23

T (b) spaces generated by a nonextreme
symbol b

As we have already said, many properties of #(b) depend on whether b is or
is not an extreme point of the closed unit ball of H°°. Recall that, by the de
Leeuw—Rudin theorem (Theorem 6.7), b is a nonextreme point of the closed
unit ball of H*° if and only if log(1 — [b]?) € L'(T), i.e.

/log(l —[b]?) dm > —oc. (23.1)
T

In this chapter, we study some specific properties of the space #(b) whenbisa
nonextreme point. Roughly speaking, when b is a nonextreme point, the space
H(b) looks like the Hardy space H>.

In this situation, an important property is the existence of an outer function
a such that a(0) > 0 and which satisfies |a|> + |[b|> = 1 ae. on T. This
function a is introduced in Section 23.1 and we will see that H(b) = M (a).
In Section 23.2, we characterize the inclusion M (u) C H(b) whereu € H*.
An important object in the nonextreme case is the associated function f+
introduced in Section 23.3. This function, which is defined via the equation
Tyf = TafT, enables us to give a useful formula for the scalar product in
H(b). We also show, in Section 23.3, that b € #(b) and we compute its norm.
It turns out that the analytic polynomials belong to and are densein #(b). This
is the content of Section 23.4. Then, in Section 23.5, we give a formula for
| Xofllo, f € H(D), and we compute the defect operator Dx,. Recall that, in
Section 19.2, we gave a geometric representation of H (b) space based on the
abstract functional embedding. In Section 23.6, we obtain another representa-
tion, which corresponds to the Sz.-Nagy—Foias model for the contraction X.
In Section 23.7, we characterize 7 (b) spaces when b is a nonextreme point.
The analog for the extreme case will be done in Section 25.8. In Section 23.8,
we exhibit some new inhabitants of #(b). In the last section, we finally show
that the 7 (b) space can be viewed asthe domain of the adjoint of an unbounded
Toeplitz operator with symbol in the Smirnov class.
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23.1 Thepair (a,b)

If b satisfies the condition (23.1), then we define a to be the unique outer
function whose modulus on T is (1 — |b?)!/? and is positive at the origin.
Hence, on the open unit disk, a is given by the formula

o) = ([ 52 togt - QP 2 am(@)) D). (@32)
Clearly, a € H* with ||a]|s < 1 and
la* +[p>=1  (aeonT). (23.3)

Whenever we use the pair (a,b), we mean that they are related as described
above. We sometimes say that a is the Pythagorean mate associated with b.

Theorem 23.1 For each pair (a, b), we have
a
1-b

Proof By Corollary 4.26, 1/(1 — b) isan outer function in H? for each 0 <
p < 1. Since a is an outer function in H°°, then a/(1 — b) is aso an outer
functionin H? for each 0 < p < 1. But, by (13.50) and (23.3),

ol _ 1-b?
[L—b> 10

e H2.

e LY(T),

or equivaently a/(1 — b)e L?(T). Hence, Corollary 4.28 ensures that

a/(1—0b) € H. O
Theorem 23.2 Let b be a nonextreme point of the closed unit ball of H°°.
Then

M (@) = H(b).
Moreover,

M(a) — M(a) — H(b),

i.e. both inclusions are contractive. In particular, M(a) is contractively con-
tained in H(b).

Proof The relation M(a) — M(a) follows from Theorem 17.17. Using
Theorem 12.4 and (23.3), we see that

ToTy = Tiaje = Ty_pp2 = I — T5 Ty,

Hence, Corollary 16.8 impliesthat M(a) = M(T,) = M((I — T;T,)'/?) =
H(b). The contractive inclusion (b) — H(b) is contained in Theorem 17.9.
O
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Theorem 23.2 ensures that M (a) embeds contractively in 7 (b). The fol-
lowing result provides another contraction between these spaces.

Theorem 23.3 Let b be a nonextreme point of the closed unit ball of H°°.
Then the operator T;, maps M (a) contractively into #(b).

Proof According to Lemma 16.20, the operator T}, acts as a contraction from
H(b) into H(b). The result follows since, by Theorem 23.2, we have H(b) =
M(a). O

According to Theorem 23.2, H(b) = M(a), and thus, if f € H(b), then
there exists a unique g € H? such that

[ =Tag. (23.4)

The uniqueness of ¢ follows from the fact that 77 is injective; see Theorem
12.19(ii). In other words, T} isan isometry from H? onto M (a). Therefore, if
f1 = Tagr and fo = Tyg2, With g1, g» € H?, then

(1, f2)5 = (Tag1, Tag2) m(a) = (91, 92)2- (23.5)
We recall that k,, denotes the Cauchy kernel.
Theorem 23.4 Let (a,b) be a pair. Then
ky € H(b)  (weD)

and, for every function f € #(b), we have

(b = 200

a(w)’

where g € H? is related to f via (23.4). Moreover, we have

1

kw b= .
Ikulls = T = TPy 72

(23.6)

Proof According to (12.7), we have T k,, = a(w)k,,. Since a is outer, then
a(w) # 0 and we can write the last identity as

kwTa<aIZ;)). (23.7)

This representation shows that k,, € M(a) = #(b) and the function corre-

sponding to k., via (23.4) isequal to k,, /a(w). Therefore, for each f € H(b),
by (23.5), we have

(f ku)p = a(w) ™ {g, kuw)2 = a(w) ™ g(w).
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In particular, if wetake f = k,,, we abtain
wl? = a(w) ™k (w) /a(w) = a(w)|~2(1 — [w]?)~L.
Remember, as we established in (4.19), that k., (w) = 1/(1 — |wl|?). O
Recall that, in Section 17.5, we studied the question of inclusion of different

H(b) spaces. In the case when b is nonextreme, we can state the condition
(17.12) in terms of the associated function a.

Corollary 23.5 Let (a1, b1) and (ag, bo) be two pairs. Then the following are
equivalent:

(i) as/a1 € H™.

Proof (i) = (ii) By Theorem 17.12, there is a constant ¢ > 0 such that
L= b2(OF < el =1 (Q))*)  (aeonT).

Hence,

laz|? < clay|? (ae.onT).

Thismeansthat as/a; € L>°(T). But, since a; isouter, the function as/a; in
fact belongsto H°.

(i) = (i) Assume that a2 = a9, with some function g € H*°. Then we
have T;, = Tg,Tj, which trivially implies that M(az) C M aq). The con-
clusion follows now from Theorem 23.2, because we have H(by,) = M(ax),
k=1,2. O

Exercises
Exercise23.1.1  Let (a,b) beapair. Show that
s+ <1 (A eD).

Moreover, if b isnot constant, the inequality is strict.
Hint: (First method) Note that |a|? + |b|? is harmonic and apply the maximum
principle for harmonic functions.

(Second method) By Theorem 12.10, we know that, for any ¢ € H>, we
have T, T, < T;T,. Apply this inequality to get || 7.k |3 + ||T3kA]3 <
IXH

Exercise23.1.2  Let b be anonextreme point of the closed unit ball of H°°,
and let a be the associated outer function. Show that a/b € H*° if and only if
1blloc < 1.
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23.2 Inclusion of M (u) into (b)

Theorem 23.2 revealsthat M (a) isalinear manifold in 7 (b). Generally speak-
ing, it is important to distinguish a submanifold of #(b) that is of the form
M(u) for a certain bounded analytic function . The following result is a
characterization of this type.

Theorem 23.6 Let (a,b) be a pair, and let « be a function in H°°. Then the
following are equivalent:

(i) u/a € H>;
(i) M(u) C M(a);
(i) M(u) C H(D).

Proof (i) < (ii) Thisisaready contained in Theorem 17.1.
(it) = (iii) Thisfollows from Theorem 23.2.
(iii) = (i) According to Lemma 16.6, there is a constant ¢ > 0 such that

1f1ls < ellfllm), (23.8)

for every function f € M (u). Now applying Theorem 16.7 gives

T.Ty < (I —TyT3). (23.9)
Applying (23.9) to k,,, w € D, gives

1 Takoll3 < c(llkwlls = T3k 3)-
But, by (12.7), Tk, = u(w)k, and Tsk,, = b(w)k,,, and thus we obtain
[u(w)* < c(1 = [p(w)?)  (weD).
In particular, we deduce from thisinequality that
(@) <e(1-p(¢))*)  (ae¢eT).

By definition, we have |a|? = 1 — |b|? almost everywhere on T and thus we
get
[u(@F < ca(Q))  (aeCeT)

Hence, u/a belongs to L>°(T). But, since a is outer, Corollary 4.28 ensures
that u/a belongsto H°. O

Considering the set-theoretic inclusion, Theorem 23.6 also reveals that
among spaces M (u), u € H®°, that fulfill M(u) C H(b), the space M (a) is
the largest one.
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Exercise

Exercise 23.2.1  Let (a,b) beapair, and let u be afunction in H°. Show
that the following are equivalent.

(i) u/a € H*® and ||u/alloc < 1.
@iy M(u) = M(a).
(iil) M(u) < H(b).

Hint: See the proof of Theorem 23.6.

23.3 Theelement f+

Let f € H(b). Thus, using Theorems 17.8 and 23.2, we know that T;f €
H(b) = M(a). Theorem 12.19(ii) saysthat T}, isinjective. Therefore, thereis
aunique element of H?2, henceforth denoted by f+, such that

Tof = Taft. (23.10)

It is also useful to mention that, if afunction f € H? satisfies Ty, f = Tag,
for some function g € H?, then it follows from Theorems 17.8 and 23.2 that
f surely belongs to H(b) and g = f*. The element f* is a useful tool in
studying the propertiesof f € H(b). Inthis section, we study some elementary
propertiesof fT.

Looking at the definition in (23.10), it is no wonder that this operation is
invariant under a Toeplitz operator with a conjugate-analytic symbol.

Lemma 23.7 Let b be a nonextreme point of the closed unit ball of H°°, let
f e H(b)and let o € H>. Then

(Tof)r =Tof".

Proof We know from Theorem 18.13 that 7{(b) is invariant under 7.
Consequently, we have T f € H(b). Then, according to Theorem 12.4,

TET@f - T@Tgf - 71)57_'5”](.+ - T(lT@f“”

Hence, remembering the uniqueness of (T};f)*, the identity T3(7:f) =
Tfl (T@f+) means that (T¢f)+ == T¢f+ D

Theorem 23.8 Let f1, fo € H(b). Then we have
<f1a.f2>b = <f17f2>2 + <f1+af2+>2

In particular, for each f € H(b),

I£15 = ILFIIZ + 113
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Proof Using Theorem 17.8, we can write
(fr. fodo = (fr, f2)2 + (Lo f1, To f2)s
= (f1, fa)2 + (Tafi, TafS )
Since H(b) = M(a), we have
(Tafi Tafd s = (Tafi Ta k) mea)-
Since, according to Theorem 12.19(ii), T} isinjective, it follows that
(Ta 5 Tafs )@ = (A5 )2
and thisimplies
(fi, f2)o = (f1s fa)o + (fi75 fo ) O

Theorem 23.8 is very useful in computing the norm of elements of #(b).
Two such computations are discussed bel ow.

Corollary 23.9 Let b be a nonextreme point of the closed unit ball of H°°.
Then b € H(b), with

1
— —a,

a(0)

bt =

and, moreover, we have

o]l = la(0) 7% — 1
1S*bll = 1 = [b(0)]* — [a(0)[*.

Proof According to Theorems 18.1 and 23.2, we have b € H(b) if and only

if T;b € H(b) = M(a). But
Tyb = P|b]* = Py (1 —|af*) = 1 — Tya,

andwe canwrite1 = Py (a/a(0)) = T5(1/a(0)). Therefore, we obtain

Tbb:Ta(a(lo) —a) € M(a).

Thisfact ensuresthat b € 7 (b). Moreover, the last identity also reveals that

o g (23.11)
a(0)
A simple calculation shows that
1613 = llal + 7oy — 2
|a(0)[?
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Hence, by Theorem 23.8 and the fact that ||a||2 + ||b||3 = 1, we obtain

6113 = 11Bl13 + 16113
1

= Ip 2 2 _
|| H2+||aH2+ |CL(O)|2

- 1
 Ja(0))
By Lemma 23.7 and (23.11), we see that
(S*b)T = —S*a. (23.12)
According to Theorem 23.8 and (8.16), we thus have
15*0ll5 = [1S*b]13 + [1S*all3

= [[bl13 + llall3 — [6(0)* — |a(0)[?

=1—[b(0)* — |a(0)[*.
This completes the proof. O

By Theorem 23.2, we know that M(a) = H(b) C H(b). The following
result reveals that, in a sense, M (a) is alarge subset of #(b). In the extreme
case, thisis far from being true. For example, if b isinner, then H(b) = {0}.

Corollary 23.10 Let b be a nonextreme point of the closed unit ball of H°°.
Then, relative to the topology of #(b), the space #(b) is a dense submanifold
of H(b).

Proof By Theorem 23.2, M(a) = H(b) < H(b). Let f € H(b) and assume
that, relative to the inner product of #(b), f is orthogonal to M (a). Thus, in
particular, we have

([ TS fle =0 (23.13)
for al n > 0. Using Theorem 12.4, we can write
TaS™ " f =TgTsn f = Tyzn f.
Again, since z"a(z) € H*, by Lemma23.7,
(TaS™™ f)* = Tazn .
Therefore, according to Lemma 4.8 and Theorem 23.8, we have
(f;TaS™ Yo = (f, Tazn f)2 + (f 7, Tazn )2
= (Tuen f, 2+ (Taan [, f )2
= (az"f, fla + (az" [, fF)2
= o [ 1 )

@()

https://doi.org/10.1017/CBO9781139226769.010 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.010

23.3 Theelement f* 281

where ¢ denotesthe L! function defined by ¢ = (| f|? + | f*|?)a (the function
¢ belongs to L!(T) since it is the product of the H>° function a and the L!
function (|f]? + |f*]?)). Thus, (23.13) and the previous computation imply
that p(n) = 0 for al n < 0. This precisely meansthat ¢ € H}. Sincea is
an outer function and |f|> + |f*|?> € L'(T), we deduce from Corollary 4.28
that |f|? + | f*|? € Hg. Sincethis function is real-valued, (4.12) implies that
If1>+|f*|? = 0. Inparticular, f = 0. Therefore, M(a) isdensein #(b). O

Recall that, if 0 < r < 1, then, by definition, a,. isthe unique outer function
whose moduluson T is (1 —r2(b|?)!/2 and a,.(0) > 0. In other words, (., rb)
isapair. Note that, on T, we have

jal* =1 = [b* <1 —r?pf* = |a, |,

which implies that a/a, € L°°(T). Then, according to Corollary 4.28, the
function a/a, belongsto H>° and we have

a

ar

<1. (23.14)

o0

A similar argument shows that a,-! belongsto H>°.

Given a function f in 7(b), the next result gives a method to find the
associated function fT. To give the motivation for the following result, note
that, if incidentally bf /a € L*(T), then

ft=P.(bf/a). (23.15)
Indeed, we have
TuP.(bf/a) = Py (aPy.(bf /a)) = P (abf/a) = Ty,

which, by uniquenessof f, givesthe formula (23.15). However, if bf /a does
not belong to L?(T), we appeal to alimiting process to get asimilar result.

Theorem 23.11 Let f € H(b). Then
i b - + =
lim [| 54, f = 7l = 0.

Proof Sincea,.! € H°°, multiplying both sides of T} f = T, f* by Ty/a,
gives

TE/ay,f = Ta/arf+~

Hence, by (23.14), we have
a
oo, Sl = WTaja £ < | 2] Ut <l (2219
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foral » € (0,1). Let us now prove that a/a, tendsto 1, asr — 1, in the
weak-star topology of H°°. According to Theorem 4.16, this is equivalent to

saying that

sup < +00

0<r<1

[¢7%

(oo}

and

im a(2) = z
lim o (2) 1 (z €D).

The first fact follows immediately from (23.14). To verify the second fact,

recall that
ar(z) = exp (/
T

and then an application of the dominated convergence theorem givesthe result.
Consequently, for every ¢ € L'(T), we have

g () am(©))

lim [ Lédn= [ ¢pdm.
r—1 'Jl‘ar T

Now, let u,v € H?. Sinceuv € L'(T), the last identity gives

}E<Ta/arua V)2 = }i_}rr{(du/ar, V)2
= lim gu@ dm = [ uvdm = (u,v)s.
r—1 T Qr T

Thismeansthat T /5, v isweakly convergent to v in H?. Therefore, Tyja, f =
Tz/a, /T weakly convergesto f* in H?, asr — 1. But, according to (23.16),
we have

I Tsja, f = N3 = 1Tosa, £1I3 + 1F13 = 2R(Tya, £, F5)2
<25 - 2R(T5 5, f )

Hence, we get

lim sup |Ty5, f = f* I3 < 201/ 73 = 2 lim ®(T; 5, f, /7)2 = 0,
r— T

from which we deduce that 73, f actualy convergesto f* in H 2 norm, as
r— 1. O

Using this fact and Theorem 23.8, we can give another proof of formula
(18.20) in the nonextreme case.

Theorem 23.12 The map & : h — h is a partial isometry of #(b) onto
H(a), and its kernel is ker T; N H(b).
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Proof Leth € H(b). Notethat k™ € H? and then h* € H(a) if and only
if T,h™ € H(a). By applying Theorem 23.2 to a (which is of course also a
nonextreme point of the closed unit ball of H°°), then M(b) = H(a) and we
deduce that

T,h™ = Tyh € H(a).
Hence h* € H(a). Now, let ¢ € H(a). Then T, € H(a). Using Theorem
23.2 once more, there exists h € H? such that T = Tjh. Since T;h €
M(a) = H(b), we deduce that h € H(b) and the last equation gives that
h* = . That meansthat & is a surjective map from #(b) onto H(a).
Let h € H(b). Since T; is one-to-one, we have
S(h)=0«=h" =0
— T,hT =0
= Tyh=0
<= h € kerTj.
Hence ker & = ker T; N H(b).
It remainsto check that & isapartial isometry. Solet h € H(b), h L ker Tj.
On the one hand, we have
IRll5 = 17113 + [IRF13,
and on the other,
IR1E = 113 + I Tah*1IZ = RT3 + 1Tkl -
Since h € ker Ty, we have ||Tl;h||fw(l;) = ||h||3, which gives

IRF1E = IRF1E + 1R05 = [IR]3-

In other words, & isapartia isometry. O
Exercises
Exercise 23.3.1 Assume that b is not an extreme point of the closed unit
ball of H°.
(i) Provethat

T 4/a,b = ar- ' (0) — a,.

(i) Deduce that
6]l = la(0)| 7% — 1.
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(iii) Provethat, for n > 1, we have

1,56, X"b=—S"a,.

(iv) Show that 75, 1 = b(0)/a,(0).
(v) Deduce that
(X"b,1), = b(n) — b(0)a(n)a(0)™t  (n>1).
Hint: Use (iii) and (iv).
Exercise 23.3.2 Assume that b is not an extreme point of the closed unit
ball of H*° and assumethat b has a zero of order m at the origin. Show that
(X™b, 2™)y, = b(n 4+ m) — b(m)a(n)a(0)~* (n>1).
Hint: Use Exercise 23.3.1(iii) and Exercise 18.9.3(ii).
Exercise 23.3.3 Assume that b has a zero of order m (possibly 0) at the

origin and assumethat b is not an extreme point of the closed unit ball of H>°.
Show that

(X"b,b), = —a(n)/a(0) (n>1).
Hint: Use Exercise 18.9.1 with f = X™b and Exercise 23.3.2.

23.4 Analytic polynomialsaredensein H(b)

Theorem 17.4 tells us that the analytic polynomials are dense in M(a). Then
Theorem 23.2 says that the latter linear manifold is dense and contractively
contained in H(b). Hence, it is natural to deduce some result about the family
of analytic polynomialsin #(b).

Theorem 23.13 Let b be a nonextreme point of the closed unit ball of H°°,
and let P denote the linear manifold of analytic polynomials. Then the follow-
ing hold.

(i) P c M(a) C H(b).
(ii) P is a dense manifold in M(a).
(iii) P is a dense manifold in #(b).
Proof (i) The inclusion P C M(a) was shown in Theorem 17.4, and
M(a) C H(b) was established in Theorem 23.2.
(ii) Thisisalso from Theorem 17.4.

(iii) Let f € H(b) and let € > 0. According to Corollary 23.10, there exists
g € M(a) such that

&
I =gl < 5.
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and, appealing to part (ii), thereisap € P such that
S

— < =,
||g PHM(a) =5

But, by Theorem 23.2,
lg = pllo < llg = pllmea)-
The three inequalities above imply that || f — p||» < e. O

Let u, betheinner part and b, be the outer part of afunction b in the closed
unit ball of H°°. Since |b,| = |b| ae. on T, if b is nonextreme, then b, isaso
nonextreme. |n particular, wewill have, according to Theorems 23.13 and 18.7,

P C H(b,) C H(D).

Since P isdensein H(b), weimmediately get that H (b,,) isalso densein H(b).
The situation in the extreme case is dramatically different because we will see
in Section 25.6 that (b, ) isaclosed subspace of H(b) and, if u, isnot afinite
Blaschke product, the orthogona complement of #(b,) in H(b) is of infinite
dimension.

23.5 A formulafor || X f||s

We recall that 7 (b) is invariant under the backward shift S* and that the
restriction of S* to #(b) was denoted by X, In this section, we give aformula
for HbeHb

Theorem 23.14 Assume that b is a nonextreme point of the closed unit ball
of H°°. Then we have

Xi Xy =1—ki@kb—1a(0)]*b @b.
Moreover, for every f € H(b), we have
1Xf15 = IFIE — £ ) = [a(0)*[{f, b)sl*. (23.17)
Proof According to Corollary 18.23, we have
Xy Xpf = SS*f — (X f, S"b)pb

= f = f(0) = (Xuf, Xob)pb
== f(0) = (f, Xy Xob)pb (23.18)

for every f € H(b). By Corollary 23.9, b € H(b), and thus by setting f = bin
(23.18), we obtain

X5 Xpb =b—b(0) — (b, X Xyb)pb = b — b(0) — || X3 b.
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Using Corollary 23.9 again and the formula for X;,b = S*b, we simplify the
preceding identity to get
X; Xpb = ([b(0)]* + |a(0)[*)b — b(0).
Plugging the preceding expression for X; X;,b and theformula f (0) = (f, k5),
into (23.18) gives
Xo Xof = f (f,k0)s = (16(O)[* + 1a(0)[*) (£, bhob + b(0)(f, 1)y
— (f, ko) — [a(0)*{f,0)ob + b(0)((f, 1)s — B(0){f,b)s)b
— (fokg)s — [a(0)[{f,)sb + b(0)(f, 1 — b(0)b)sb
= f - |a’( )|2<f7 b>bb - <f7 k0>bk0
= (I —Kky@kb—1a(0)*b @0b)f.
Using thisformulafor X; X, we can write

1Xofllz = (Xof, Xof)o
= Xy Xof, o
—<f fako bko | (0)‘2< >bb f>
= | F1I5 = 1f, k6ol = 1a(0) P [(f b)s ?
= [I£11% = 1£(0)[> = [a(0) P {f, b)s .

This compl etes the proof. O

Werecall that, in Corollary 18.27, we proved that the defect operator D x» =
(I — X3pX;)'/? has rank one, its range is spanned by S*b and its nonzero
eigenvalue equals || S*b||;,. The analogous result for D, depends on whether
b is an extreme or nonextreme point of the closed unit ball of H>°.

Corollary 23.15 Let b be a nonextreme point of the closed unit ball of H°°.
The operator Dﬁ(h = I — X} X} has rank two. It has two eigenvalues A\; = 1
and Ay = 1 — |b(0)|? — \a( )|2. Moreover, if e; = 1 and e; = —b(0)k§ +
|a(0)|b, then

ker(D%, — A1l) = Ce; and ker(D%, — X2I) = Ces.
Proof Using Theorem 23.17, we have
D%, = kb @ kb +1a(0)]*b @ b.

Since b and k§ are linearly independent, Dg(h has rank two, and it is sufficient
to study its restriction to the two-dimensional space Ck} @ Cb. Relative to the
basis (kj, b), this restriction has the following matrix:

:< KGR bk )
ORE ORI
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According to (18.8), Theorem 18.11 and Corollary 23.9, we have
Ikgllz =1 —[6(0)[%, (b, kg)s =0(0) and [a(0)[[b]} =1 —[a(0)[*.

(1—|b(0)|2 b(0) )
b(0)[a(0)* 1 —la(0)]”)
It is now easy to compute the eigenvalue and eigenvectors of this matrix. The

characteristic polynomial is given by

det(A — AT) = X% = A(2 = [a(0)]* — [p(0)|*) + 1 — |a(0)|* — [b(0)[.

Hence,

Asalready noted, we have 1 — |a(0)|? — [b(0)|*> > 0. Hence, there are two real
roots, whichare 1 and 1 — |a(0)|? — |b(0)|?. Therefore, \; = 1and Ay = 1 —
|a(0)|?—1|b(0)|* are the two eigenval ues. To compute the eigenvectors, we need
tosolvelinear systems. Letu = avk{+03b, o, f € C. Thenu € ker(D%, —A1[)

if and only if
1 — [b(0)? b(0) a)  fa
<b<0>|a<0>2 1- |a(0)|2> <B> - (5)'
This equivalent to
{ [b(0)[? = Bb(0),
b(0)]a(0)* = Bla(0)|*.

Since a(0) # 0, this equivalent to 3 = ab(0) and we get that u € ker(D%, —
M) if and only if u = akb + ab(0)b = a. This proves that

ker(D%, — A1) = C1.

Similarly, u € ker(D%, — A21) if and only if

) () ()
b(0)[a(0)]* 1 —1a(0)*) \3 B)’
which is equivalent to
{ b(0) = a(Az — 1+ [b(0)[2),
b(0)[a(0)[> = B(A2 = 1+ [a(0)[?).
Using the fact that Ay = 1 — |a(0)|? — [b(0)|?, we see that the system is

equivalent to o = —3b(0)/|a(0)|?. Hence, u € ker(D%, — A1) if and only if

W) .. B
a@F™ = LR
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which gives
ker(D%, — XoI) = C(=b(0)k} + |a(0)|?b). O
We are now ready to explicitly determine the defect operator D, .

Corollary 23.16 Let b be a nonextreme point of the closed unit ball of H°.
Then the following hold.

(i) The operator Dx, has rank two and it has two eigenvalues ;1 = 1 and
pz = (1= [b(0)* — |a(0)[*)"/.
(ii) Ife; = 1and ez = —b(0)k§ + |a(0)|?b, then we have

ker(Dx, —p1I) =Ce; and ker(Dx, — pol) = Ces.
(iii) We have
I
la(0)[* + [b(0)[?

Proof Parts (i) and (ii) follow immediately from Corollary 23.15 and the fact
that j1p = e, £ = 1,2.

To prove (iii), note that (e1, e2), = 0 since they correspond to eigenvectors
associated with different eigenvalues of a self-adjoint operator. With respect to
the orthogonal basis (e1, e2), the operator D x, can then be written as

1
DXb = <|a(0)261 X e + ; €2 ® 62) .
2

1 H2
Dy, = ——5e1®e; + ——= €3 X ea.
P Jleal T Jleal? T

It remainsto compute ||e; ||, and ||ez 5. First, notethat el = b(0)/a(0), which
gives, using Theorem 23.8,

b(0)[* _ |a(0)]* + [b(0)[?
|a(0)/? Q)

On the other hand, using Corollary 23.9, we have

lexlly = llell3 + llef fI3 =1 +

lealls = (O PRSI + a(0)1*[b1 — 2Ja(0)* RE(O) k%, b))
_ 201 2 a(0Y4 L\ a(0)[2 2
~ HO)P(1 = BOP) + a0 (o — 1) = 2HaO)00)
= (1~ D)1 ~ [a®)P)(BO) + |a(0))
= B3O + a(0)).

Finally, we get

la(0)[? 1

P o)+ 0P T (B + @)

€9 X es. O]
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23.6 Another representation of H(b)

In Section 19.2, we saw arepresentation of the 7 (b) space based on an abstract
functional embedding. In the nonextreme case, we can aso give a dlightly
different representation. Let b be a nonextreme point of the closed unit ball of
H*> and let a be the outer function defined by (23.2). Denote H, = L? & L?
along with
7. L2 — H,
fo— bfo(-af),
and
Ty @ 2 — H,
g — g®O0.

Theorem 23.17 The linear mapping 1T = (7, 7,) : L? ® L? — H, is an
abstract functional embedding (AFE).

Proof Forany f € L?, we have
Ibf ® (=af)ll, = lIbf13 + llaf]
= [ + laP) 117
= I f1I3,

the last equality following from the fact that |a|? + |b|> = 1 ae. on T. Thus
7 IS an isometry. The map =, is aso clearly an isometry and one can easily
check that

ﬂ:(hl D hg) = hl, h1 @ hsy € L2 D L2. (2319)
Now let f € H? and g € H?. We have

(nf,meg)m, = (0f @ (=af), 9@ O)m, = (bf, 9)2 =0,

because bf € H? and g € H?. That proves that 7H? | 7, H?. By (23.19),
we also clearly have

minf = m(bf ® (~af)) = bf.

Thus 77 is the multiplication operator by b and, in particular, it commutes
with the shift operator and maps H? into H2.

Finally, note that Clos(aL?) is areducing invariant subspace for the multi-
plication operator by z on L?. Hence, it follows from Theorem 8.29 that there
existsameasurableset E C T suchthat Clos(aL?) = ygL?.Sincea € xgL?,
a should vanish ae. on T\ E and then necessarily m(T\ E') = 0. That implies
that Clos(aL?) = L? and then the range of 11 is dense in Hi. O
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Let K, be the subspace defined by (19.4), and let K and K}’ the subspaces
defined by (19.7) and (19.6). It will be useful to have the following more
explicit transcriptions.

Lemma 23.18 Let b be a nonextreme point of the closed unit ball of H°°. We
have:

(i) Ky=(H*>® L}) o {bf ® (—af): f € L?};
(i) KY = 0@ H? ;
(iii) K, = (H?*® H?) o {bf & (—af): f € H*}.
Proof (i) Recall that
Ky = H, © (n(H?) @ 7. (H?)).
First note that
{of ® (—af): f € H*} =n(H?),

and since 7 is an isometry, this space is a closed subspace of H2? @ L?. Now
let o © oy € L? @ L% Then p © ¢ € K, if and only if

p@y L{bf®(~af): fe H*}
and
o @Y L (H?).
The second condition gives that, for any h € H?, we have
0= (@Y, m(h))m, = (@Y, h®O0)m, = (@, h)2.

This condition is thus equivalent to o € H2. Thus, we get that
Ky={p@y:pcH* pelPandp® Lbf® (—af), f € H*}.
(i) According to Lemma 19.5, we have

Ky =K, N (m.(H))*.

Thenitisclear that 0 & H2 C KJ. Conversdly, if ¢ &+ € K/, using (i), we
first have o € H? and

0@ Lbf @ (—af) (Y f € H?). (23.20)

On the other hand, since o © v L 7, (H?), that givesp © ¢ L f @ 0, for any
f € H?. Hence, (¢, f)o =0, f € H?, whichimpliesthat » | H?. But, since
¢ also belongsto H?, we get that ¢ = 0. Now, if we use (23.20), we obtain

<w7af>2:0 (fEHQ)

Since a is outer, aH? is dense in H2. Hence, ¢ 1. H?. We thus obtain that
pde0dH2.
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(iii) Recall that K} = K, & K. Hence, ¢ & ¢ € K} if and only if p € H?,
0DV Lbf®(—af), fe H*andp @y L 0@ g, g € H?. Thelast condition
isequivalenttov | H?, which meansthat ¢ € H? and that gives the desired
description of K. O

According to Theorem 19.8, we know that the map
Qo =y Ky — H(b)
isaunitary map. It could be useful to compute its adjoint. We have the follow-
ing lemma.

Lemma23.19 Let b be a nonextreme point of the closed unit ball of H>°. For
any h € H(b), we have

Qith=haoht,
where we recall that 1™ is the unique function in H? such that T;h = T, h™.

Proof Leto@y € Kj andleth € H(b). According to Lemma23.18, ¢, ¢ €
H? and

<(¢07bf>2 = <¢7 af>2 (f € H2) (2321)
Using Theorem 23.8, we have
(@Y, Qph)k, = (Qu(p @), h)p
= <(p7 h>b = <907 h>2 + <§0+, h+>2~
Let us check that o+ = 1. Using (23.21), for any f € H?, we have

<l_7307 f>2 = <C_“/}7 f>27

which meansthat by — ai L H?. In other words, P, (bp) = Py (ai). By the
uniqueness of ™, we get that o™ = 1. Thus,

<<)0 @7/)7 th>Kg = <90a h>2 + <w7h+>2 = <SD S 7/}7 h® h+>Hb'
It remainsto notethat h & ™ € K|. Wehave h & h* € H? & H?. Moreover,
forany f € H?, we have

(he&h™, bf & (—af))m, = (h,bf)2 — (h¥,af)2

= (Py(bh), f)2 — (Py(ah™), f)a,

and since P, (bh) = P, (ah*), wegettha h @ h™ L bf @ (—af) for any

f € H?. According to Lemma 23.18, we can conclude that 1 ¢ h™ € K} and
Qih=hoht. O

Let
W: H*®H? —— H?@H?
f®dg — zf®dzg.
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Then W defines abounded and linear operator on H? @ H? and it is clear that
W leavesthe (closed) subspace {bf & (—af) : f € H?} invariant. Hence, W*
leaves K invariant. Furthermore, it is easy to check that

W*. H?2® H? — H?@ H?
f@g — Py(2f) @ Pi(zg).
In other words, W* = S* @ S*.

Theorem 23.20 Let b be a nonextreme point of the closed unit ball of H°°.
Then the following diagram is commutative.

K, ——% ()
s @5 X, (23.22)
K} ——5— ()
b
In particular, X is unitarily equivalent to (S* & S*)\K;-
Proof Let f& g€ K;.Then

QW™ (f & g) = Qu(S"f ® 5™g)
= S*f
=Xpf
= XpQu(f @ g)-

This completes the proof. O

In Theorem 19.11, we have given a different representation of #(b) and a
different model for X,,. It isinteresting to explore the link between these two
representations. Thiswill be done in Exercise 23.6.2.

Exercises

Exercise23.6.1  Let b beanonextreme point of the closed unit ball of H>°
and define

Tg: H?> — H?>@ H?
fo— bfe(-af)

Show that T’z is an isometry and check that 7(7z) = K.

https://doi.org/10.1017/CBO9781139226769.010 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.010

23.7 A characterization of #(b) 293

Exercise23.6.2  Let b beanonextreme point of the closed unit ball of H°,
let A = (1—1[b|?)"/2 on T, let K}, be defined asin Lemma 23.18, and let

K, := H* © Clos(AH?) o {bf ® Af: f € H?}.
For f,g € H?, define
Qf © (—ag)) = [ © Ag.

(i) Show that €2 can be extended into a unitary operator from H? & H? onto
H? @ Clos(AH?).
(i) Show that QK] = K.
(i) Show that (S* & S)k; and (S* & VX)x; are unitarily equivalent and
the unitary equivalenceis given by Q.

Thisresult explainsthelink between the models of X, given by Theorem 19.11
and Theorem 23.20.

23.7 A characterization of H(b)

In this section, we treat an analog of Theorem 17.24 that characterizes H(b)
spaces when b is anonextreme point of the closed unit ball of H°°. To give the
motivation, we gather some properties of S* on H(b).

Lemma 23.21 Let b be a nonextreme point of the closed unit ball of H°,
and b # 0. Then the following assertions hold.

(i) H(b) is S*-invariant (we recall that the restriction of S* to #(b) was
denoted by X3).
(ii) I — XXy and I — XX, respectively, are operators of rank one and
rank two.
(iii) Forevery f € H(b),

1Xuf 11z < 115 — 1£(0)[.
(iv) Thereisan element f € #H(b), with £(0) # 0, such that
12X f115 = 1£1I5 — £ (0.

Proof (i) Thiswas established in Theorem 18.13.
(i) Thisfollows from Corollaries 18.23 and 23.15.
(iii) According to Theorem 23.14, for every function f € H(b), we have

IXefllz = IF15 = £ — la(0)*(f, bol*. (23.23)

This gives the required inequality.
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(iv) Define
= [IblI3kG — b(0)b.
By Corollary 23.9, this function belongs to # (b). Moreover, we have
(b, £)o = [IDlI3 (b, kg)s — b(0)(b, b}y, = [[B][3(0) — b(O)[[b]|Z = O,
and thus, by (23.23),
1Xu f1IE = 1F15 — £ ().

It remains to check that f(0) # 0. Remembering that ||b]|? = |a(0)|72 — 1
(Corollary 23.9), an easy computation shows that

_ 1 @) ~ o)
TO=""hor

and thus £(0) # 0, because |a(0)|? + |b(0)|? < 1. In fact,

a(0) = / a(C)dm(¢) and b(0) = / b() dm(C).

and thus, using the Cauchy—Schwarz inequality, we get
|a(0)* + [b(0)[* < /T(Ia(é)l2 +[b(O)*) dm(¢) = 1.

Hence, we have |a(0)|? + |b(0)|? = 1 if and only if

- / a(Q)? dmi(¢)
T

[ a©dm(©)

and
2
/ b(C)dm(Q)| = / IB(O)? dm(0).
T T

The last two identities hold provided that b is a constant function, which is
absurd. O

Lemma 23.21 provides the motivation for the following characterization of
H(b) spaces.

Theorem 23.22 Let H be a Hilbert space contained in H?2. Assume that the
following hold.

(i) H is S*-invariant (and denote the restriction of S* to H by T).
(ii) The operators I — T'T* and I — T*T, respectively, are of rank one and
rank two.
(iii) Foreach f € H,

ITf 17 < IF15 = FO)%. (23.24)
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(iv) Thereis an element f € #, with £(0) # 0, such that
ITf 13 = If15 = |FO)%.

Then there is a nonextreme point b in the closed unit ball of H°°, unique up to
a unimodular constant, such that 7 = #(b).

Proof According to Theorem 16.29, we know that H is contained contrac-
tively in H? and, if M denotes its complementary space, then S acts as a
contraction on M (note that the notation is different in this theorem, and in fact
the roles of M and H are exchanged). Our strategy is quite simple. We show
that S acts as an isometry on M. Then we apply Theorem 17.24 to deduce that
there exists a function b in the closed unit ball of H°° such that M = M (b),
and then Corollary 16.27 enables us to conclude that H = H(b). However, the
proof isvery long. To show that S acts as an isometry, we decompose the proof
into several steps, 14 in all.

Step 1: T is onto.

This is equivalent to saying that ker 7* = {0} and T has a closed range.
Assume that ker 7% # {0}. Since ker T* C R(I — TT*), by an argument
of dimension, we get ker 7% = R(I — T'T*). It follows from Theorem 7.22
that T* isapartial isometry and ker T' = R (I — T*T'). Hence, by hypothesis,
dimker T" = 2. But, this is impossible because ker T' C ker S* = C. Thus,
ker T* = {0}.

Now, we show that 7*T" has a closed range. Indeed, according to the decom-
position H = ker(I —T*T)®R(I-T*T), the operator T*T admits the matrix

representation
v (I 0
TT_(O T*T)’

where T*T is restricted to R(I — T*T). But, since R(I — T*T) is of
finite dimension, the operator 77|z ;-7 has aclosed range and then, by
Lemma 1.38, the operator 7*T aso has a closed range. Then Corollary 1.35
ensuresthat 7" is onto.

Step2: 1 € Hand f € H = Sf € H. In particular, all analytic poly-
nomials belong to H.

Argue by absurdity and assumethat 1 ¢ H. Then we would have
kerT =ker S*NH =CNH={0},

i.e. T"isabijection. But, sinceT'(I — T*T) = (I — TT*)T, wewould obtain
dimR(I — T*T) = dimR(I — TT*), which is a contradiction. Therefore,
1 € H. Furthermore, if f € H, then S*Sf = f — f(0) € H. Since T is
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onto, there exists h € H such that S*Sf = Th = S*h. Thisis equivalent to
Sf—hekerS*=C.Thus, Sf =h— h(0), whichimpliesthat Sf € H.

Step 3: The set
D={f e H:|Tfl7 = IS5~ 1/}
is a closed subspace of 7{. Moreover, ker(I — T*T) C {f € D : f(0) = 0}.

Itisclear that, if f € Dand A € C,then \f € D. Now, let f,g € D. We use
the parallelogram law twice below. First,

ITf +TallF, + IT(f — 913, = 20T fI17, + 2/ Tgll3,-
Second, by the definition of D,
2| Tf1I3, + 2I1Tgll3,
= 2| fl13, — 2f(0)]* + 2|95, — 2|9(0)[?
= |If +gllF + lf = gll3 = 1(f +9)O)F = |(f = 9)(0)]*.
Thus,
ITf +Tgll3 = If +gllF +1(f +9)(0)
= f =9l = (f = 9O = |T(f — 9)l3-
According to (23.24), on the one hand, we have
I1f =gl = 1(f = 9O = IT(f = 9)lI3 =0
and, on the other,
ITf +Tgll3, = IT(f + )3 < If +allF = I(f + 9)(O)%,

which is equivalent to

ITf +Tgll3, = If + gll3 + 1(f + 9)(O)* <0.

Hence, we get

ITCf + 93 = I1f +gllz = I(f + ) (O,

which meansthat f + g € D. Therefore, D isavector subspace of H.

We proceed to prove that D is closed. Let f € D. Then there exists a
sequence (f,,)»>1 inD that convergesto f in . SinceT" is continuous (in fact,
according to (23.24), it isa contraction), the sequence (T'f,,),>1 convergesto
Tf inH and, since H is contractively contained in H?2, the sequence (f,,)n>1
is also convergent to f in H2. In particular, since evaluations at points of D
are continuous on ID, the scalar sequence ( f,,(0)),,>1 convergesto f(0). Since
fn € D, wehave

ITfall3 = 13 — 12 (0.
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Letting n tend to oo, we thus get

ITfl3 = If15 = FO)1,

which meansthat f € D. Therefore, D isa closed subspace of H.
It remains to check that ker(I — T*T') C {f € D : f(0) = 0}. Fix an
element f € ker(I — T*T). Thenwe have f = T*T f, which implies that

£ = (£ T*T fae = T fl5 < F15 = [£O)1* < [I£115-
Thus, |Tf|I3, = || f|3, and f(0) = 0. In particular, f € D.
Step 4: There exists fo € D with f,(0) # 0and fo L ker(I — T*T).

By hypothesis, we know that there is a function f € D such that f(0) # 0.
Decompose f = fo+ f1 suchthat fy L ker(I—T*T) and f; € ker(I—T*T).
Using Step 3, we know that /1 € D and f1(0) = 0. Thus, fo € D and
f0(0) = f(0) # 0. Thefunction f, satisfies the required conditions.

To prove that S acts as an isometry on M, we now consider two situations:
1 ¢ Dand1 € D. The verification of the latter islonger (Steps 6-13).

Step 5: S acts as an isometry on M (case 1 ¢ D).

Denoteby V(1, fy) the vector space generated by 1 and f,. Thisvector spaceis
of dimension 2 because 1 and f, arelinearly independent (1 ¢ D and f, € D).
Moreover, sincel = (I —T*T)1, theinclusion V(1, fy) C R(I—T*T) holds.
Then, with an argument on dimension, we get

V(1, fo) =R —T"T),
and thisimplies that
H = ker(I —T*T) & V(1, fo). (23.25)
Using Steps 3 and 4, we have
ker(I —T*T)® Cfy C D.
Thus, appealing to Step 1 and (23.25)), we deduce that
H=TH=T(ker(I — T*T) & Cfy) = TD.
Now, for each g € M, we have

lgllZa = sup(llg + £I5 — 1£1I3,)
feH
= sup(llg + T3 — ITf13)
fep
= sup(||Sg + STf|3 — IT I35,
fep

= sup(||Sg + f = f(O)13 = ITf13)-
fep
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But, for each f € D,

1Sg + f = fO)I3 = 1Sg + fI3 + |f(0)]* = 2R(Sg + f, f(0))
= |Sg + fII5 = 1£(0)[?
= 18g + flI3 + ITf15 = 1113

Thus, we obtain
g3 = sup(lSg + fII3 — 1£17)
fep
< sup(||Sg + fII3 — I £13) = [1Sgll4-
feH
But, from Theorem 16.29, we already know that S acts as a contraction on M
and hence we conclude that S acts as an isometry on M.

For the rest of proof, we assumethat 1 € D and our goal isto show that S still
acts as an isometry on M.

Step 6: Suppose that there exists an integer n > 1 such that 2™ € D, with
0<m<n-—1.Then

|27 =1 0<m<n-1).

In particular, i3, (2™) = 2™, for all 0 < m < n—1, where i, is the canonical
injection from A into H2.

We argue by induction. For m = 0, since 1 € D, we have
713, = I1L)F - L.

But, 71 = S*1 = 0, which gives ||1||% = 1. Assume that, for some m, with
0 < mg < n— 1, theidentity ||z||3y = 1 holdsfor al 0 < m < mq. Then,
using the fact that z™°+! € D, we get

IT2m0* 3y = (|20 1o

However, Tz"0+1 = »™0 and we deduce that ||zt ||3 = ||z |l% = 1.
Hence, the identity ||2™||+ = 1 holdsfor al 0 < m < mg + 1. Therefore, by
induction, it holdsforal 0 < m <n — 1.

In the trivial decomposition z™ = 2™ + 0, we have 2™ € H,0 € M and
1213 = [|2™]3, + ||0]|34- Thus, by Corollary 16.28, we have i3, z,, = zp,
foradl0<m<n-—1.

Step 7: There exists an integer n > 1suchthat 2™ € D, forall0 < m <n-—1,
but 2™ & D.

Assume on the contrary that, for all & > 0, z* € D. Then, according to Step 6,
we get i3,z = 2, for al k > 0. Therefore, izi, 2% = 2F, for dl k > 0.
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But, z* is an orthonormal basis of H? and thus i3}, = Ip=. In particular,
using Corollary 16.8, we get

H = M(in) = M((ini5)"?) = M(Iy2) = H>.

Thus, we have T' = S*, or equivaently 7* = S, which gives I — TT* = 0.
Thisis absurd.

Step 8: Let n be as in Step 7. Then (I — TT*)z"~* # 0 and T*"1 # z".
Moreover, if n > 1, we also have
T*mel _ Zm,
(I o TT*)ZHL—l — O,
T*kszk _ Zm7

foralll<m<n-1land0 <k <m.

To prove the first relation, we again argue by absurdity. Assume that (I —
TT*)z"~1 = 0. Since

(I-TT*)" ' =1 -TTHT" =T((I—-T*T)z"),

it would imply that (I — T*T)z" € ker T. But the function (I — T*T')z" is
aso orthogonal to the kernel of T'. Indeed, we have ker T' = ker S*N'H = C1
and, sincen > 1,

(I =T"T)2", Lo =

Thus, (I — T*T)z"™ L ker T, which isequivalentto (I — T*T)z" = 0. This
means that 2™ € ker(I — T*T). But, by Step 3, we conclude that 2" € D, a
contradiction with the definition of n. Therefore, (I — TT*)z"~! £ 0.

If n=1,then (I — TT*)1 # 0, thatis1 # TT*1. Hence, z # T*1. Now,
assumethat n > 1. We first prove that

T*zm=t = m, forevery 1 <m <n — 1. (23.26)
We have

(T2t = 2™ = T2 3+ 27 5 — 2R 2 )y
and

<T*Zm_1,zm>7.¢ _ <Zm_17TZm>H _ Hzm_lll%{'
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Hence, using Step 6, we get
752" =23 = T2 5 + 1 =2 = T2 H5, - 1. (23.27)
But, since T is a contraction on H, we have
IT*2" "l < T 121 < 1

Thus (23.27) impliesthat | 72"~ — 2™ |3, < 0, which gives (23.26).
SinceT*z™ 1 = 2™ wehave TT*zm~1 = 2™~1 and thus

(I-TT*)z" =0 (1<m<n-—1).

To prove that 7*"1 # 2", we argue by absurdity. Assume that 7*"1 = 2.
Then

12713 = (=", 2" = (2" T L) = (T"2", 1)
But, 7" z" = 1, whence
12" 13 = 1113 = 1.
In particular, we deduce that
12" 12 = 112" e = 172" [l

Thismeansthat 2™ € D, which isacontradiction. Thus, we have T*"1 # 2™,
Finally, it remains to prove that

THhym=k =m0 <k <m). (23.28)

We argue by induction. For k& = 0, it is obvious. Now, assume that, for some
0 < k < m,wehaveT**2m~% = »™ Then using (23.26), we have

T*(kJrl)me(kJrl) _ T*k(T*mekfl) — T*kszk — Zm’

which proves (23.28).

Step 9: Let f € H and write

n—1

f(z) = Z amz™ + 2" T f(2) (z € D).
m=0
Then

n—1
115 =D laml* + 12" TF (13

m=0
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We have
n—1 2 n—1
£ = || D amz™|| + 12" T I3 +2 D Rlam (2™, 2" T )).
m=0 H m=0

But, using Step 6,

Hence,
n—1 2 n—1
Z amz™|| = Z |am |?.
m=0 H m=0
Moreover,
(&, 2T fag = (05, (="), 2" T" )y
= (2", in(z"T"f))2
= (2", 2"T"f)2 =0 (0<m<n-—1).
This proves Step 9.

Step 10: For every f € H and g € M, we have

lg + F1I2 = 113 = lg + 2" TfII5 — 12" T"f |13,

Write
n—1
f=Y amz™+2"T"f.
m=0
Then
n—1 2
lg + I3 = 1F113 = ||g + 2" + > amz"| —I£15
m=0 2

n—1
=llg +="T"fll5+ D laml* = £ 113
m=0

n—1

+2 Z R(am (™, g+ 2"T"f)2).

m=0
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Using Step 9, we get

llg + £113 = 11 £113,

n—1
= llg+2"T"f113 = 12" T fII3 +2 Y Rlam(z", g+ 2"T"f)a).
m=0
But, for every 0 < m <n — 1, we have
<Zma g+ ZnTnf>2 = <Zmag>2
= (2", im(9))2
(

iMm(z™), 9)m =0,

because i’y ((2™) = 2™ — i3,(2™) = 2™ — 2™ = 0. This proves Step 10.

Step 11. For every f € H, there exists f € ker(I — T™T*™) such that
lg+ F13 = 1713 =g+ FI5=1F15 (g€ M).

Let f € H, and definethe constants ¢, ¢y, . . . , ¢,,—1 recursively by the formu-
las

an = ("7 (I =TT*)2" Yy,

Cn—1=—(f, (I fTT*)z"A)H/an

and, if n > 1,
n—1
Cn—k = —<f+ Z cmz™, Tk_l(l— TT*)T*k_lz”_k> /am
m=n—k+1 H

for 2 < k < n. Note that «,, # 0 and thus the sequence ¢y, ¢y, ...,¢h—1
iswell defined. Indeed, since I — T'T* is a self-adjoint operator of rank one,
there exists an element ¢ € ‘H suchthat I — T7T* = g ® g, and thus o, =
[(z" Y g)u | If o, = 0, then it would imply that (2", g)3, = 0 and that
(I —TT*)z"~! =0, acontradiction with Step 8.

Then we define

n—1
f = f+ Z C’rnzm)

m=0

and we show that f satisfiesthe required properties. We obviously have T f =
T™f, whence, according to Step 10, we have

g+ f1I3 = I £1I5 = llg + 2"T"f|15 — I|z"T"f|I3,
= llg+2"T"f|I5 = |z"T" |5
=lg+fI3-IIf17 (g€ M).
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Thus, it remains to check that f € ker(I — T™T*"), which is eguivalent to
fLR(I—T"T*").But

I — T’nT*n — ZTk‘fl(I _ TT*)T*kfl’
k=1

whence it is sufficient to prove that f L R(T*~'(I — TT*)T**~1). Define
up = TF=1(I — TT*)T*"~27~* and note that u;, # 0. In fact, according to
Step 8, we have
(2" )y = (TR (T =TTk,
_ <Zn—1, (I _ TT*)Zn—1>H
=ay #0.
Hence, 7%~ (I — TT*)T**~! is an operator of rank one and its range is

generated by . Therefore, f L R(T*1(I — TT*)T**~1) is equivalent
to f L ug, 1 <k < n.Now, note that

n—1
<fa uk>7‘l = <f7 uk>'H + Z cm,<zma uk>7—l'

m=0
But, according to the definitions of ¢,,,, we have

n—1

Cn—kQn = _<f+ Z szma uk> s
m=n—k-+1 H
whence
n—1 n—1
<fa uk>7—l = —Cp—kQn — Z Cm<Zmauk>H = Z Cm<Zmauk>H'
m=n—k+1 m=n—k
Thus, we get
n—k—1
f7 uk‘ Z Cm
m=0

Forevery 0 <m <n—k — 1, we have

<Zmauk>?-[ :< m Tk 1(]— TT*) (kfl)zn7k>H

:< m+k 17 (I TT*) n71>H
<(I TT*)Zm-‘rk 1 L= 1>

)

and, according to Step 8, we have (I — T'T*)z™*+*=1 = 0 (and note that
m+k—1<n—2).Thus, (z", ur)y = 0and (f,ug)y = 0, for every
1 < k < n. Thisproves Step 11.
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Step 12: If h € ker(I — T™T*™), then
[Rl[3 = [|2"Rl|3- (23.29)
Moreover, for every g € M, we have
lgli3a = sup{llg+f13—11="FI1%, : f € Hand (I-T"T*")f = 0}. (23.30)
Takeany h € ker(I — T™T*™). Then, for every 0 < m < n — 1, we have

<(I—T*nTn)(2nh), P > Znh, ( T*nTn)(Zm»H

=

= (z"h, 2")n

= (z"h ZH(Z'”)M
= (2"h,z™)s = 0.

Thisprovesthat (I — T*"T"™)(z"h) L ker T™. Moreover,
T™(I — T T")(2"h)) = (I — T"T*")(T"2"h) = (I — T"T*")h = 0.
Therefore, (I —T*"T™)(2"h) = 0, thatisz"h = T**T™(2"h). Thus,
12" hll3, = ("h, T T (2" )2
= 1T (Z")l3, = 17113
Now, using Step 11 and (23.29), we get

g3 = sup{llg + fII3 = IIfII3, : f € H}
=sup{|lg + fII3 = | fl3, : f € Hand f € ker(I — T"T*")}
=sup{|lg + flI3 — 2" fII3, : f € Hand f € ker(I — T"T*")},

which proves (23.30).
Step 13: S acts as an isometry on M (case 1 € D).

Since ||zg||m < ||gl|m. for every g € M and H = T™H, using Step 12, we

have
12"l % < llzglln < llgli3a-
But
g3 = sup g+ T fIl5 — 1I2"T"f 13,
(I— T,LTM)(Tnf) 0
= sup 129 + 2" T"f||5 — |I2"T"f |3,
feH,

I—Tr im0
< lI="gl3-

Hence, ||zg||m = |lg]l a1, Which proves Step 13.
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Step 14: There is a nonextreme point b in the closed unit ball of H°°, unique
up to a unimodular constant, such that # = H(b).

According to Steps5 and 13, S acts as an isometry on M. Therefore, Theorem
17.24 implies that there exists a function b in the closed unit ball of H°° such
that M = M(b). Now Corollary 16.27 implies that H = H(b). Finally, b
cannot be an extreme point of the closed unit ball of H°°, since for instance
the analytic polynomials belongs to #(b) (see Exercise 18.9.4).

This completes the proof of Theorem 23.22. O

23.8 Moreinhabitantsof #(b)

In Section 18.6, we showed that
Qb € H(b) (w e D).

Itistrivial that the reproducing kernel k% isasoin 7 (b). In Section 23.4, we
saw that the analytic polynomiasform adense manifold in #(b). Now, we use
thisinformation to find more objects in 4 (b). Moreover, we also discuss some
properties on the newly found elements.

Theorem 23.23 Let b be a nonextreme point of the closed unit ball of H°°,
and let w € D. Then

ky € H(b) and bk, € H(b).
Moreover, for every f € H(b), we have
b(w)

(£ kw)o = f(w) + a(w) fH(w) (23.31)
and
(f, bk = f;(%). (23.32)

Proof According to Theorems 17.8 and 23.2, the Cauchy kernel k., belongs
to #(b) if and only if T}k, belongsto M (a). But, by (12.7), we have

Tpky = b(w)k, and Tzk, = a(w)ky,
which implies that

kb = = Ky, (23.33)
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Thus, by Theorem 23.8, for every f € H(b), we have
<fa w>b = <f7 w>2 + <f+7 w>

<.f7 w>2+b(( §<f+ k >

— f(w) + a((;‘;))fw»

Remember that k., isthe reproducing kernel of H?2.
Similarly, the function bk,, belongs to #H(b) if and only if the function
T3 (bk,,) belongsto M(a). But, once more using 13k, = a(w)k,,, we obtain
Ty(bkw) = Py (b]*kuw)

= P ((1 —|al*)kw)
— by — Ta(aky)

:Ta(cjz;”])—akw),

which shows that bk, € H(b) and, moreover, that

(mﬁ_<1—0m. (23.34)

a(w)

Thus, by Theorem 23.8, for every f € H(b), we have
<f7 bkw>b = <f» bkw>2 + <f+a (bkw)+>2

= <f7 bkw>2 + ﬁ <f+a kw>2 - <f+7akw>2
= (bka)s = (7 ke + DL,

To finish the proof and get the equality (23.32), it remains to notice that, by
Lemma4.8,

(£ bkw)2 = (bf kw)o

(bf
@ >
= (Taf™ kuw)2
= (f" akw>

This completes the proof. O

If we take w = 0 in Theorem 23.23, we obtain the following special case.
However, note that the first conclusion was already obtained in Corollary 23.9.

Corollary 23.24 Let b be a nonextreme point of the closed unit ball of H*°.
Then

be H(D).
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Moreover, for every f € H(b), we have

<f71>b:f(0>+a7f+(0)
and
f1(0)
0)
ave

<f7b>b =

a(
Corollary 23.25 Let z,w € D. Thenwe h
(kzykw)p = (1 + b('z)b(w))kz(w), (23.35)

a(z)a(w)

b(z)
kz,bkw = Tkz w), 23.36
( )b D) (w) (23.36)

1
Proof Using (23.31) with f = k., we get

bk, bk )b

<kz, kw>b = kZ(w) +

Now, apply (23.33) to obtain (23.35).
If weput f = k. in (23.32), we obtain

k] (w) z)
k., bky)p = = — k,(w).
< >b a(w) a(z)a(w) ( )

Finally, to prove (23.37), we apply (23.32) with f = bk, and use (23.34).
Hence, we have

(b, bl )y = W) 1 (1 —a(w)>kz(w). .

Note that if we take z = w in (23.35), then we get
2
o = — <1+ 1bCw)| ) (23.39)

1— Jwl? |a(w)[?

In Theorem 23.13, we showed that analytic polynomials form a dense mani-
foldin #(b). Knowing that Cauchy kernelsare aso in #(b) (Theorem 23.23),
we expect to have a similar result for the manifold they create. The following
result provides an affirmative answer.

Corollary 23.26 Let b be a nonextreme point of the closed unit ball of H=°.
Then

Span(k,, : w € D) = H(b).
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Proof Let f € H(b) besuchthat f | Span(k, : w € D). Then, according
to Theorem 23.23, we have

b(w)
a(w)

flw) + ffw)y=0  (weD).
This is equivalent to fa = —bf* on T. Multiplying this equality by b and
using the identity |a|? + [b|? = 1, we obtain

abf —aft) = —f+. (23.39)

Therelation T} f = T, f+ canberewrittenas P, (bf —af*) = 0, which means
that the function b f — af*+ belongsto PTOQ. In particular, by (23.39), we deduce
that f* /a belongsto L2. Now, on the one hand, it follows from Corollary 4.28
that £ /a belongs to H?, because a is outer. On the other hand, (23.39) also
implies that f* /a belongs to HZ, whence f+/a = 0. That is, f* = 0 and
then f = 0, which provesthat the linear span of Cauchy kernels k,,,, w € D, is
densein H(b). O

Exercise

Exercise23.8.1 Let (a,b) beapair. Show that
(k)" = b(w)ak,  (weD).

Hint: Note that k% = k,, — b(w)bk,,. Then use (23.33) and (23.34).

23.9 Unbounded Toeplitz operatorsand #(b) spaces

In this section, we explain the close relation between #(b) spaces and
unbounded Toeplitz operators with symbols in the Smirnov class. We first
recall that the Nevanlinna class /' consists of holomorphic functionsin D that
are quotients of functionsin H°°, and the Smirnov class N'* consists of such
quotients in which the denominators are outer functions; see Section 5.1. The
representation of such functions as the quotient of two H°° functions, even
if we assume the denominator is outer, is not unique. However, if we impose
some extra conditions, then the representation becomes unique.

Lemma 23.27 Let ¢ be a nonzero function in the Smirnov class N*. Then
there exists a unique pair (a, b) such that o = b/a.

Proof By definition, we can write ¢ as ¢ = 11 /12, Where 1,12 € H™,

1y # 0 and v, is outer. If the required pair (a, b) exists then, because |a|? +
|b|2 = 1 ae. on T, the function a must satisfy the identity

L—[af? _ [

|af? |1h2]?
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that is,
|a|2 _ |1/J2\2
[P1]2 + [

Since 1), € H>, the function |+»|? islog-integrable on T and hence |11 | +
|2 |? isalso log-integrable on T. Thusthere is aunique function a € H*° that
satisfies (23.40) and is positive at the origin. For the function b = ap, then we
have

(ae.onT). (23.40)

2| e S 1

lal> + |b]? = =1 (aeonT).

= +

[1]? + |2l [1]? + [h2f? 4o
Hence (a, b) is a pair and the existence of the desired representation of ¢ is
established. The unigueness holds because the outer function a is uniquely
determined by (23.40) and a(0) > 0. O

The representation of ¢ € N+ given by Lemma 23.27 is called the canoni-
cal representation of .

We start now with afunction ¢ that is holomorphic in D and define T, to be
the operator of multiplication by ¢ on the domain

D(T,) = {f € H”:pf € H*}.

Itis easily seen that T, is a closed operator; see Section 7.7. Indeed, let f,, €
D(T,) suchthat f,, — fin H* and ¢ f, — g in H2. In particular, for each
z € D, wehave f,(z) — f(z) and (¢ fn)(2) — g(z). Since (¢fn)(z) also
tends to ¢(z) f(z), we deduce that ¢ f = g. In other words, f € D(T,,) and
T,f = g. Hence, thegraph of T, G(T,) = {f ® ¢f : f € H?, pf € H?},
isclosed in H? @ H?, which meansthat T, isaclosed operator.

Lemma23.28 Let ¢ be a function holomorphic on ID. Then the following are
equivalent:

(i) D(Ty) #{0};

(ii) ¢ isin the Nevanlinna class .

Proof Suppose that there exists a function f # 0 that belongs to D(T,,).
Thusp = ¢f/ f isthe quotient of two H? functions, hence the quotient of two
functionsin . Thus, ¢ € N. Conversely, if ¢ isin the Nevanlinnaclass, then
we can write ¢ = 1 /12, Where ¢, and v, arein H>. Then D(T,,) contains
the set ¢, H2. O

Lemma23.29 Let ¢ be afunction holomorphic on D. Then the following are
equivalent:

(i) D(T,) is dense in H?;
(i) ¢ isin the Smirnov class ',
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Proof (i) = (ii) Since D(T,) isdense, itisin particular not reduced to {0}.
Hence, according to Lemma 23.28, ¢ is in the Nevanlinna class. Write ¢ =
v /x, where ¢ and x are functions in H°, whose inner factors are relatively
prime. Assume that f isin D(T,) and let g = ¢f. Then ¢ f = xg. Write
Y = itho, f = fifor X = XiXo @ g = gigo, Where v, fi, xi, g; areinner
and v, fo, Xo, go areouter. By the uniqueness of the canonical factorization
for the inner and outer parts, we have ¢; f; = xig:;. Since GCD (¢, x;) = 1,
then x; divides f;, which means that there is an inner function 6, such that
fi = 0;x;. Hence, Yo f = o fifo = xi0iofo. We get from this relation that
o f € xH?. Using once more the uniqueness of the canonical factorization,
we deduce that f € x,; H?. Thus D(T},) C x;H?. Now, since D(T,) is dense
in H?, we conclude by Theorem 8.16 that y; must be a constant. In other
words, Y must be outer and then o € N/,

(i) = (i) If ¢ = ¥/x, where and x arein H*> and x is outer, then, as
noted above, D(T,,) contains x H?2, which is dense in H? by Theorem 8.16.
Hence D(T,,) isalso densein H>. O

Wejust have seen that, when ¢ € N/, thenthedomain of 7, isdensein H=.
Using the canonical representation of o, we can precisely identify D(T,,).

Lemma 23.30 Let ¢ be a nonzero function in A/ with canonical represen-
tation ¢ = b/a. Then
D(T,) = aH?.

Proof Theinclusion aH? C D(T,) is clear (as noted above). Suppose now
that f € D(T,). Then we have

[b1%]./2]

2_7:
|90f‘_ |a‘2

2
—|f? (ae.onT),

a

which implies that f/a isin L?(T). Since a is outer, Corollary 4.28 implies
that f/a isin H?, giving theinclusion D(T,,) C aH?. O

Since, whenever ¢ € N, the operator T, is densely defined and closed,
its adjoint 7} is also densely defined and closed. The next result shows that
de Branges—Rovnyak spaces naturally occur as the domain of the adjoint of
Toeplitz operators with symbolsin N .

Theorem 23.31 Let ¢ be a nonzero function in A/ with canonical represen-
tation ¢ = b/a. Then the following assertions hold.

(i) D(T) = H(b).
(i) Foreach f € H(b), we have T} f = f* and

13 = I1F115 + 175 f115- (23.41)
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Proof (i) By definition, afunction f € H? belongs to D(T};) if and only if
thereisafunction g € H? such that

(Tpoh, )2 = (h. g)2 (23.42)

forall h € D(T,). By Lemma23.30, D(7},) = aH?, which meansthat f €
D(Ty) if and only if thereis g € H? such that

(Tp(arp), f)2 = (ay, g)2 (23.43)
foral ¢ € H% But
(T, (a), f)2 = (b9, f)a.
Hence, (23.43) is equivalent to
(b, fla = (a,g)s (¢ € H?),
which can be written as
(¥, bf —ag)2=0 (Y€ H?).

In other words, f € D(T7;) if and only if there exists afunction g € H? such

that
T f = Tag. (23.49)
It follows from Theorems 17.8 and 23.2 that this is equivalent to saying that
f e H(b).
(ii) If we compare (23.44) and (23.42), we have
[f=9=Tf
Then, (23.41) follows from Theorem 23.8. O
Exercises

Exercise23.9.1 Letp bearational function inthe Smirnov class. Show that
thefunctionsa and b in the canonical representation of ¢ arerational functions.
Hint: Assume that ¢ = p/q, where p and ¢ are polynomias with GCD
(p,q) = 1, g hasnorootsinD and ¢(0) > 0. Note that the function [p|? + |q¢|?
is a nonnegative trigonometric polynomial. Apply the Fejér—Riesz theorem
to get a polynomial r without roots in D, with »(0) > 0 and such that
7|2 = |p|> + |q|?; see Theorem 27.19. Note now that a = ¢/r is a rational
functionand b = ap = p/r isaso arational function. Verify that (a,b) isa
pair and ¢ = b/a.
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Exercise239.2 Letp € N*andy € H*. Wedenote T, = T7;.

(i) Show thaet D(T,,) C D(Ty).
Hint: Use Theorem 23.31 and Lemma 23.30.
(ii) Show that, for any g € D(T,), we have

Tzg = Pi(pg).
Hint: Note that, for any f € D(T,,),

(Tp9, 2 =(9,0f)2 = (pg, f)2 = (P+(®9), f)2.
Exercise23.9.3 Letp € N andy € H>. Show that, forany f € D(T}),
we have

ToTyf = Topf =T3T5f.
Hint: Note that, if ¢ = a/b isthe canonical representation of ¢, then D(T;) =
H(b) isinvariant under T';. Hence Ty f € D(Ty). For g € D(T),), we have
(TeTyf g)2 = (Tyf,p9)2
= (f,vvg)2
= (Tu}@f, 9)2,
which shows that 757 f = T, f. Argue similarly to prove that 7;;7; f =
Topf-

Notes on Chapter 23

Section 23.1
Theorems 23.2 and 23.3 are due to Sarason [159, lemmas 3, 4 and 5].

Section 23.3

Theorem 23.8 is due to Sarason [159, lemma 2]. The idea of using the element
T to computethe normisvery useful and has also been introduced by Sarason
in[159]. The power of the method isillustrated by Corollary 23.9. It illustrates
very well that the computation of the norm of an element f € H(b) is trans-
formed into the resolution of a system 73, f = Tzg, where we are looking
for asolution g € H?2. For instance, the norm of 5*b has been computed by
Sarason in [160] using another more difficult method; see Exercise 18.9.5. The
computation presented here and based on f isfrom Sarason’s book [166].

In[159], Sarason proved the density of 7 (b) in #(b), when b isnonextreme;
see Corollary 23.10.
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The formula of Theorem 23.11 to find the element £ by alimiting process
is due to Sarason [159].
Exercises 23.3.1, 23.3.2 and 23.3.3 come aso from [159].

Section 23.4

Thedensity of polynomialsin M (a) and H(b) (in the nonextreme case) proved
in Theorem 23.13 is due to Sarason [159, corollary 1].

Section 23.5

Theorem 23.14 and Corollary 23.15 are due to Sarason [160]. In that paper, he
is motivated by relating de Branges and Rovnyak’s model theory with that of
Sz.-Nagy and Foias. Thus, he constructs the Sz.-Nagy—Foias model of X}, and,
for that, he needs to determine the defect operators of the contraction X,.

Section 23.6

Lemma 23.19 is from [166]. Theorem 23.20 is aso due to Sarason [160] and
can be rephrased in the context of Sz.-Nagy—Foias theory. Indeed, in the case
when b is nonextreme, then dim Dy, = 2 and dimDx; = 1. Let uy and us
be a pair of orthogonal unit vectors in Dy, and let v = ||S*b||, ' S*b be the
unit vector spanning Dx . Then, the operator function © x, is determined by
the 1 x 2 matrix function (61, 62), where 6, is defined by

Ox,(MNu; =0;(Mv (1=1,2).

If wereplaceu,, us by another orthonormal basisfor D, , thenit will multiply
the matrix function (6, 62) from the right by a constant 2 x 2 unit matrix. In
[160], Sarason shows that thereis a choice of basis (1, u2) such that 6, (A\) =
b(\) and B5(\) = a()). Inthis context, Theorem 23.20 says exactly that S* @
SﬁK; isthe Sz.-Nagy—Foias model of X, and the projection ), implements the
unitary eguivalence between the operator X, and its Sz.-Nagy—Foias model.

Section 23.7

Theorem 23.22 is due to Guyker [96]. It answers a question raised by de
Branges and Rovnyak [65, p. 39]. See also the paper of Leech [116], who
obtained other equivalent conditions for a Hilbert space # to coincide with a
de Branges—Rovnyak space H (b) for some nonextreme function b.
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Section 23.8

The fact that the Cauchy kernel k,, belongsto 7 (b) when b is nonextreme, as
well as the computation of the norm of k,,, are due to Sarason [160, proposi-
tion 1]. The two formulas (23.31) and (23.32) that appear in Theorem 23.23
are also due to Sarason [164, proposition].

Corollary 23.26 is from [159], but we have given a different proof.

Section 23.9

Unbounded Toeplitz operators on the Hardy space H? arise often with symbols
belonging to L?(T). However, there are natural questions that lead to Toeplitz
operators having more restrictive symbols, in particular with symbols in the
Smirnov class. We mention interesting works of Helson [101], Suarez [182]
and Seubert [174]. The links between H(b) spaces and the domain of the
adjoint of Toeplitz operators with symbols in the Smirnov class are due to
Sarason [170].

https://doi.org/10.1017/CBO9781139226769.010 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.010

