{N}^{+}with canonical representation $\varphi=b / a$. Then the following assertions hold.
(i) $\mathcal{D}\left(T_{\varphi}^{*}\right)=\mathcal{H}(b)$.
(ii) For each $f \in \mathcal{H}(b)$, we have $T_{\varphi}^{*} f=f^{+}$and

$$
\begin{equation*}
\|f\|_{b}^{2}=\|f\|_{2}^{2}+\left\|T_{\varphi}^{*} f\right\|_{2}^{2} \tag{23.41}
\end{equation*}
$$

Proof (i) By definition, a function $f \in H^{2}$ belongs to $\mathcal{D}\left(T_{\varphi}^{*}\right)$ if and only if there is a function $g \in H^{2}$ such that

$$
\begin{equation*}
\left\langle T_{\varphi} h, f\right\rangle_{2}=\langle h, g\rangle_{2} \tag{23.42}
\end{equation*}
$$

for all $h \in \mathcal{D}\left(T_{\varphi}\right)$. By Lemma 23.30, $\mathcal{D}\left(T_{\varphi}\right)=a H^{2}$, which means that $f \in$ $\mathcal{D}\left(T_{\varphi}^{*}\right)$ if and only if there is $g \in H^{2}$ such that

$$
\begin{equation*}
\left\langle T_{\varphi}(a \psi), f\right\rangle_{2}=\langle a \psi, g\rangle_{2} \tag{23.43}
\end{equation*}
$$

for all $\psi \in H^{2}$. But

$$
\left\langle T_{\varphi}(a \psi), f\right\rangle_{2}=\langle b \psi, f\rangle_{2}
$$

Hence, (23.43) is equivalent to

$$
\langle b \psi, f\rangle_{2}=\langle a \psi, g\rangle_{2} \quad\left(\psi \in H^{2}\right)
$$

which can be written as

$$
\langle\psi, \bar{b} f-\bar{a} g\rangle_{2}=0 \quad\left(\psi \in H^{2}\right)
$$

In other words, $f \in \mathcal{D}\left(T_{\varphi}^{*}\right)$ if and only if there exists a function $g \in H^{2}$ such that

$$
\begin{equation*}
T_{\bar{b}} f=T_{\bar{a}} g \tag{23.44}
\end{equation*}
$$

It follows from Theorems 17.8 and 23.2 that this is equivalent to saying that $f \in \mathcal{H}(b)$.
(ii) If we compare (23.44) and (23.42), we have

$$
f^{+}=g=T_{\varphi}^{*} f
$$

Then, (23.41) follows from Theorem 23.8.

Exercises

Exercise 23.9.1 Let φ be a rational function in the Smirnov class. Show that the functions a and b in the canonical representation of φ are rational functions. Hint: Assume that $\varphi=p / q$, where p and q are polynomials with $G C D$ $(p, q)=1, q$ has no roots in \mathbb{D} and $q(0)>0$. Note that the function $|p|^{2}+|q|^{2}$ is a nonnegative trigonometric polynomial. Apply the Fejér-Riesz theorem to get a polynomial r without roots in \mathbb{D}, with $r(0)>0$ and such that $|r|^{2}=|p|^{2}+|q|^{2}$; see Theorem 27.19. Note now that $a=q / r$ is a rational function and $b=a \varphi=p / r$ is also a rational function. Verify that (a, b) is a pair and $\varphi=b / a$.

Exercise 23.9.2 Let $\varphi \in \mathcal{N}^{+}$and $\psi \in H^{\infty}$. We denote $T_{\bar{\varphi}}=T_{\varphi}^{*}$.
(i) Show that $\mathcal{D}\left(T_{\varphi}\right) \subset \mathcal{D}\left(T_{\bar{\varphi}}\right)$.

Hint: Use Theorem 23.31 and Lemma 23.30.
(ii) Show that, for any $g \in \mathcal{D}\left(T_{\varphi}\right)$, we have

$$
T_{\bar{\varphi}} g=P_{+}(\bar{\varphi} g)
$$

Hint: Note that, for any $f \in \mathcal{D}\left(T_{\varphi}\right)$,

$$
\left\langle T_{\bar{\varphi}} g, f\right\rangle_{2}=\langle g, \varphi f\rangle_{2}=\langle\bar{\varphi} g, f\rangle_{2}=\left\langle P_{+}(\bar{\varphi} g), f\right\rangle_{2} .
$$

Exercise 23.9.3 Let $\varphi \in \mathcal{N}^{+}$and $\psi \in H^{\infty}$. Show that, for any $f \in \mathcal{D}\left(T_{\bar{\varphi}}\right)$, we have

$$
T_{\bar{\varphi}} T_{\bar{\psi}} f=T_{\bar{\varphi} \bar{\psi}} f=T_{\bar{\psi}} T_{\bar{\varphi}} f
$$

Hint: Note that, if $\varphi=a / b$ is the canonical representation of φ, then $\mathcal{D}\left(T_{\bar{\varphi}}\right)=$ $\mathcal{H}(b)$ is invariant under $T_{\bar{\psi}}$. Hence $T_{\bar{\psi}} f \in \mathcal{D}\left(T_{\bar{\varphi}}\right)$. For $g \in \mathcal{D}\left(T_{\varphi}\right)$, we have

$$
\begin{aligned}
\left\langle T_{\bar{\varphi}} T_{\bar{\psi}} f, g\right\rangle_{2} & =\left\langle T_{\bar{\psi}} f, \varphi g\right\rangle_{2} \\
& =\langle f, \psi \varphi g\rangle_{2} \\
& =\left\langle T_{\bar{\psi} \bar{\varphi}} f, g\right\rangle_{2}
\end{aligned}
$$

which shows that $T_{\bar{\varphi}} T_{\bar{\psi}} f=T_{\bar{\varphi} \bar{\psi}} f$. Argue similarly to prove that $T_{\bar{\psi}} T_{\bar{\varphi}} f=$ $T_{\bar{\varphi} \bar{\psi}} f$.

Notes on Chapter 23

Section 23.1

Theorems 23.2 and 23.3 are due to Sarason [159, lemmas 3, 4 and 5].

Section 23.3

Theorem 23.8 is due to Sarason [159, lemma 2]. The idea of using the element f^{+}to compute the norm is very useful and has also been introduced by Sarason in [159]. The power of the method is illustrated by Corollary 23.9. It illustrates very well that the computation of the norm of an element $f \in \mathcal{H}(b)$ is transformed into the resolution of a system $T_{\bar{b}} f=T_{\bar{a}} g$, where we are looking for a solution $g \in H^{2}$. For instance, the norm of $S^{*} b$ has been computed by Sarason in [160] using another more difficult method; see Exercise 18.9.5. The computation presented here and based on f^{+}is from Sarason's book [166].

In [159], Sarason proved the density of $\mathcal{H}(\bar{b})$ in $\mathcal{H}(b)$, when b is nonextreme; see Corollary 23.10.

The formula of Theorem 23.11 to find the element f^{+}by a limiting process is due to Sarason [159].

Exercises 23.3.1, 23.3.2 and 23.3.3 come also from [159].

Section 23.4

The density of polynomials in $\mathcal{M}(\bar{a})$ and $\mathcal{H}(b)$ (in the nonextreme case) proved in Theorem 23.13 is due to Sarason [159, corollary 1].

Section 23.5

Theorem 23.14 and Corollary 23.15 are due to Sarason [160]. In that paper, he is motivated by relating de Branges and Rovnyak's model theory with that of Sz.-Nagy and Foiaş. Thus, he constructs the Sz.-Nagy-Foiaş model of X_{b} and, for that, he needs to determine the defect operators of the contraction X_{b}.

Section 23.6

Lemma 23.19 is from [166]. Theorem 23.20 is also due to Sarason [160] and can be rephrased in the context of Sz.-Nagy-Foiaş theory. Indeed, in the case when b is nonextreme, then $\operatorname{dim} \mathcal{D}_{X_{b}}=2$ and $\operatorname{dim} \mathcal{D}_{X_{b}^{*}}=1$. Let u_{1} and u_{2} be a pair of orthogonal unit vectors in $\mathcal{D}_{X_{b}}$ and let $v=\left\|S^{*} b\right\|_{b}^{-1} S^{*} b$ be the unit vector spanning $\mathcal{D}_{X_{b}^{*}}$. Then, the operator function $\Theta_{X_{b}}$ is determined by the 1×2 matrix function $\left(\theta_{1}, \theta_{2}\right)$, where θ_{j} is defined by

$$
\Theta_{X_{b}}(\lambda) u_{j}=\theta_{j}(\lambda) v \quad(j=1,2)
$$

If we replace u_{1}, u_{2} by another orthonormal basis for $\mathcal{D}_{X_{b}}$, then it will multiply the matrix function $\left(\theta_{1}, \theta_{2}\right)$ from the right by a constant 2×2 unit matrix. In [160], Sarason shows that there is a choice of basis $\left(u_{1}, u_{2}\right)$ such that $\theta_{1}(\lambda)=$ $\overline{b(\bar{\lambda})}$ and $\theta_{2}(\lambda)=\overline{a(\bar{\lambda})}$. In this context, Theorem 23.20 says exactly that $S^{*} \oplus$ $S_{\mid \mathbb{K}_{b}^{\prime}}^{*}$ is the Sz.-Nagy-Foiaş model of X_{b} and the projection Q_{b} implements the unitary equivalence between the operator X_{b} and its Sz.-Nagy-Foiaş model.

Section 23.7

Theorem 23.22 is due to Guyker [96]. It answers a question raised by de Branges and Rovnyak [65, p. 39]. See also the paper of Leech [116], who obtained other equivalent conditions for a Hilbert space \mathcal{H} to coincide with a de Branges-Rovnyak space $\mathcal{H}(b)$ for some nonextreme function b.

Section 23.8

The fact that the Cauchy kernel k_{w} belongs to $\mathcal{H}(b)$ when b is nonextreme, as well as the computation of the norm of k_{w}, are due to Sarason [160, proposition 1]. The two formulas (23.31) and (23.32) that appear in Theorem 23.23 are also due to Sarason [164, proposition].

Corollary 23.26 is from [159], but we have given a different proof.

Section 23.9

Unbounded Toeplitz operators on the Hardy space H^{2} arise often with symbols belonging to $L^{2}(\mathbb{T})$. However, there are natural questions that lead to Toeplitz operators having more restrictive symbols, in particular with symbols in the Smirnov class. We mention interesting works of Helson [101], Suárez [182] and Seubert [174]. The links between $\mathcal{H}(b)$ spaces and the domain of the adjoint of Toeplitz operators with symbols in the Smirnov class are due to Sarason [170].

