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T. K. PAN 

1. Introduction. Consider any three congruences of an orthogonal ennuple 
at a point of a Riemannian space. When one congruence is moved by local and 
a second congruence is moved by parallel displacement in the direction of the 
third congruence, the rate of change of cosine of the angle between the first two 
congruences is well known as Ricci's coefficient of rotation and has been 
extensively studied. It is the purpose of this note to investigate the corresponding 
rate of change, when the third congruence is replaced by an arbitrary one, in 
connection with parallelism and equidistance of congruences as studied by Miss 
Peters [2; 3]. 

The notation of Eisenhart [1] will be used for the most part. 

2. Definition. A congruence of curves is uniquely determined by a vector 
field, which at a point is tangent to the curve of the congruence through the 
point. Let \h\ (h = 1, . . . , ri), be the unit tangents to n congruences of an 
orthogonal ennuple in a Riemannian space Vn, whose first fundamental form 
gijdxidxj is positive definite. We assume that the components X̂ jz* and the 
coefficients gtj are real analytic functions of the coordinates x's. 

Let 

n 

m=l 

be an arbitrary but fixed congruence of curves C, where ch = #* A»|* = cos 6hf 

6h being the angle which C makes with the congruence \h\. The unit tangent 
vector to C is given by 

n I ( n \ \ 

(2.1) £*= D^AmlV ( E ^ 2 ) • 
m=l ' \ m=l / 

When A/J is displaced locally and AA| parallelly along C, the rate at which the 
cosine of the angle between them changes is measured by phkl where 

n f f n \\ 
(2.2) phk = \h\i.j ^k\ £J = Z^t cm y h k m I I 2 ^ cm ) j 
7hkm being Ricci's coefficients of rotation of the orthogonal ennuple. 

The vanishing of the partial derivatives of phk with respect to the c's requires 

(2.3) C\ : c2 : . . . : cn = ynk\ : yhk2 : . . . : yhkn. 

Substituting (2.3) into (2.2) we find that the extreme of phk as £* varies is equal to 
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(2.4) yM 

The preceding result (2.4) is obtained with the assumption that phk is a func­
tion of the c's. Suppose phk is independent of the c's. Then from (2.2) we have 

(2.5) yMm = 0 (m = 1, . . . , «), 

and consequently ^ = 0. If zero is considered as the extreme of zero's, this 
extreme value can be obtained also by the substitution of (2.5) into (2.4). 
Hence the formula (2.4) is valid whether phk is a function of the cs or not. 

We call yhk the variation of \h\ with respect to \k\. When m in (2.1) does not take 
the value k, we call yhk the subvariation of \h\ with respect to \k\. 

3. Properties. Since yhkm + ykhm = 0 and 

Z*t y Mem Aro| / \ 2-^ yhkm ) \) Z^/ T^ro^ro! / \ ]LI yhkm J ( = — 1, 

it is evident that the variation of any two orthogonal congruences with respect to 
each other are equal and the corresponding directions of displacement are coincident 
but opposite in sense. 

The variation of any congruence with respect to itself is zero, since yhhm = 0 
for m = 1, . . . , n. The variation of a congruence with respect to another 
congruence of an ennuple, that is yhk, h ^ k, is zero if and only if the rate of 
change phk is zero along every congruence of the ennuple and hence along any 
congruence of curves in the Vn. In both cases the curve of displacement is 
arbitrary. 

All the congruences of an orthogonal ennuple are normal if and only if 

(3.1) y Mm = 0 (h, k, m = 1, . . . , n; h ^ k ^ my^h). 

To such an ennuple corresponds an ?z-ply orthogonal system of hypersurfaces. 
Substitution of (3.1) into (2.4) gives 

(3.2) yM = (T***2 + ym
2)> = ( I A M 2 + l/rm

2)" = (1/&»*2 + 1/W)*, 

where l/rhk and l/bhk are respectively [2, pp. 108-109] the angular and distantial 
spreads of the congruence X |̂ with respect to the congruence X |̂. Hence we 
have 

THEOREM 3.1. In an orthogonal ennuple of normal congruences, a congruence 
has zero variation with respect to a second if and only if each congruence is equi­
distant with respect to the other or each congruence is parallel with respect to the 
other. 

When the variation (subvariation) of a congruence of an orthogonal ennuple 
with respect to another congruence of the ennuple is numerically equal to a 
coefficient of rotation, we call the former congruence a principal (subprincipal) 
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congruence with respect to the latter congruence. Hence we have from (3.2). 

THEOREM 3.2. A congruence of an orthogonal ennuple of normal congruences 
is a principal congruence with respect to another congruence of the ennuple if and 
only if one is parallel along the other. 

Let n — 1 mutually orthogonal congruences X«| {a = 1, . . . , n — 1), ortho­
gonal to a normal congruence Xj, be canonical with respect to the latter. 
Necessary and sufficient conditions for this [1, p. 128] are ynap = 0, a 9e 13. 
Such a normal congruence is normal to the hypersurface FM_i determined by the 
Xa|'s, which are the lines of curvature of the Vn-\. 

The subvariation yan of X«| with respect to \n\ is then equal to \yana\' Hence 
we have 

THEOREM 3.3. A congruence of an orthogonal ennuple is a subprincipal con­
gruence with respect to a congruence of the ennuple if the former is any one of the 
n — 1 principal directions in the hypersurface normal to the latter. 

The difference between the squares of the variation and the subvariation of 
\h\ with respect to \n\ is found from (2.4) to be 

n n—1 

E 2 _ V ^ 2 _ 2 

m=l a=l 

Let \xl denote the angular spread vector of \h\ with respect to Xn|, that is 
M* = Xft| i,j ^n\j- The projection of the vector /z* in the direction \n\ is called the 
tendency of \h\ in that direction. Its value is 

(3.3) fil \n\i = \h\ itj \n\l \n\j = y h n n i 

which is equal to zero for h = 1, . . . ,n — l i f and only if Xn| is a congruence 
of geodesies [1, pp. 100]. Hence we have 

THEOREM 3.4. The difference between the squares of the variation and the 
subvariation of a congruence of an orthogonal ennuple with respect to another 
congruence of the ennuple is the square of the tendency of the former in the direction 
of the latter. The variation and the subvariation of each of n — 1 congruences of an 
orthogonal ennuple with respect to the remaining one congruence of the ennuple 
are equal if and only if the latter is a congruence of geodesies. 

Let the congruence \h\ of an orthogonal ennuple be normal. Then [1, p. 114] 
we have yhap = y^a (a, P = 1, . . . , n; a ^ /3 ^ h). Consequently, equation 
(2.4) reduces to 

n 

(3.4) yM
2 = yhkh

2 + J2 ymM
2 = y m

2 + 1/VM
2, 

since yhhk = 0. Hence we have 

THEOREM 3.5. The square of the variation of a normal congruence of an ortho­
gonal ennuple with respect to another congruence of the ennuple differs from the 
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square of the angular spread of the same by the square of the tendency of the latter 
congruence in the direction of the former congruence. The variation and the angular 
spread of a normal congruence of an orthogonal ennuple with respect to any one 
congruence of the ennuple are numerically equal if and only if the tendency of the 
latter in the direction of the former is zero. 

Equation (3.4) indicates that the vanishing of yhk implies the vanishing of 
yhkh and l/rM and conversely. Hence we have 

THEOREM 3.6. If the variation of a normal congruence of an orthogonal ennuple 
with respect to another congruence of the ennuple is zero, then the former is parallel 
along the latter and the tendency of the latter in the direction of the former is zero. 
Conversely, if a normal congruence of an orthogonal ennuple is parallel along 
another congruence of the ennuple, whose tendency in the direction of the normal 
congruence is zero, then the variation of the normal congruence with respect to the 
latter congruence is zero. 

An immediate consequence of the preceding theorem is that a normal con­
gruence of geodesies of an orthogonal ennuple is parallel along a congruence of the 
ennuple if and only if the variation of the normal congruence with respect to it is 
zero. 

By summing over h in (2.4) we obtain 
n n 

(3.5) YJ ynk = Z) i/n*2» 
h=l h=l 

where l/rkk denotes the first curvature of \k\. Note that equation (3.5) holds 
for general orthogonal ennuple of congruences. Hence we have 

THEOREM 3.7. The curves of a congruence of an orthogonal ennuple are parallel 
along the curves of all congruences of the ennuple if and only if the variation of the 
congruence with respect to each congruence of the ennuple is zero. The curves of a 
congruence of an orthogonal ennuple are geodesies if the variation of the congruence 
with respect to each congruence of the ennuple is zero. 

If 7M = 0 for h, k = 1, . . . , n, then we have from (3.5) 

l/r*n = 0, l/rkk = 0 (h, k = 1, . . . , n). 

Consequently, all the congruences of the ennuple consists of geodesies and the 
curves of each congruence are parallel along the curves of all congruences of the 
ennuple [3, p. 565] and hence parallel along the curves of any congruence in the 
Vn. Thus we obtain from (3.5) 

THEOREM 3.8. The variation of each congruence of an orthogonal ennuple with 
respect to every other congruence of the ennuple is zero if and only if the ennuple 
consists of congruences of geodesies and each congruence of the ennuple is parallel 
along every other congruence of the ennuple and hence parallel along every con­
gruence in the Vn. 
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