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ENTROPY AND KINETIC THEORY FOR 
A CONFINED GAS 

JON SCHNUTE 

1. I n t r o d u c t i o n . A well-known theorem in the classical kinetic theory for 
a gas s tates t ha t the entropy is an increasing function of time. However, in 
order to obtain this theorem for a confined gas, some assumption about molecu
lar response to the container wall is required. For example, it is enough to 
suppose tha t the wall reflects the molecules specularly [4]. 

T h e need for a "wall hypothesis" in the entropy theorem certainly comes 
as no great surprise. After all, entropy is a measure of chaos in the system of 
molecules which compose the gas. I t may be tha t the wall contr ibutes to a 
greater chaos among the molecules. Bu t it is also conceivable t ha t the wall 
somehow orders the behavior of the molecules and supplies information to the 
gas. We might well ask, when does the presence of the wall lead to greater dis
organization among the molecules and when does it lead to greater organiza
tion? 

Unfortunately, the answer to this question is not obvious from previous 
versions of the entropy theorem. The difficulty lies in the term which represents 
the wall's contribution to entropy growth. The question we are asking is, when 
is this "wall t e rm" positive and when is it negative? In the proof of a typical 
entropy theorem, the wall term is made positive or zero only by invoking some 
kind of ad hoc hypothesis about the wall, for example, t ha t it reflects molecules 
specularly. Authors give sufficient, bu t not necessary, conditions for the wall 
term to be positive. Perhaps Cercignani [2] describes the s ta te of research most 
honestly. In assessing the general relation between boundary conditions and 
increasing entropy, he says simply (p. 58), "no investigation has been done on 
this subject, to the best of my knowledge." 

This paper contains a new version of kinetic theory in which a general wall 
hypothesis is incorporated into the model from the beginning. In this context 
we develop the entropy theorem further and produce a new theorem in which 
the sign of the wall term is shown to depend only on simple properties of wall-
molecule interactions. Both necessary and sufficient conditions are given for 
the wall term to be positive. Explicit examples are constructed in which the 
ent ropy is a strictly decreasing function for all t ime because the wall steadily 
provides information to the system of molecules. Fur thermore, it is shown tha t 
this ent ropy decrease can even occur in gas flows for which the most common 
of all boundary conditions—no slip—applies a t the wall. 
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In order to add a wall hypothesis correctly to the axioms of kinetic theory, 
it is necessary to re-state the theory as a whole. For this reason we are forced 
to consider jus t wha t const i tutes an axiomatic kinetic theory. This is par t ly a 
philosophical problem, bu t we cannot avoid it. In this paper we view a kinetic 
theory as having three components : input da ta , axioms, and motivat ion. Each 
item of da t a is a well-defined mathemat ica l object from analysis, for example, 
a number, a set, or a function. T h e axioms take the form of an initial value 
problem for some probabil i ty distr ibution on possible s ta tes of the gas. T h e 
problem is constructed in a definite way from the input da ta , and the solution 
to the problem is interpreted as a description of the evolution of the probable 
s ta te of the gas from its probable initial s ta te . Mot ivat ion for the da t a and 
axioms is, of course, unnecessary to the mathemat ics bu t essential to the 
physics. We need to know how to identify the input da t a and the ou tpu t 
probabil i ty function with aspects of physical experience. T h e motivat ional 
a rguments tell us this, guide us in our choice of axioms, and give significance 
to our theorems. 

There are historically a t least two dist inct ways to construct a molecular 
model for a gas. (Here "molecule" means "poin t mass" ) . T h e first, which we 
refer to as "model 1", assumes t ha t the molecules, experiencing various forces 
of a t t rac t ion and repulsion, move according to Newton 's laws. Among the 
input da t a for this model are, for example, the functions which represent these 
forces. The basic axiom in the model is called conservation of probability. I t 
describes the evolution in t ime of a probabil i ty distr ibution F over all possible 
s tates of the system of molecules. 

The second approach to a molecular theory of a gas, which we call "model 2" , 
is quite different. In this case, a probabil i ty distr ibution / describes, not the 
probable s ta te of the entire system of molecules, bu t t h a t of a single " typ ica l " 
molecule. T h e many-body problem w^hich underlies model 1 is forgotten, and 
only certain stylized pairwise molecular interactions are considered. A function 
which represents these interactions is pa r t of the input da ta . In this case, the 
axiom which governs the evolution in t ime of the function / is called the 
Maxwell-Boltzmann equation. 

In this paper, the assumption made about molecular reaction to the con
tainer wall (in both models 1 and 2) is conceptually simple, and it is not new. 
I t was proposed and studied for a model 1 gas in an earlier work [6] by AI. 
Shinbrot and myself. We supposed tha t when a molecule encounters the wall, 
it is "reflected", t h a t is, its incident velocity is instantaneously converted to a 
reflected velocity by a definite rule called a "reflection law". 

Interestingly, this is not so very different from the kind of assumption made 
abou t molecular interactions in the interior of the gas when defining the 
Maxwell-Boltzmann axiom. Here, when two molecules interact , their incident 
velocities are assumed to be converted instantaneously to scattered velocities 
by a definite rule called (in this paper) a "collision law". (For an example of 
this approach, see [9].) Thus , to specify a reflection law a t the boundary is 
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quite analogous to specifying a collision law in the interior of a gas. Each 
assumption can have equal status in the theory, and can enter as part of the 
input data. 

Model 2 as it appears in this paper differs in several aspects from its usual 
version in other works. A typical treatise on model 2 begins with a discussion 
of the mechanics of two-molecule collisions. The results of this discussion are 
then used in stating the Maxwell-Boltzmann equation. In this paper, we define 
a more general kind of collision law, one which need not conserve energy or 
momentum. The Maxwell-Boltzmann equation can be stated at once, and the 
discussion of molecular mechanics can be included as a theorem about three-
dimensional collision laws with certain special properties. Furthermore the 
formulation given here easily extends to arbitrary dimensions so that one item 
of input data can be k, the dimension of the space in which the molecules are 
free to move. This allows us to search for examples of the theory in one and two 
dimensions. As we see in § 7, some insights gained when k = 1 have extensions 
to the case k = 3. 

Since the models for a gas posed here are variations on earlier work, we 
should ask if they are somehow reasonable or "coherent". One method of 
judging comes from the motivational arguments. If there seems to be a "good 
physical reason" for the axioms, we feel somewhat secure in choosing them. 
However, we can impose more rigid mathematical requirements. Let G 
represent F or / at the time t, and let G0 represent G when t = 0. Write JG 
for the integral of G over all possible states for fixed t. Then minimal require
ments for our axioms would seem to be: 

(1.1) For any Go in a suitable class of functions, the initial value problem 
posed for G is uniquely solvable. 

(1.2) If Go ^ 0 and/Go = 1, then G ^ 0 and JG = 1. 
In a sense, if the model gives us this much, it is enough. As long as we know 

the initial probable state of the gas, our axioms tell us its probable state for any 
time / > 0. Furthermore, the solution to the initial value problem is indeed a 
probability distribution. If the model conforms to (1.1) and (1.2), it predicts; 
and that is what a model should do. But we surely also hope that what the 
model predicts is in accord with the normal macroscopic behavior of a gas. 
This behavior is determined by differential equations and boundary conditions 
in the density, velocity, stress, etc., of the gas. So we might also expect that 

(1.3) The model prescribes differential equations and boundary conditions 
for the macroscopic properties of the gas. 

As the discussion so far suggests, this paper contains more than a simple 
statement of kinetic theory and the proof of an entropy theorem. The very act 
of stating a kinetic theory poses mathematical and philosophical problems 
which we must address. These guide the organization of the material which 
follows. 

In §§ 2-3 models 1 and 2 (and a third intermediate model, which we call 
model 1 1/2) are given, along with their motivational arguments. Then in § 4 
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we begin to weigh our models against criteria (1.1)—(1.3). Pa r t of the discus
sion of (1.3) depends on special properties of reflection and collision laws. 
These are discussed in § 5. We also show in t h a t section t h a t our definition of a 
collision law is compatible with the classical one. In § 6 we s ta te the en t ropy 
theorem and show tha t the sign of the wall term is determined by a simple 
condition on the reflection law alone. Finally, in § 7 we give examples in which 
the ent ropy is strictly decreasing for all t ime, and we interpret physically the 
process by which they occur. Although the examples are one-dimensional, they 
have extensions to theorems for three-dimensional gases. 

In our discussion of criteria (1.1)—(1.3), wTe do not pretend to deal seriously 
with some of the deeper mathemat ica l questions. For example, we do not prove 
the positivity requirement G ^ 0 in (1.2) for model 2. Even (1.1) poses well-
known unsolved problems. However, we do give in § 7 special circumstances 
in which unique solutions exist for all t ime, and we also show tha t there are 
circumstances in which solutions are unique for no t ime. 

An underlying feature of all models proposed in this paper is t ha t the motion 
of the molecules by themselves is deterministic. However, their initial s ta te is 
not known precisely, and consequently neither is their s ta te for any later t ime. 
Thus we use probabil i ty only to describe our knowledge of the s ta te of the 
system of molecules, not to describe individual molecular interactions with each 
other or the wall. I t is possible to s ta te a variat ion of model 2 in which the re
flection and collision laws are stochastic ra ther than deterministic. Such a 
model includes the diffuse reflection law a t the wall originally proposed by 
Maxwell [5] and used by many authors since. This model will be discussed in a 
future wrork. 

2. A conf ined g a s : m o d e l 1. We begin the body of this paper with a brief 
discussion of a model for a confined gas based on the axiom of conservation of 
probabil i ty. This material will serve us later in three ways. First , we can use it 
to derive a boundary condition for another model based on the Maxwell-
Bol tzmann equation. Second, we can make a clear distinction between the 
assumptions in these two models and point out yet another model (called 
model 1 1/2) which lies logically between them. And third, we can exhibit 
cases in which models 1 1 / 2 and 2 agree. T o do this requires a precise s t a t ement 
of wha t it means for molecules to be indistinguishable. T h a t , too, is given here. 
Much of the material in this section appears in greater detail in [6]. The con
cept of indistinguishability is discussed in the context of the Liouville equat ion 
for an unconfined gas in [7]. 

Model 1 recuires for its construction six pieces of input da ta . These are (1) 
an integer k ^ 1, (2) an integer TV ^ 1, (3) a scalar m > 0, (4) a domain 
D C Rk with d i f fe ren t ia te boundary, (5) a set of functions qt : DN —> Rk, 
i = 1, . . . , TV, and (6) a function A : dD X Rk —> Rk. There is a restriction 
on the set of TV functions qf. Let TN be the group of permuta t ions on TV objects. 
If P Ç IV and if {#*},-=! is an ordered set of &-vectors, let {xPi}f=i represent 
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the set permuted by P. Then we require tha t 

(2.1) [qPi(xi, . . . , xN) }̂ Li = {qtixpu . . . , xPN) }f=h 

for every P G TN. There is also a restriction on the function A. If x G dD, 
with n{x) the outward uni t normal vector a t x, and if v G i?*, then we require 
tha t 

(2.2) n(x) • A(x, v) ^ 0 when n(x) - v ^ 0. 

We assume tha t A is continuous on dD and tha t A (x, .) is a differentiable bi
section between the sets {v £ Rk : n(x) - v ^ 0} and {v £ Rk : n(x) • v ^ 0\. 

These items of input da t a can be interpreted physically as follows. N is the 
number of identical point molecules, m is the mass of each one, and k is the 
dimension of the space in which they are free to move. D is the domain in 
which the gas is confined. The force on the ith molecule is qi(xi, . . . , xN), 
where Xj is the position of the jth molecule. This force is to account for external 
fields, as well as the influence of the molecules on each other. The restriction 
(2.1) is a rigorous s ta tement that , if the positions of the molecules are per
muted, then the corresponding forces between them are likewise permuted. 
In short, the molecules are identical, not only in mass, bu t also in their effect 
on each other. Finally, the object A is the "reflection law" described in § 1. 
T h e condition (2.2) requires t h a t A should transform "incident velocities" 
(for which n • v ^ 0) into ''reflected velocities" (for which n • v ^ 0) . 

In order to construct a model for a gas from these six pieces of data , imagine 
t h a t the system of molecules is in motion. At time t suppose t ha t the i th 
molecule has position xt(t) and velocity vt(t). If %i(t) G dD, then vt{t) is am
biguous; for the sake of convention, assign the reflected (as opposed to the 
incident) value. Then for some time interval (h, t2), the function 

(2.3) r(o = {*i(o, . . . , ^ ( o , » i ( o , . . - , ^ ( o i 
describes the motion of the entire system of molecules. The range of this func
tion lies in the set 

5 = {(xi, . . . , xNy vi, . . . , vN): xt G D, vt G Rk, n(xi) • vt ^ 0 

if*, G dD) 

The members of 5 are called states of the system of molecules. Notice t ha t 
a s ta te always refers to the condition after reflection. The motion of the 
system is, of course, determined by Newton 's equations and the reflection law. 
In the notat ion we have set out, these take the form 

(2.4) ^f = vt, ifxt(t) eD; 

(2.5) - ~ = —qi(xh . . . , * * ) , iixi(t) G D\ 
at m 

(2.6) vt(t) = A\Xi(t), lim ^ ( r ) ) , if xt(t) G dD. 
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Using only the six pieces of input d a t a for model 1, we can now s ta te the 
completely formal 

Definition. A trajectory is a function f : (tu t2) —> S oî the form (2.3) for 
which two conditions hold. First , f is continuous form the right, and second, 
the components of f satisfy (2 .4) - (2 .6) . H Ç : R1 -+S, the trajectory is said 
to exist for all time. 

In principle, the initial point of a trajectory should uniquely determine the 
trajectory. T h e ordinary differential equations (2.4)-(2.5) determine the 
motion until , for some i, xt(t) £ 3D. Then (2.6) applies, and, afterwards, 
the motion continues according to (2 .4)- (2 .5) . Thus , a t least in principle, the 
definition allows us to determine f (/) from f (0). We call this function the 
trajectory map ^ . I t is defined by the formula 

*e,r(o)) = f(0-
If trajectories always exist for all t ime, then 

(2.7) *;RlXS -+S. 

For the remainder of this section, we assume (2.7). T h e questions of existence 
and uniqueness are raised again in §§ 4 and 7. 

The trajectory map has three elementary properties which concern us here. 
T h e first and second are 

(2.8) ¥ ( 0 , r ) = f 

(2.9) ¥(*2 , ¥ ( * i f f ) ) = ¥(*i + *2,f). 

T o s ta te the third, we need some notat ion. If P £ TN and f = (xi, . . . , xN, 
vi, . . . , vN), let 

. r f = {Xpi, . . . , Xp;v, Vp\, . . . , ^PAT). 

Then, for every P G IV, 

(2.io) p*(* f r) = *(t,pç). 

The proofs of these three properties are straightforward from the definitions. 
In particular, to prove (2.10) it is necessary to use (2.1). Notice tha t , in 
words, (2.10) says t ha t permut ing the initial positions and velocities of the 
molecules results in the same permuta t ion of their positions and velocities for 
all t ime. This is the result of the "identical effect" which the molecules have on 
each other. A consequence of (2.8)—(2.9) is tha t , for each t G Rl, the trajectory 
map has an inverse 

¥- i (* f .) = ¥ ( - * , - ) :S->S. 

One step remains in formulating model 1 for a gas. Notice t ha t the input 
information has so far been used (in principle) to determine a trajectory map 
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^ satisfying (2.7)-(2.10) . However, the s ta te f of the system a t any time I can 
never be known exactly when N is extremely large. We assume instead t ha t 
it is known probabilistically in terms of a distribution function F(t, f ) , f Ç S. 
Thus , if V C S, then fvF(t, f)df represents the probabili ty tha t the system of 
molecules will occupy a s ta te in V a t t ime /. T h e basic hypothesis which we 
make for F is the axiom of conservation of probability: 

(2.11) /•(«.F,F(<, r)dr = J V F « U ) # 

for every measurable F C ^ . The motivation for this axiom is quite simple. 
In (2.11) we merely require t ha t the probable evolution of the system, as 
described by F, is compatible with its actual evolution, as described by >F. 

Viewed mathematical ly, (2.11) is essentially an evolution equation for F, 
as demonstra ted in 

T H E O R E M 2.1. Let F0: S —• [0, +oo ). Then there is a function F: R1 X S —> 
[0, +oo ) which satisfies (2.11) and 

(2.12) F ( 0 , f ) = /?o(f). 

For each t, this function is unique up to sets of measure zero in S, and is given by 

(2.13) F(t, f) = Fo(^-\t, f ) ) 
d\l>" 

(*,r) 
The elementary proof of this theorem involves a change of variable in the 

r ight-hand side of (2.11) and the argument t ha t the set ^ ( / , V) is arbi t rary. 
For details, see [6]. 

We are interested in gases composed of identical point molecules. Thus the 
probabili ty distribution F should somehow contain the information tha t the 
molecules are "indist inguishable". This concept is made precise in the 

Definition. T h e molecules of the gas are said to be indistinguishable a t t ime t, 
if, for every P £ T^, F(t,PÇ) = F(t, f ) . In particular, the molecules are initially 
indistinguishable if 

(2.14) F 0 (P f ) = Fo(f) 

for every P G I V 

In other words, "indist inguishabil i ty" means tha t a mere permutat ion of 
the positions and velocities of the N molecules does not alter the probabil i ty 
for s tates of the system. An immediate consequence of this definition is 

T H E O R E M 2.2. / / the molecules of the gas are initially indistinguishable, they 
are indistinguishable for all time. 

Proof. Let P Ç IV. By definition of P f for f G S, P can be regarded as a 
function P: S —> S. Fur thermore, \dP/dÇ\ = 1. Holding t fixed, we can write 
(2.10) in the form 

(2.15) P o ^ = ^ o P , 
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where it is understood tha t ^ : 5 —> S. Applying the chain rule to (2.15) gives 

t ha t is, expressing the dependence on t again, 

1 d * 
1 af 

= 3^ 1 
— (Pi) 
ôf y S; 1 

1 dp 
1 Ôf 

(2.16) a* 
si

lt follows that 

c,f) 
3f 

(', Pf ) 

F(*,Pf) = P„(*(-*,Pf)) 

= /?„(P*(-/,f)) 

= f0(*(-*, f)) 

of 

f (-/,f) 

ôf 

( - / , P f ) | , by (2.13), 

, b y (2.10) and (2.16), 

, by (2.14), (-*,f) 

= P ( / , f ) , b y ( 2 . 1 3 ) . 

Th is proves Theorem 2.2. 

Theorem 2.2 shows t ha t it is reasonable both physically and mathemat ica l ly 
to assume t h a t F0 satisfies (2.14). This we will do. One measure of the useful
ness of this hypothesis is seen in the following definition. Let 

(2.17) f(t , x, v) = I 
DN-lXRk(N-l) 

F(t, Xi, . . . , xNl vi, . . . vN)d%2 . . . dxN 

Xdv2 . dvh 

where x = Xi and v = V\. This is a probabil i ty distr ibution on the set 

Tr= {(x, v) : x e D, v e R\ n(x) • v ^ 0 if x G 3D} 

of reflected s ta tes (x, v) for the first molecule. Because of (2.14) and theorem 
2.2, the d i s t r i bu t i on / is the same as a similar one defined for the j t h molecule. 
(Let P be the permuta t ion which corresponds to exchanging the 1st and the 

jth molecules.) T h u s we are justified in (2.17) with selecting one molecule as 
typical and lett ing it speak for all. 

Let T = D X Rk be the set of all possible s tates (x, v), incident or reflected, 
for a given molecule. Notice t ha t T — Tr. With these definitions, we now s ta te 
an impor tan t fact a b o u t / in 

T H E O R E M 2.3. If fit, •) is continuous on TT with a continuous extension to T, 
if x G dD, and if v £ Rk with n(x) • v ^ 0, then 

(2.18) n(x) • vf(t, x, v) = —n(x) • A (xy v) 
dA 

/ ( / , x, A(x, v)). 
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This theorem is proved in [6]. I ts proof involves the computat ion of 

| ( d ^ - 7 d f ) (t, f ) | and the use of (2.13). The reason for presenting Theorem 2.3 

here will become obvious in § 3. An impor tant pa r t of the construction of 

model 2 will be motivated by it. 
In terms of / we can define the macroscopic properties of the gas in the 

usual fashion common to all kinetic models. Let M = rnN be the total molecu
lar mass, and let J represent J Rk . . . dv; where v = {v*}^. Then, by definition, 

(2.19) P = Mff, 

(2.20) Psi = Mfvtf,s= { s } ? - i . 

(2.21) a*1 = Mf (v* - s'W - 5>)/, o- = {<^)*Ui • 

(2.22) p = \ £ „", 

(2.23) pe = \kp = \M\ \v - s|2/, 

(2.24) rl = \M\ \v - s | V - 5*)/, T = {/}*_! , 

where p is the density, 5 the velocity, a the stress tensor, p the pressure, e the 
internal energy (per uni t mass), and r the heat flow vector for the gas. All 
these definitions are motivated physically in [3]. 

This completes the basic construction of model 1 for a gas. In summary, 
six pieces of input da t a are used to formulate a modified system of ordinary 
differential equations (2.4)-(2.6) which then determine (in principle) a tra
jectory map SF satisfying (2.7)-(2.10). This is used, in turn, to s tate an initial 
value problem (2.11), (2.12), and (2.14) for F. The solution to this problem 
is (2.13). Because of Theorem 2.2, it can be used to define (unambiguously) 
the macroscopic properties of the gas. 

Notice t ha t the forces {g7}T=i and the reflection law A are used only to 
determine >ïr. Thus an al ternate model, which still incorporates conservation 
of probabili ty, can be formulated using only five objects: k, N, m, D, and a 
function ^ satisfying (2.7)-(2.10). The initial value problem (2.11), (2.12), 
and (2.14) for F can still be posed, Theorems 2.1 and 2.2 are still valid, and the 
definitions (2.19)-(2.24) can still be formulated. In this scheme, Newton 's laws 
are ignored altogether and the rule Ŝ  for determining trajectories is taken 
as one of the primitives. This description of a gas we call model 1 1/2. 

3. A conf ined g a s : m o d e l 2. In this section we pose a model for a confined 
gas based on the Maxwell-Boltzmann equation. Although some authors seem 
to feel t ha t this equation can be derived from model 1, the fact is t ha t no one 
has ever obtained it in this way by a rigorous process of approximation. (See 
[8, p. 155], and [2, p. 23].) Nevertheless, it is possible to obtain a boundary 
condition for model 2 rigorously from model 1. Fur thermore, this same boun
dary condition can also be obtained by a motivational argument which closely 
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parallels the motivat ion for the Maxwell-Boltzmann equat ion itself. T o see 
how this can be done, we must reformulate model 2 from the beginning. We 
also introduce into model 2 all the features described in § 1. 

Seven pieces of input d a t a are required for model 2. These are (1) an integer 
k ^ 1, (2) a scalar m > 0, (3) a domain D C Rk with a d i f fe ren t ia te boundary , 
(4) a function q : D -> Rk, (5) a function A : dD X Rk -> #*, (6) a number 
r G [0, +oo ], the extended positive real number line, where r = 0 if k = 1, 
and (7) a function B : Z —> Z, where 

Z = {(y, vu V2) '• y, vu v2 € R*; \y\ ^ r;y • (v2 - Vi) = 0} 

is a subset of i?3*. T o describe the macroscopic properties of the gas, we also 
need (8) a scalar M > 0. 

T h e restrictions of § 2 again apply to A, in part icular (2.2). We also impose 
two principal requirements on B, namely, 

(3.1) B2 = I, and 

(3.2) B oBe = BeoB, 

where / is the ident i ty function and Be is the *'exchange law" 

Be(y,vuv2) = {-y,v2,vl)} (ytvuv2) G Z. 

Notice tha t the set Z is all or pa r t of the (3k — 1)-dimensional surface in Ru 

whose equation is y • (v2 — Vi) = 0. This surface carries the induced measure 
from Ru. T h u s B maps a (3k — 1)-dimensional measure space onto itself. 
We assume the map is absolutely continuous, so t ha t it possesses a Jacobian. 
(However, we cannot automatical ly conclude from (3.1) as some authors seem 
to do, t h a t this Jacobian has magni tude 1. B may m a p a pa r t Z\ of Z expan
sively onto another pa r t Z2 , and map Z2 contract ively onto Z\.) 

The mathemat ica l objects listed above correspond, of course, to various 
physical aspects of the gas. T h e first three are familiar from model 1. T h u s D 
is the domain which confines the gas in a space of dimension k, and m is the 
mass of a molecule. When we need it, the eighth object M is the total mass of 
all molecules. T h e function A is again a reflection law. For x G D, q(x) is the 
force due to external fields (gravity, for example) on a single molecule a t 
position x. 

T h e essentially new objects are B and r, the "collision law" and its "cu t 
off point" . In order to give significance to these two objects, imagine t ha t 
molecular interactions are rare in the life of a molecule and t h a t it is enough 
to consider only pairwise interactions. Picture an interaction as an instan
taneous event in which the " incident velocities" V\ and v2 of two molecules are 
suddenly converted to "scat tered velocities" V\ and v2. Such an event is called 
a "collision". We imagine t ha t the molecules approach each other on straight-
line trajectories before colliding. As an approximation, suppose t h a t collision 
occurs a t the moment when the two molecules, moving in s t ra ight lines, are 
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closest to each other. (If the collision law is determined by a force law between 
molecules, the moment of interaction may be slightly different. But, 
even in this case, the approximation is always made in the motivational 
argument for the Maxwell-Boltzmann equation.) Let X\ and x2 be the posi
tions of the two molecules at this moment. Then one can show that (x2 — Xi) • 
(v2 — Vi) = 0. Thus, at the moment of closest approach, the relative velocity 
is perpendicular to the relative displacement. 

With this scheme of things in mind, we can now interpret B and r. Let us 
write 

(3.3) ( / , vS, v2') = B{y, vu i>2), y • (v2 - Vl) = 0, |y| rg r. 

In this equation, think of (vi, v2) as incident velocities, (vi, v2) as scattered 
velocities, and y as the displacement of the second molecule relative to the 
first at the moment of collision. We refer to the variable y as the "impact 
parameter", for the collision law. Notice that, for physical reasons, (vi, v2) 
should be allowed to depend both on the orientation of y and its magnitude. 
Thus, if molecule 2 approaches molecule 1 from above, it may be scattered 
upwards (think of a repulsive force between molecules), while if it approaches 
from below, it may be scattered downwards. Similarly, if \y\ is small, we might 
expect the incident velocities to be changed considerably by collision. But, 
if \y\ is large, the molecules should, more or less, ignore each other, so that 
(vi, v2) œ (vi, v2). In fact, for \y\ larger than a certain distance r, the mole
cules may have no effect on each other at all. The parameter r in the model 
allows us to express this possibility. If r = +oo, then the molecules influence 
each other at arbitrarily large distances of interaction. 

We have interpreted every entry in equation (3.3) except y'. The signifi
cance of this variable can be seen through the hypothesis (3.1) for B. It 
follows from (3.1) and (3.3) that 

(3.4) Biy'tV^v*') = (y9vuv2). 

In (3.4), (vi, v2) are now incident velocities and (vi, v2) are scattered velocities. 
Thus y' is a value of the impact parameter which makes it possible to return 
to velocities (v\, v2) starting from velocities (vi, v2). In effect, (3.1) says that 
for every collision there is another which reverses the process. A full knowledge 
of B includes the knowledge of y' as a function of (y, Vi, v2) £ Z, that is, the 
knowledge of at least one way in which a given collision can be reversed. 

It remains only to interpret the hypothesis (3.2) for B. Notice that reversing 
V\ and v2 and replacing y by —y exchanges, in effect, the roles of molecules 1 
and 2. Thus (3.2) says that exchanging the molecules before the collision is 
the same as exchanging them after: the collision law does not detect the switch. 
This hypothesis is obviously related to the notion developed in § 2 that the 
molecules are identical in their effect on each other, or indistinguishable. In 
the notation of (3.3), we can write (3.2) in the form 

(3.5) ( - y , ^ , ^ ) = B(-y,v2,v1). 
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As suggested in § 1, the object B denned in this section, that is, a function 
from Z to Z satisfying (3.1) and (3.2), differs from the usual object taken as a 
primitive in most treatments of the Maxwell-Boltzmann version of kinetic 
theory. (In fact, most treatments do not specify a clear primitive. See, how
ever, [9].) Usually one starts by assuming conservation of energy and momen
tum, along with a few geometric requirements implicit in how the pictures are 
drawn, and then one obtains something akin to (3.1)-(3.2). In § 5, we will see 
rigorously how this can be done. However, (3.1) and (3.2) are sufficient to 
develop a ''coherent" kinetic theory and to obtain an entropy theorem. We do 
not need to require conservation. For example, our theory admits the rather 
curious ''reverse" scattering law 

(3.6) Br(y,vuv2) = {y, —vu — v2). 

Notice that Br maps Z to Z and satisfies (3.1)—(3.2); yet Br does not conserve 
momentum. In a model with B = Br, molecules simply reverse velocities in 
their trajectories whenever they collide. 

We now have seven mathematical objects (excluding M) before us, each 
with a certain physical significance. How can we construct a kinetic theory 
from them? In case q = 0, we seem almost to have enough mechanical rules 
(A and B, instead of A and Newton's laws) to construct a trajectory map ^f. 
(For interactions of three or more molecules, we may assume, for example, 
that the molecules ignore each other). Using this knowledge of SF, we can 
then continue along the lines of model 1 1/2. In fact, the Maxwell-Boltzmann 
equation is motivated by just this idea, but the resulting axiom is quite different 
from conservation of probability. In order to make this clear, we first state 
the axioms entirely formally in terms of the seven pieces of input data. 

To do this and to do many other things in this paper, we need some addi
tional notation. First, define the velocities 

(3.7) w = v2 — Vu w' = v2 — Vi 

of the second molecule relative to the first. Also, if x G dD, let 

(3.8) v* = A (x, v), n(x) • v ^ 0, n(x) • v* ^ 0. 

Functions are frequently evaluated at the velocities Vi, v2, Vi, v2 , and v*. 
If f(t, x, v) : R1 X D X Rk -> R1, then, for given (/, x) G R1 X D and (y, 
Vi, v2) G Z, define 

(3.9) / , =f(tyx,vt),f/ =f(t,x,vt');i = 1,2. 

Similarly, if x G dD and n{x) • v ^ 0 , define 

(3.10) /* =f(t,x,v*). 

We have frequent need for various kinds of integrals. These are 

(3.11) J = J dv J = J dVu j ' = J dv> for t = if 2. 
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Also, if x € dD, let 

(3.12) f = f ...do, f = f . <fo. 
n(x).»<0 «̂  + •/w(a;).»>0 

Next define the (fe — 1)-dimensional disc 

(3.13) A(r,i>i,w2) = {y G #* : y • (»2 - »i) = 0, \y\ £ r}, 

and let 

(3.14) 

f - l / 
J A (1 

r'-(/ 
J A (1 

dS(y), k^2 
» 

, jfe = 1 

,.dS(y),k ^ 2 

, * • = l ' 

where dS(y) is an element of (ft — 1)-dimensional area on A. 
Certain Jacobians are also of interest, namely 

(3.15) J'(y,vl9v*) 

and, for x G 3D, 

(3.16) J* (*,!>) = 

d(y',vi,V2') 

d(y,vi,v2) 
, (y, »i, v2) G Z, 

<̂ * 
dz; 

, « ( x ) ' i i e 0 . 

In (3.15), it is important to remember that J' is not the Jacobian of a map 
from Ru to i?3*, but of the map B from the (3ft — 1)-dimensional measure 
space Z to itself, as described earlier. 

The operator 

(3.17) #f(t, x, y, vu v2) = |« / | / i ' /2 ' / ' - M/ i / 2 > (y, in, »2) G Z, 

is now well-defined for functions f : R1 X D X Rk —> i?1. In case & = 1, we 
always take r = 0, so that <of does not depend on y. Notice from (3.5) and 
(3.17) that 

(3.18) (ff(t, x, y, vu v2) = #f(t, x, —y, v2, »i), (y, vu v2) G Z. 

Next define the integral operator 

(3.19) *?/(/,*, in) = f f <?f, 
*J 2 J A 

and the differential operator 

(3.20) 0/(*f x, v) = dtf +Vx-(vf) + Vv- (^/) , 

where V^ • and V y • refer to divergences with respect to x and v. 
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Finally, if / 0 : D X Rk —> [0, + 0 0 ] , consider the following initial boundary 
value problem for a f u n c t i o n / : R1 X D X Rk —> R1: 

(3.21) ^ / x = tff,x £ D 

(3.22) w(x) • 0/ = - - » ( * ) • v*J*j*, x e dD,n(x)-v > 0 

(3.23) f(0,x,v) = /<>(*, »)• 

T h e notat ion leading to these axioms is somewhat elaborate, bu t it can be 
summarized in a few words. We designate scat tered velocities by V\ and v2', 
relative velocities by w and w', and reflected velocities by v*. This nota t ion is 
given in (3.3) and (3.7)—(3.8). Equa t ions (3.9)—(3.16) express (i) functions 
evaluated a t various velocities, (ii) integrals over various domains, and (iii) 
the Jacobians for the reflection and scat ter ing laws. Finally (3.17)—(3.20) 
define the operators in terms of which the initial boundary value problem 
(3.21)-(3 .23) f o r / i s posed. 

In (3.21) it is necessary, of course, to know t h a t the integrals (3.19) con
verge. We always assume t h a t / tends to zero fast enough as \v\ —» +00 (and, 
if r = +00 , t ha t <of tends to zero fast enough as \y\ —> + 0 0 ) so t h a t J 2 J A $ f 
converges. We do not pursue here the impor tan t related question: if/0 has this 
property, does the s o l u t i o n / t o (3.21)—(3.23) also have this proper ty for every t? 

From a purely formal point of view, seven pieces of input d a t a have been 
used to pose the problem (3.21)—(3.23) for a func t ion / . These equat ions are 
for model 2 wha t (2.11), (2.12), and (2.14) are for model 1: an initial value 
problem designed from the initial d a t a to determine the evolution of probabil i ty 
for s ta tes of the system of molecules. T h e function / has the same interpreta
tion in model 2 as it did in model 1. In terms o f / we define the macroscopic 
properties of the gas (2.19)—(2.24), jus t as before. Notice t h a t in model 2 we 
use the eighth piece of information M > 0 only for this s tep. 

Axioms (3.21)—(3.23) are now well-defined formally, bu t it remains to give 
the motivat ion for them. This is essential here for two reasons. First , as a 
result of our very general definition of a collision law, the operator S* in (3.17) 
does not have quite the form tha t appears in the l i terature. This leads to 
modified version (3.21) of the Maxwell-Bol t zmann equat ion. Second, (3.22) 
is a new boundary condition for (3.21). T h u s both axioms (3.21) and (3.22) 
are new, and some justification is required for them. 

One motivat ion for (3.22) is theorem 2.3; notice t h a t (2.18) and (3.22) are 
the same. Since (3.22) is a theorem in model 1, it seems reasonable as an 
axiom in model 2. Bu t we can go even further than this. We can s ta te a motiva
tion for (3.22), given A, along precisely the same lines as the motivat ion for 
(3.21), given B. Both a rguments will now be presented. 

We begin with the motivat ion for (3.21). Firs t notice tha t , in a coordinate 
system moving with molecule 1, molecules 1 and 2 collide a t the moment 
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when number 2 reaches the (k — 1)-dimensional plane through number 1 
perpendicular to the oncoming relative velocity w of number 2. If r < + 0 0 , 
then the plane is replaced by a (k — 1)-dimensional disc of radius r centered 
at x, the position of molecule 1 at the moment of interaction. Let us call this 
disc Ax. Using the notation of (3.13), we can write 

(3.24) Az= {x + y;y e A(r,vuv2)}, 

where, as usual, vt is the velocity of molecule i (i = 1,2). 
When molecule 2 collides with molecule 1, number 1 (which is typical of all) 

suddenly jumps from one part of state space T — D X Rh to another. Prob
ability should be lost or gained accordingly in the affected regions of T. 
(Note that this statement refers tacitly to the idea of conservation of prob
ability). We can ask, at what time rate is probability lost or gained in some 
part of T due to molecular collisions? 

To answer this question, we compute the probability that some molecule, 
say number 2, collides with number 1 during the time interval (/, / + dt). 
Notice that, if number 2 does so, it must reach a point on the appropriate disc 
Az during this time; that is, it must be within the perpendicular distance 
\w\dt of Ax. To strike a patch of surface dS{z) around the point z £ Ax, it must 
lie in a cylinder with base dS(z) and volume \w\dt dS(z). Thus, given that 
molecule 1 occupies a state at or near (x, Vi) at time /, the probability P that 
some molecule interacts with it during (t, t + dt) is 

(3.25) P = dt I I \w\f(t,z,v2)dS(z)dv2. 
J v2£Rk J z£Ax 

In (3.25), x is fixed. We can let z = x + y and take advantage of (3.24) to 
write 

(3.26) P = dt i I \w\f(t, x + y, v2)dS(y)dv2. 
J V2€Rk J yeMr,vi,v-2) 

A standard approximation is always made in (3.26). It is assumed that when 
collisions occur, the molecules are close enough that /( / , x + y, v2) ~ f(t, x, v2). 
This approximation is a little strange when r = +oo , but it is always made. 
Thus (3.26) becomes 

= dt 11 
•J 2 *J A 

(3.27) P = dt \ \ \w\ft. 
J 2 J A 

When k = 1, molecules always collide head-on, so, in effect, r = 0 and there 
is no dependence on y. However, in the argument leading to (3.25), the relevant 
one-dimensional cylinder has volume \w\ dt. No cylinder "base" enters the 
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discussion, and (3.27) takes the form 

P = dt f \w\f. 
J 2 

This motivates the definition (3.14) for J A when k = 1. 
The probability P is a conditional probability. In computing it, one assumes 

that molecule 1 has a state at or near (x, Vi) at time /. Let [x, dx; v\, dvi] 
represent a box of volume dx dv\ around the point (x, Vi) G T. Then 

Q = / i dx dv\ 

is the probability that molecule 1 is in [x, dx; Vi, dvi] at time /. If we assume P 
and Q are probabilities of independent events (this assumption that the 
probable states of different molecules are independent is called "molecular 
chaos" [4]), then 

•/ 2 •/ A 
(3.28) PQ = dtdxdv! \w\fif2 

J 2 JA 

is the probability that molecule 1 is located in the box [x, dx; Vi, dv{\ at time t 
and then collides with another molecule during the time interval (/, t + dt). 
In this case, molecule 1 is lost to the region around (x, v\) in T. 

Of course, molecule 1 might also enter the box [x, dx; Vi, dvi] by colliding 
with another molecule during the interval (/, t + dt). The probability R that 
this will happen is, by the same reasoning which led to (3.28), 

*J 2 J A 
(3.29) R = dtdxdvy' M/ift'-

*J 2 J A 

where we use the fact that B~l = B by (3.1). Notice that the right-hand side 
of (3.29) contains the differential element dS(yf)dvi'dv2 . Because y' • (y<i — 
Vi) = 0 throughout the element, wre may regard dS(y')dvidv<i as a patch of 
area on the (3& — 1)-dimensional surface Z. Thus we can write 

(3.30) dSWdvx'dvi' = JfdS(y)dv1dv2. 

and (3.29) becomes 

R = dtdxdv! I I KI / i ^V . 
«/ 2 J A 

It follows that 

R - PQ = <gfdt dx dv! 

is, during the interval (/, t + dt), the net gain in probability that a molecule 
occupies the box [x, dx; v, dv] in state space T. In other words 

dx dv\ dt 

https://doi.org/10.4153/CJM-1975-132-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-132-1


ENTROPY AND KINETIC THEORY 1287 

represents the time rate of growth of probability density at (x, Vi) d T. 
This can be calculated another way. If molecule 1 moves on the trajectory 

(*(0,»i(0) C T, then 

(3.32) | f(t, x(t), v,(t))=ft + j t - Vxf + j t • V , / 

represents the time rate of growth of probability density due to the motion 
of this molecule. Since molecule 1 is typical, the quantities calculated in (3.31) 
and (3.32) are the same, that is, 

9h = #/, 
where we have assumed that dx/dt = v and dv/dt = q/m. 

This completes the motivation for (3.21). Notice especially the arguments 
in connection with (3.30). These are the reasons which make it seem natural 
to include the factor / ' in our definition (3.17) for Sj. 

The motivation for (3.22) is much shorter, but very similar. Let dS C dD 
be a patch of area around x £ dD. If a molecule is to reach dS in the time 
interval (t, t -\- dt), then (i) it must be headed toward dS, that is, n(x) • v > 0, 
and (ii) at time t it must lie in a cylinder with base dS and height (n(x) • v)dt. 
Let [v, dv] C Rk représenta box around v with volume dv. Then the probability 
P* that a molecule with velocity in [v, dv] will reach dS during the time 
(t, t + dt) is 

(3.33) P* = / • (n(x) • v)dt dS dv, n{x) • v > 0. 

Similarly the probability Q* that a molecule in [v*, dv*} = A(x, [v, dv]) will 
leave dS in the time (/, t + dt) is 

Q* = / * . (-n{x) -v*)dtdSdv* 

= /* • (~n(x) -v*)J*dtdSdv. 

Since the molecules striking dS are the same molecules which leave it, P* and 
Q* are probabilities of the same event. The equation P* = Q* is equivalent 
to (3.22). 

Notice the similarity between the motivations for (3.21) and (3.22). The 
justification for (3.33) is conceptually identical to that for (3.25). 

4. Criteria for a coherent theory. We now have before us, in axiomatic 
form, models 1, 1 -J-, and 2 for a gas composed of identical point molecules. 
Consequently we are in a position to investigate these models in the light of 
criteria (1.1)-(1.3) cited in § 1. Let us begin with (1.1). 

For model 1J, existence and uniqueness pose no problem. By hypothesis 
(2.7), the trajectory map ^ is known for all time. Consequently (2.13) is the 
solution to (2.11)—(2.12) for all time. However, for model 1, the criterion (1.1) 
is harder. The difficulty hinges on the solvability of the modified system of 
ordinary differential equations (2.4)-(2.6). Known theorems on solutions to 

https://doi.org/10.4153/CJM-1975-132-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-132-1


1288 JON SCHNUTE 

conventional systems, at least for a finite time, make it seem plausible that the 
trajectory map ^ can sometimes be found. Once ^ is known, then, as in 
model 1 | , (2.13) is the solution for F. 

Criterion (1.1) poses a still deeper problem for model 2 than it did for model 
1. The difficulty now relates not to systems of ordinary differential equations, 
but to a boundary value problem for a non-linear integro-differential equation. 
Even for unconfined gases in R3, with scattering laws which conserve energy 
and momentum, the questions of existence and uniqueness in general remain 
unsolved. However, as a check for the new boundary condition, we would like 
to know that (3.21)-(3.23) is well-posed in a few of the simplest cases. This 
matter is taken up again in § 7. We also indicate there where some of the diffi
culties for criterion (1.1) might lie, both in models 1 and 2. 

In order to investigate criteria (1.2)-(1.3), we need 

THEOREM 4.1. Let g(t, x, v) : R1 X D X Rk —> i?1. Then in model 2, if x £ D, 

(4.1) f glVf=l f f f (gl + g2- gl' - g2')<f/. 
• / 1 «/ 1 «/ 2 ** A 

Furthermore, in models 1 and 2, if x Ç dD. 

<«) U-fa-*?$}• 
Proof. Let z = (y, vi, t>2) £ Z and let z' = Bz. Since B2 = I, it follows that 

(4.3) J'(z')J'(z) = 1. 

Notice that 

= I gi&f{t,x,z)dz 
*> z 

= f gi'£f(t,x,z')J'{z)dz 
J Z 

= f gi'lWMtJ'iz1) - W\g{f{\J'(z)dz, 
J Z 

since (*;/)' = fl*, z = 1 or 2, and (3')' = z. Thus from (4.3), 

(4.4) f glVf= f f f glt?f=- f f f gl><?f. 
Let 5g be the exchange operator defined in connection with (3.2), and notice 
that 

as 
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Furthermore, by (3.18), $f{t, x, z) = Sf{t, x, Bez). Thus 

f g&f = f g^fdz = f g2<f/<fe, 
•/I J z J z Z ** Z 

upon transforming z to 5ez, since V\ is then transformed to v2- Therefore, 

(4.5) f gxVf= f f f g*?f=- f f f gt'ff, 

where the second equality holds in (4.5) for the same reasons that led to the 
second equality in (4.4). Combining (4.4) and (4.5) gives (4.1). 

Equation (4.2) is proved in [6], but, for completeness, we include the proof 
here. We use the fact that (3.22) holds for both models 1 and 2. Thus, for 
x e dD, 

f_*f-f+*rj*--f+e*i$f, 
where the first step involves a change of variable and the second uses (3.22). 
It follows that 

f*f=f_*f+f+if=f+[ * n • v 
/• 

This proves (4.2) and completes the proof of Theorem 4.1. 

A straightforward (and typical) application of Theorem 4.1 is 

THEOREM 4.2. In both models 1 and 2, if f(t, •) is continuous on T for each t, 
then 

(4.6) n(x) • ps = 0, x 6 dD\ 

and, if f is differentiable in all variables, then 

(4.7) dtP+ V . • (ps) = 0,x G D. 

Proof. To prove (4.6), let x £ dD and let g = n(x) • v in (4.2). Then 

(4.8) n - ps = J n - vf = I \ n - v — n - v* ^ If = 0. 

Equation (4.7) is proved for model 1 in [6]. To prove it for model 2, let g = 1 
in (4.1) and observe that 

(4.9) f ®U = f # / = f f f [1 + 1 - 1 - I K / = 0, 

that is, 

(4.io) f a(/ + f v, • (»/) + ± f v,-(gf) = o. 
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But 

(4.11) f V . - (if) = lim f n(v)-qf=0, 

where dSs is the surface of the sphere S8 C Rk with radius <5 and n(v) is the 
outward unit normal vector at v £ dSs- The limit in (4.11) is zero because we 
assume that / tends to zero fast enough as |z;| —» -{-co. Equation (4.7) now 
follows from (4.10)-(4.11). This completes the proof of Theorem 4.2. 

Using Theorem 4.2, we can now prove 

THEOREM 4.3. In models 1 and 1^, 

(4.12) if F0 ^ 0 and I F0dp = 1, then F ^ 0 and I Fdp = 1; 

awd iw model 2, 

(4.13) # I /orfiy = I, then I / ^ = 1. 

Proof. The assertion about J s/7 dp in (4.12) is an immediate consequence of 
(2.11)-(2.12), since V(t, S) = S for every t. Positivity in (4.12) follows from 
(2.13). To prove (4.13), we use (4.6)-(4.7). Performing j D . . . dx in (4.7) 
gives 

(4.14) JD J a j + f JD v , • (»/) = o. 

f f V, • (»/) = f l n • »/ = I « • ps = 0 
** *> D ** ** dD U dD 

However, 

by (4.6). Thus (4.14) shows that 

iff-0-T 

This proves (4.13) and completes the proof of Theorem 4.3. 

We now have enough information to begin comment on the criteria (1.2) 
and (1.3) cited in § 1. Notice that Theorem 4.3 establishes (1.2) for models 1 
and 1J, as well as part of (1.2) for model 2. As stated in § 1, the positivity 
requirement (1.2) for model 2 is not discussed here. However, some work on 
this problem can be found in [1]. Theorem 4.2 is a first step toward establishing 
criterion (1.3) for all models. Equations (4.6) and (4.7) tell us that at least 
the first two macroscopic properties of the gas, p and s, are consistent with 
their interpretation as the density and velocity of a mass flow. Thus (4.6) says 
that no mass crosses the boundary of the confining domain, and (4.7) say 
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t h a t mass is conserved by the flow in the interior of the domain. (4.6) and (4.7) 
are the most fundamental boundary condition and differential equation. They 
relate only to the notion tha t what we are finally dealing with is mat ter , and 
it is conserved. 

However, in general we cannot say more without further information. In 
model 2, for example, if B is not constructed to conserve momentum during 
molecular interactions, we cannot expect momentum to be conserved macro-
scopically in the gas. Or, in either model, if A is not constructed so tha t indi
vidual molecules exert a tangential force on the boundary, we cannot expect 
to find a macroscopic tangential stress on the boundary. In summary, each 
model by its own nature implies tha t we are dealing with the flow of material . 
Bu t the explicit rules by which tha t material flows remain to be fed in. (In 
model 1, the boundary behavior remains to be specified by the choice of a 
reflection law. The interior behavior a priori conforms to Newton 's laws. In 
model 2, both boundary and interior behavior remain to be specified by choices 
for reflection and collision laws.) 

Theorem 4.2 illustrates a general process by which macroscopic behavior 
can be deduced from molecular behavior. Equat ion (4.8) is the critical step 
in proving (4.6); the function g = n(x) • v has the property tha t jg f = 0 a t 
x £ dD. Similarly, (4.9) is the critical step in proving (4.7) ; the function g = 1 
has the property tha t 

The basic tool in each procedure is Theorem 4.1. We can make this process 
completely formal and general with the 

Definition. Let <j>{v) : Rk —> R1. Let A be a reflection law and B be a collision 
law. Then the pair (A, 0) is called reflection invariant a t x £ dD if 

(4.15) n(x) • v*4> = n(x) • vc/>* when n(x) • v > 0. 

Also the pair (B, 0) is called collision invariant if 

(4.16) <t>i + 02 = 0 / + <t>2 when (y, vu v2) G Z. 

In connection with this definition, let 

(4.17) 0(/ , x) = M J $f, 0(/ , x) = M J vtf, 0(/ , x) = M J ( V , 0 ) / . 

Then we can prove 

T H E O R E M 4.4. In models 1 and 2 if f(t, •) is continuous on T and (A, 0) is 

reflection invariant at x G dD, then 

(4.18) $(t,x) - 0. 

Furthermore, in model 2, if f is differentiate on R1 X T and (B, 0) is collision 
invariant, then 

(4.19) dt$ + Vx • 0 ~~q- 0 = 0. 
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Proof. Equation (4.18) follows at once from (4.15) and (4.2). Similarly from 
(4.16) and (4.1), we see that 

J ^9h = Ji 4>&f = 0. 

Thus 

0 = M J <j>dtf + M f *V , • (vf) + ^ f <t>Vv • (<?/) 

= M J dt(4>f) + M J Vx- (v<t>f) + M f V , • (2*0 

- £ / ( * . • ) • ef 
= af<? + v , • <i> — — q • <£, 

since J V^ (<?</>/) = 0 for reasons already discussed in connection with (4.11). 
This proves (4.19) and completes the proof of Theorem 4.4. 

If {A, <t>) is reflection invariant, we call (4.18) a corresponding boundary con
dition for A. Similarly if (B, </>) is collision invariant, we call (4.19) a corres
ponding differential equation for B. Such boundary conditions and differential 
equations have this important feature: they are valid for any initial probability 
distribution /0- Thus criterion (1.3) in general hinges on the existence of in
variant pairs {A, $) and (B, <j>). In Theorem 4.2, we found that (A, n(x) • v) 
and (B, 1) are invariant for any A and B. But beyond these examples, in
variant pairs depend on special properties of A and B. 

To illustrate this fact, consider the case of a reverse gas, which we define to 
be a model 2 gas in which 

(4.20) A(x, v) = — v, B(y, vu v2) = (y, —vu —v2), q = 0, r = 

For such a gas, molecules reverse their motion along straight-line trajectories 
whenever they encounter each other or the boundary. (See also the discussion 
in connection with (3.6).) For a reverse gas, the set of corresponding boundary 
conditions and differential equations is 

(4.21) $ = 0, x <E dD, if 4>(-v) = - <t>(v) ; 

(4.22) dt$ + V , • 4> ~ - q • 4> = 0, x € D,if <t>(-v) = <t>(v). 
m 

Notice that (4.21)-(4.22) are an infinite set of requirements on macroscopic 
properties of the flow - for example, a boundary condition for every odd poly
nomial in the components of v and a differential equation for every even poly
nomial in the components of v. 

l+œ,k ^ 2 
lo , * = i. 
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We close this section with a short comment. We have consistently assumed 
t h a t / has enough smoothness to justify the conclusions of Theorems 4.1-4.4. 
In fact, this smoothness may sometimes be impossible to achieve (as is often 
the case in initial boundary-value problems for partial differential equations). 
If so, it may be possible to resort to weak forms of the Maxwell-Boltzmann 
equation (3.21) and the moment equation (4.19). For model 1, weak moment 
equations are developed in [6], 

5. Special properties of A and B. Reflection laws and collision laws are, 
after all, just functions with certain basic, physically motivated properties. 
However, as suggested in § 4, if we want to find invariant pairs (A, 4>) and 
(B, <f>) other than those leading to Theorem 4.2, we need more information 
about A and B. For example, this information might consist of an explicit 
knowledge of A and B, as in the case of a reverse gas. However, more generally, 
we can study additional physically reasonable properties of A and B to see 
how they influence the behavior of the gas. Our study is motivated by two 
concerns: first to increase our knowledge of invariant pairs and thus to elabor
ate criterion (1.3) for models 1 and 2, and second to see precisely how our 
definition for B in model 2 extends the special cases usually discussed in the 
literature. 

The special properties of reflection and scattering laws which interest us 
here are listed in the following definitions. It is understood throughout this 
section that a statement about A refers to model 1 or 2, but a statement about 
B refers only to model 2. 

Let © be the group of all rigid rotations of Rk about the origin. Let ©u be 
the subgroup of ^ which leaves fixed a given vectors. If 12 £ € and {y,V\,v2) £ 2 , 
let 12 (3/, V\, v2) = (fry, 12fli, ^ 2 ) , and note that 12 : Z —> Z. 

Let A be a reflection law. We say that A is isotropic if 12 o A (x, •) = A (x, •) o 
12 for every 12 £ 0n(x) and every x £ dD. Also A is planar if v* always lies in 
the 2-plane spanned by n(x) and v. Let B be a collision law. Then B is isotropic 
if B o 12 = 12 o B for every 12 £ Û. Also B is planar if w' always lies in the 
2-plane spanned by w and y and if w' is a function of w and y. We say that B 
conserves momentum if 

V\ + v2 = Vi + v2 for every (y, vu v2) £ Z. 

Similarly B conserves energy if 

\v\\2 + \v2'\
2 = \vi\2 + \v2\

2 for every (y, vu v2) G Z. 

Finally, B is conservative if B conserves both energy and momentum. 
Each of these requirements on A and B makes a certain physical sense. For 

example, if the wall can be approximated by a tangent plane at x G dD, then A 
should presumably be isotropic. That is, rotating the incident velocity about 
nix) should correspondingly rotate the reflected velocity. Furthermore, unless 
we suppose that the wall can add new components of tangential momentum to 
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molecules during reflection, A will be planar. T o say t ha t B is isotropic is, 
essentially, to say t h a t the molecules are spherically symmetr ic as judged by 
their effect on each other. T h a t is, rota t ing both the incident velocities and the 
impact parameter for a collision results in a corresponding rotat ion of the 
scattered velocities. Fur thermore , if B is determined from a central force law 
acting between any two molecules, then a s tandard theorem occurring in 
classical mechanics implies tha t B should be planar. Finally, if B is derived 
from Newtonian mechanics, it should be conservative. 

An example of the significance of further restrictions on A for the impor tan t 
criterion (1.3) is given in 

T H E O R E M 5.1. Let k = 3. Let A be a planar, isotropic scattering law. Then 
{A, </>) is reflection invariant for some polynomial </> of degree 2 or less in the 
components of v if and only if 

(5.1) A{x,v) = — \(x,v)v,x Ç dD,or 

(5.2) A{x,v) = v - [1 + X(x, v)][n{x) • v]n(x), x G dD, 

where X : dD X Rk —> Rl with X > 0 when n(x) • v > 0. The corresponding 
boundary conditions for (5.1) and (5.2) are, respectively, 

(5.3) Ps = 0, x e dD, and 

(5.4) n{x) • ps = 0, [n(x) • a • n(x)]n(x) = a • n(x), x G dD. 

This theorem is proved in [6]. Notice t h a t with X = 1 (5.1) is the reflection 
law for a reverse gas given in (4.20). Also, when X = 1, (5.2) is specular 
reflection, t ha t is, reflection in which molecules retain their tangential velocity 
and reverse their normal velocity. T h e resulting boundary conditions (5.3) 
and (5.4) say tha t the gas either sticks to the wall or slides wi thout resistance 
along it. Extensive discussion of these and other boundary conditions may be 
found in [6]. 

Let v = (v1, . . . , ^A). Then an elementary example of the significance of 
further restrictions on B is given in 

T H E O R E M 5.2. Let B be a collision law. Then B conserves momentum if and only 
if (B, vl) is collision invariant for each i = 1, . . . , k. The corresponding differen
tial equations are 

PQ 

(5.5) pdts + p(s • Vx)s + V x - a - - = 0 . 
m 

Also, B conserves energy if and only if (B, \v\2) is collision invariant, in which 
case the corresponding differential equation is 

(5.6) pdte + ps-Vxe+ VX-T + a- (Vxs) 

+ s • (pdts + p(s • Vx)s + V , • a - - ) = 0. 
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Proof. By the definition of invariance, conservation of momentum and 
energy are equivalent to the invariance (B, vl) and (B, \v\2), respectively. 
Equations (5.5) and (5.6) result from straightforward applications of (4.17) 
and (4.19), using the definitions (2.19)-(2.21). It is also necessary in (5.5) 
and (5.6) to use the mass conservation equation (4.7). This proves Theorem 
5.2. 

Theorem 5.2 shows, of course, that conservation of momentum and energy 
at the molecular level leads to macroscopic conservation of these properties 
of the flow. However, to obtain the usual energy equation from (5.6), we must 
also use (5.5); that is, we must assume that B conserves both momentum and 
energy. 

We continue our investigation of conservative scattering laws in a slightly 
different direction. We want to show next how our definition of a collision law 
fits naturally into the context of conservative laws. To make this clear, we 
begin with a few definitions. A function b : Z —> R2k is called a pre-collision law. 
We write 

(vi,v2
f) = b(y,vi,v2), (y,vi,v2) G Z. 

Notice that we can interpret è as a definite rule for determining scattered 
velocities (vi, v2) from incident velocities (vu v2) and an impact parameter y. 
However, b does not specify an impact parameter y' by which (vi , v2) can be 
returned to (vi, v2). We say that b is differ entiable if b o y is differentiate for 
every differentiable curve y on Z. Also we call b isotropic if 

(SV, 1W) = b(Qy, Qvu tiv2) 

for every 12 £ Û. Similarly we can define planar and conservative for b in 
analogy with the definitions for B. Finally we say that b can be extended to a 
collision law B if there exists a y' : Z —» Rk such that 

B(y,vuv2) = (y'{y,vi,v2),b{y,vi,v2)) 

is a collision law. 
If a pre-collision law can be extended to a collision law, the extension may 

not be unique. There may be many possible choices for y1, that is, many 
circumstances by which the scattered velocities (z//, v2) can be re-scattered 
back to (vi, v2). However, we have 

THEOREM 5.3. Suppose that a pre-collision law can be extended to two different 
collision laws B and B. Then, for given values of the remaining input parameters 
in model 2, B and B pose the same initial value problem (3.21)-(3.23) for a 
function f : R1 X D X Rk -» R1. 

Proof. Let 'iff and f̂/ be the collision integrals for B and B, respectively. 
Since the collision law enters (3.21)-(3.23) only in the definition of ^ , we 
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need only show that 

(5.7) Vf = Vf 

for any given/. Because B and B both extend b, we can write 

B(y,v1,v2) = ( / , Vi,v2),B(y, vu v2) = (y',Vi,v2). 

Consequently, since B2 = / , 

BoBiy'iV^vJ) =B(y,vlfv*) = ( y ' ^ i W ) . 

Thus the map C = B o B is 3. bijection on Z which alters only the value of y, 
not Vi or v2. We write 

C(y,vltv2) = (y,vuv2). 

Then B = B'1 o C = B o C, so that 

(5.8) / ' (y , Vi, i/2) = 7'(y, vi, v2)Jc(y, vu v2), 

where / ' , J ' , and Jc are respectively the Jacobians of B, B, and C. 
Notice that C induces a natural bijection from A(r, Vi, v2) onto itself whose 

Jacobian is also Jc. If we transform J A in the definition of ^f by means of 
this map, we obtain 

vf=ff [W\h'h'j'- \w\mic 

•J 2 v A 

•/ 2 •/ A 

where we have used (5.8). Since \w\f1f2 is independent of y G A, we have,when 
r < +00, 

I IwI Âf2 = I M/1/2/c = \wI /1/2 • (arm of A). 
d A v A 

Thus, for r < +00 , 

&f=ff [k'l/x'/zy - ki/t/2] = vf. 
d 2 d & 

This proves (5.7) when r < +00. A limiting argument in which A is approxi
mated by large discs also proves (5.7) when r = +00. This proves Theorem 
5.3. 

Because of Theorem 5.3, we will call two collision laws equivalent if they are 
extensions of the same pre-collision law. Not every pre-collision law can be 
extended to a collision law. For example, b(y, Vi, v2) = (\v\, \v2) cannot. 
Neither can b(y, Vi, v2) = (vi, —v2). However, we have 

THEOREM 5.4. Let k = 3, and let b be a differentiable, isotropic, planar, con
servative pre-collision law. Then b can be extended to a collision law B which is 
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also isotropic, planar, and conservative, and for which 

(5.9) \w'\ = \w\, and 

(5.10) / ' = 1. 

Proof. Since b conserves momentum, 

(5.11) | v i '+v 2 ' | 2 = W+v2\\ 

and since b conserves energy, 

(5.12) \Vl'\* + |z;2'|
2 = K | 2 + h | 2 . 

It follows that 

(5.13) K - i>i'|2 = \v2 - v,\\ 

since, by (5.12), (5.11) and (5.13) are both equivalent to vi • v2 = v{ • v2. 
This proves (5.8) for b, and consequently also for B, if B exists. 

Next notice that 

(r 14x vi' = \(vi + v2) - \w' 
K } v2' = J(»i + »») + *w' 

since \(v\ + v2) = h(vi + ^2') by conservation of momentum. Thus b(y, Vu V2) 
is completely determined by a knowledge of 

(5.15) w' — w' (y, w), 

where the explicit form of the function in (5.15) is guaranteed by the hypothe
sis that b is planar. (So we need not write w' = w'(y, Vi, v2).) We also know 
in (5.15) that w\ y, and w are coplanar. 

In (5.15) the vectors w and y are perpendicular since (y, vi} v2) 6 Z. Let 
y and w be any other pair of perpendicular vectors with \y\ = \y\ and \w\ = 
\w\. Then there is a rotation 12 which brings y to y and w to w. Furthermore, 
by isotropy, 

w'(y,w) — Q,wf (y, w), and 

w'(y, w) - w Qw' (y, w) • Q,w w' (y, w) -w 
\w2\ ~ \ttw\2 ~ \w\2 

It follows that wf • w/\w\2 is a function of \y\ and \w\ only. Thus we can define 
uniquely the angle 6 = d(\y\, \w\) between w and w' by 

wf ' w 
COS 6 = - 7 - T 9 - , 0 ^ d ^ 7T. 

\w\" 
Since \w\ = \w'\, the function (5.15) is simply a rotation of w through the angle 
0(bl> \W\) m the plane of y and w. This rotation may be either ''clockwise" or 
"counterclockwise" when one faces in the direction of y X w. But isotropy 
shows that the "sense" of the rotation is always the same for fixed \y\ and \w\. 
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(The reader can convince himself with a few simple pictures t ha t l'counter
clockwise" corresponds to a repulsive force between molecules, and "clockwise" 
to an a t t rac t ive force.) Let Sl(y X w, 6) denote the rota t ion around y X w 
through the angle 6 in the prescribed sense. Then (5.15) becomes 

(5.16) w' = ti(y X w, 6)w = Q(y X w, 6)(v2 - Vi). 

Now define 

(5.17) / = -Q(y X w,B)y, 

and notice from (5.14) and (5.16) tha t 

(5.18) z;/ = i [ / + Q(y X w, 0)>i + J [ J - 0(y X w, 0)> 2 

(5.19) v2' = * [ / - fi(y X w, 0)>i + * [ / + Q(y X w, 0 ) K 

where I is the ident i ty operator on Rk. We have proved t ha t b is given explicitly 
by (5.18)-(5.19) . We define B by means of (5 .17)-(5.19) . Then B is an exten
sion of b, and it remains only to show tha t B has all the desired proporties. 

T o begin, notice t h a t (5.18)-(5.19) imply (5.16), as we would expect. I t 
follows from (5.16)—(5.17) t h a t y • w = 0 implies yf • w' = 0. T h u s B : Z —> Z. 
Next replace y by — y and exchange V\ and *>2 in (5 .17)-(5 .19) . This , in effect, 
c h a n g e s ^ to — w, so t ha t ( — y) X ( — w) = y X w i s unchanged. Also 6(\y\, \w\) 
is unchanged. Consequent ly Œ is unchanged. T h u s we can see by direct subst i tu
tion in (5.17)-(5.19) t ha t 

B(—y, v2,vi) = ( — y',v2',vi). 

This proves (3.2) for B. 
We must next calculate B(y', V\ , v2). T o do so, make the following observa

tions from (5 .16)-(5 .19) : \y\ = \y% \w\ = \w% 0 ( | / | , \w'\) = 0(|;y|, |w|), 
(;y, w, y , w') are coplanar, and y' X wf = —y X w. From these observations, 
it follows tha t 

(5.20) 12(y X w', 6{\yf\, \w'\)) = Qrl(y X w, d(\y\, \w\)). 

Using (5.20), we see t ha t 

iy'Y = -n-H-ny) = y, 

= vu 

and, similarly, ( iV) ' = v2- This proves (3.1) for B. 
We can deduce from the corresponding properties for b, or directly from 

(5.17)-(5.19) , t h a t B is isotropic, planar, and conservative. T h u s we need only 
show t h a t / ' = 1 to complete the proof of the theorem. L e t s * = (y*,Vi*,v2*) (zZ 
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with w* = V2* — Vi* and define, for 5 ^ 0 , 

Za* = i(y,vuV2) e Z: \y*\ ^ \y\ S \y*\ + 5, 

\w*\ g \v2 - vi\ S \w*\ + 5}. 

Notice t ha t B : Z* —> Z* for every 5 ^ 0 . Let dS* be a small "cylindrical" 
volume around z* in Ze*, for some e > 0, whose "base" lies in Z()*. I t follows 
from (5.17)-(5.19) t ha t B preserves both the area of the base of dS* and its 
height. T h u s B is locally volume-preserving. This proves (5.10), and completes 
the proof of Theorem 5.4. 

A consequence of Theorems 5.3 and 5.4 is tha t we can express the Maxwell-
Boltzmann equation in its usual form for classical collision laws. This is done in 

COROLLARY^ 5.5. Let k = 3 and let B be an isotropic, planar, conservative 
collision law. Then \w\ = \w'\ and we can assume without loss of generality that 
Jr — 1 and 

(5.21) #/= f f M (///,'-/!/,). 
Proof. We can use B to define a pre-scattering law /; which satisfies the 

hypotheses of Theorem 5.4. Then we can extend b to a scattering law B for 
which / ' = 1. (Note, by the arguments (5.11)-(5.13), tha t \wf\ = \w\ is auto
matic for both B and B). Since B is equivalent to B, by Theorem 5.3 these 
two collision laws pose the same problem for/ . Thus , without loss of generality, 
we can replace B by B, for which ^f has the form (5.21). This proves Corol
lary ^.^). 

6. Entropy . We come at last to the concept of entropy. The theorem which 
we are about to s ta te could have appeared immediately after Theorem 4.1. 
However, as indicated in § 1, it has been necessary first to formulate a rigorous 
version of model 2, to demonstra te tha t it is coherent in certain ways, and to 
place it in the historical context of earlier versions of the Maxwell-Boltzmann 
equation. 

Bol tzmann 's definition for the total entropy of the gas a t time / is 

v(t) = - / B / / l ° g / . 

where J D = J D . . . dx. Motivation for this definition is given in [8]. Our basic 
result for the entropy is 

T H E O R E M 6.1. In model 2, 
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Proof. Since & is a first order, homogeneous, linear differential operator, 

= (1 + l o g / 0 ^ / . 
Therefore, 

(6.2) f f^( / 1 log/ 1 )= f f (log/W, 
J D J i J D J I 

since J i ^ / = 0 by (4.1) with g = 1. Furthermore, letting g = l o g / in (4.1), 
we obtain 

f f Oog/iW = - i f f f f log ( ^ ) */, 
J D J l J u J \ J < i J ± \ J1J2 I 

that is, 

(6.3) /^ /_ (log/,)*-/ = - } / „ / , / , £ l«>l[(£ •/')/.'/.'-«.] 

Also, notice that 

for reasons similar to those accompanying (4.11), and 

[ f Vv (»/log/) = f f (n -»)/log/ 

I I (w • z; 
^ az> ^ + L 

) l o g / - ( W -z .* ) ( log /*)^- ï J / ' , 

where we have applied (4.2) with g — (n • v) log/. Thus 

Since 

1 = |?L^!1 y* 
/* w • z> 

by (3.22), 

(6.5) jD jvx • V log/ ) » /aD / <„ • ,)/ log ( ^ J*) . 

IVloreover, 

(6.6) / ^ / « « ( / l o g / ) = - d7 
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Combining (6 .4) - (6.6), we see tha t 

<6-7> L L *<* fc**>=-1+LI <» • "y ** fer 7*) • 
Finally, combining (6.2), (6.3), and (6.7) gives (6.1). This proves Theorem 
6 J . (Notice tha t , as usual, Theorem 4.1 is the principal tool in the proof.) 

Equat ion (6.1) gives the t ime rate of entropy change as a sum of two terms, 
the first representing the effect of molecular collisions and the second repre
senting reflections. I t is this second term 

which is called the "wall t e rm" in § 1. Earlier authors (for example [4] and 
[8]) invariably arrive a t this term in the form 

(6.9) W= j l(n-v)f l o g / ; 

indeed so do we during the proof of Theorem 6.1. If we insist on entropy 
growth, then we mus t require W ^ 0. Bu t the implications of this condition 
for the gas are not clear from (6.9), in general. All authors agree tha t , if the 
wall reflects molecules specularly, then W = 0 in (6.9). But this requirement 
certainly is not acceptable generally, since specular reflection is inconsistent 
with the very common no-slip boundary condition for a gas. (See Theorem 5.1, 
as well as [6].) A more general approach is taken by Grad [4], who simply 
says from (6.9) tha t W = 0 if there is no flux of the vector field 

H=fvf\ogf 

across the boundary of D. T h a t is true, of course, but it sheds no light on 
general physical mechanisms which might prevent the flow of H across dD. 

T h e difficulty with the expression (6.9) for W is t ha t it contains the factor 
l o g / . I t appears t ha t the sign of W depends o n / , t ha t is, on the local s ta te of 
the gas. For this reason authors have always been compelled to impose ad hoc 
hypotheses to arrange tha t W ^ 0. But in (6.8), it is clear tha t the sign of W 
depends only on 

t ha t is, on the reflection law alone. We have seen in §§ 2-5 tha t the hypothesis 
of reflection, together with the associated boundary condition on / , gives us 
a coherent kinetic theory. And now we also find tha t this hypothesis is pre
cisely what is needed to make a definite s ta tement about wall mechanisms 
which contr ibute to increasing entropy. We exploit this fact in the remainder 
of the paper. First, we have 
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COROLLARY 0.2. In model 2, if 

(6.10) \w'\Jr = \w\, (y, Vi,v2) G Z, and 

(6.11) \n(x) - v*\J* ^ n(x) • v, x Ç d£>, w(x) • v > 0, /Aew 

(6.12) ^ ^ 0 for all t. 

Proof. Notice tha t fifc' — / i / 2 and log ( / l ' ^ V / i ^ ) always have the same 
sign. Thus , with the condition (6.10), the first term on the right hand side of 
(6.1) is non-negative. Similarly, with the condition (6.11), the second term 
is also non-negative. This proves (6.12) and completes the proof of the corol
lary. 

We can also s ta te a result still closer to the classical ent ropy theorem, 
namely 

COROLLARY 6.3. In model 2, if k = 3 and B is isotropic, planar, and conserva
tive, and if (6.11) holds or if A is specular, then dt]/dt ^ 0 for all t. 

Proof. The conditions on B imply tha t B is equivalent to a collision law for 
which (6.10) holds. Fur thermore , if A is specular, \n • v*\ = \n • v\ and / * = 1, 
so (6.11) holds. This proves the corollary. 

Notice t ha t (6.1) is an equali ty. T h u s if either of the conditions (6.10) or 
(6.11) fails, there is a chance t ha t drj/dt ^ 0. One very simple device which 
we might use to s tudy the failure of (6.11) is 

COROLLARY 6.4. In model 2 if c€f = 0, then 

Proof. (6.13) follows a t once from (0.1) and (0.3). 

We can also cite one very concrete example : 

COROLLARY 0.5. In a reverse gas, drj/dt ^ 0. 

Proof. T h e conditions (4.20) imply (O.lO)-(O.l 1 ). 

7. C o u n t e r e x a m p l e s : a o n e - d i m e n s i o n a l gas . T h e simplest of all gases 
is one in which the motion of the molecules is confined to a line. Jus t as the 
vibrat ing string provides an elementary and instructive example for the s tudy 
of the wave equation, so the one-dimensional gas is a natural sett ing in which 
to s tudy model 2 (and also model 1^, as we shall see). In some cases the initial 
boundary value problem for such a gas can be solved explicitly. However, 
solutions may not be unique, or they may even violate criterion (1.2). Fur ther
more, in cases when both criteria (1.1) and (1.2) are satisfied, the ent ropy may 
decrease. From such examples we can gain physical insight into the properties 
of a reflection law which lead to decreasing entropy. 
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A one-dimensional gas is, of course, a gas for which k = 1 in the input da ta . 
To standardize our choices for the remaining data , we define a standard one-
dimensional gas to be a model 2 gas in which (1) k = 1, (2) m > 0, (3) D = 
[-L, L] , L > 0, (4) q = 0, (5) A is given a t both x = —L and x = L by 
the same di f ferent ia te odd function A : R1 -^ R1 with dA/dv = A''(v) < 0 
for v 7± 0, (6) r = 0 since & = 1, and (7) B : i?2 -> R2 is differentiable with 
B2 = IandB oBe = BeoB. 

I t is natural to make some restrictions on the initial d a t a / 0 for such a gas. 
With this in mind, we define a function class <$/ as follows. For given A, we 
say t h a t / o £ J / if 

(7.1) /o G C ' a - L , ! , ] X ^ 1 ) , 

(7.2) /0(±L, ^ GO) = J ^ f ^ / o C i i » »)» ± y > ». 

(7.3) dxf0(-L,v) = dJ0(L,v) = 0, 

(7.4) /o ^ 0 and I f0(x,v)dvdx = 1. 

Notice t ha t the two equations (7.2) are compatibil i ty requirements between 
the initial condition (3.23) and the boundary condition (3.22) for / . The reason 
for condition (7.3) is made clear later, in the proof of Theorem 7.2. 

I t is also possible to describe a one-dimensional gas by means of model 1 | . 
T o see this, consider a system of N molecules moving on [ — L, L] according to 
the following five rules, (i) Molecules move with constant velocity except 
a t moments (a) when one or more occupy the points x — ±L or (b) when two 
or more occupy the same point in ( — L} L). (ii) In case (a), each molecule 
instant ly has its incident velocity converted to a reflected velocity prescribed 
by a reflection law A. (iii) In case (b) , if exactly two molecules meet, their 
incident velocities are instantly converted to scattered velocities prescribed by 
a collision law B. (iv) In case (b), if three or more molecules meet, their 
velocities are unaltered, (v) After reflection and collision, the motion continues 
as in (i). These five rules are enough to allow us to determine explicitly trajec
tories of the form (2.3), where, by convention, every point on a trajectory 
represents the condition of molecules after collision and reflection. T h u s we 
can actually compute the trajectory map SF. Fur thermore the function ^ can 
be seen to satisfy (2.8)-(2.10) . (The property (3.2) for B is used in proving 
(2.10).) 

Given a s tandard one-dimensional gas with reflection and scattering laws A 
and B, we now define a corresponding model 1 | gas to be one in which (1) k = 1, 
(2) N ^ 1, (3) m > 0, (4) D = [ - L , L], and (5) * is computed from A and 
B by rules ( i ) - (v ) above. Notice, incidentally, t ha t no definition for a "cor
responding model 1 gas" is possible since, in general, no forces qt give rise 
to rule (iii) for ^ . 
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For each s tandard gas, there are many possible corresponding model 1 \ gases, 
depending on the choice of N ^ 1. One part icular choice is TV = 1. In this 
case rules (iii) and (iv) never enter the computa t ion for ^ , because two mole
cules cannot meet if there is only one. In effect, the "molecules" ignore each 
other. Such a gas is called a Knudsen gas. We call its t rajectory m a p ^ i . 

We can ask, is the behavior of the corresponding model 1^ gas somehow 
the same as the behavior of the s tandard gas? In general, the answer is surely 
no. For example, a one-dimensional reverse gas (which is s t andard) can be 
shown to behave differently from its corresponding Knudsen gas. However, a 
theorem is still possible. We begin with a definition. I f / ( / , x, v) and F(t, X\, . . . , 
xN, Vi, . . . , vN) are solutions to initial value problems for a s tandard one-
dimensional gas and its corresponding model 1^ gas, respectively, then the 
solutions are said to be compatible at time t if (2.17) holds f o r / a n d F, t h a t is, if 

fit, xh vi) = \ Fit, xh . . . , xN, » ! , . . . , vN) 
J [ -L,L]N~1XRN-1 

X dx2 . . . dxN dv<i . . . dvN. 

We can now s ta te 

T H E O R E M 7.1. Suppose that a standard one-dimensional gas has a conservative 
collision law B and that a corresponding model 1^ gas has indistinguishable 
molecules. Let f and F be solutions to initial value problems for the standard and 
corresponding gases, respectively, or the time interval [0, / 0 ] . Then, if f and F are 
initially compatible, they remain compatible for all t Ç [0, to]. Furthermore 

(7.5) / ( / , x, v) = /o o * i ( - / f x, v) 
d*i ( / ï 

T7 x ( — t,X, V) 
dix, V) 

, te [o, to] 

where f{) is initial data for f. 

Proof. Since B is conservative, 

( 7 . 6 ) Vi + V>2 = Vi + V>/, \Vi — V2\ = \V\' — V-/\, 

as shown in the proof of Theorem ;">.;">. Since k = 1, it follows from (7.6) tha t B 
is one of the two laws 

Biivi,v2) = (vi, Vi) or Befvi, v2) = (v->,Vi). 

T h u s molecules either ignore each other or exchange velocities. In each case, 
it follows tha t ^f — 0, so tha t the initial value problem for the s tandard gas is 

(7.7) dtf + vdxf = 0, -L ^ x g L, t ^ 0, 

(7.8) vfit, ±L,v) = Aiv)Afiv)fit, ±L,A(v)), ±v g 0, / ^ 0, 

(7.9) / ( 0 , x, v) = foix, v), x e [-L, L]. 

Suppose first t ha t AT' = 1 in the corresponding gas. Then the trajectory map 
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for this case in ^ i regardless of the choice for B, and by (2.13) 

(7.10) F(t, x, v) = F0 o * i _ 1 ( / , x, v) 
d * f 

d(x, v) 
(/, x, v) 

where F0 is initial da t a for F. Fur thermore since F and / a r e initially compatible 
and N = 1, 

(7.11) Fo(x,v) = / o ( x , w ) . 

We can show tha t the problem (7.7)-(7.9) f o r / and (7.10)-(7.11) for F 
have the same solution. In Theorem 2.2, p. 1190, of [6] the Jacobian 
\d^i/d(x, v)\ is computed and found to be constant on trajectories of a mole
cule a t x G (-L, L) bu t to j ump by a factor (A(v)A'(v))/v a t x = ± L . 
Equat ions (7.7)-(7.8) are equivalent to these same two requirements for / . 
Since F and / have the same initial da ta , they must remain always the same, 
namely the function given by (7.10), t ha t is, (7.5). This proves the theorem 
when N = 1 in the corresponding gas and also proves (7.5) for the s tandard 
gas. 

Next suppose tha t N > 1 and B = Bt. Let tyN be the trajectory map for 
the corresponding gas. Then 

(7.12) VN(t, xi, . . . , xN, vu . . . t vN) = (¥ i ( / , xi, vi), . . . , *i(t, xN, vN)), 

since trajectories of individual molecules are independent of collisions with 
other molecules. Also 

(7.13) F= Foo** 
WA 

d£ 

from (2.13). Integrat ing (7.13) with respect to (x2, . . . , xN, v2, . . . , vN) and 
taking account of (7.12) gives (7.5), w h e r e / is related to F by (2.17). This 
proves the theorem when B = Bt for any N > 1. 

Finally suppose B = Be. Then, according to the rules for \F, a t each collision 
two molecules t rade location in s ta te space and then continue as if nothing 
had happened. Consequently, after any number of collisions the system has 
evolved as it would if B = Bu except tha t certain molecules have traded 
places. T h u s 

(7.14) * = P(t)*„ 

where \F and ^N are the trajectory maps for the TV-molecule corresponding gas 
with B = Be and B = Biy respectively, and P(t) is some permutat ion in TN 

for each time t. I t follows from (7.14) and (2.13) tha t 

(7.15) F = Fo o (P(t)*N-1) 
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But ^o(Pf ) = ^o(f) by indistinguishability, and \dP/dÇ\ = 1. T h u s (7.15) 
implies (7.13). As in the previous paragraph, the theorem now follows when 
B — Be for any N > 1. This proves Theorem 7.1. 

In the preceding theorem we have supposed t ha t solutions to the initial 
value problem for a s tandard gas exist. T h e y may not, in fact. But we can 
s ta te a simple condition for their existence. If A is the reflection law for a 
s tandard gas, let A~x be the inverse of the (monotone) function A. Define 
inductively 

A()(v) = vyAn(v) = -A-loAn^{v),n è 1. 

I t follows tha t , since A is odd, v/An(v) > 0 for n ^ 0 and v 9e 0. Using this 
definition, we can s ta te 

T H E O R E M 7.2. Let A be the reflection law for a standard one-dimensional gas 
with a conservative collision law. Then the initial value problem (3.21)-(3.23) for 
this gas has a unique differentiate solution for every f{) Ç stf for all time 
/ 6 [0, + oo ) if and only if 

(7-16) J -r~-r = +co for all v > 0. 
*=i Ak{v) 

Proof. Equat ions (3.21)-(3.23) for this gas take the form (7 .7) - (7 .9) . 
From (7.7) 

(7.17) / ( / , x, v) = g(x - vt, v), t ^ 0, 

for some function g(x, v). In terms of g equat ions (7.8) and (7.9) take the form 

(7.18) g[^]- (x + L)±L,A (v)] = j ^ T ^ y g(x, v), ± * ?> 0, 

(7.19) g(x, v) = f0(x, v), -L ^ x g L. 

T h u s equations (7.17)—(7.19) are equivalent to the problem (3.21)-(3.23) for 
the gas. 

We can use (7.18) and (7.19) to determine g from the initial d a t a f o r / by 
a method of reflection. T o do this, define 

Po = I (x, v) Ç R2 : -L S x S L, v ^ 0}, 

Pn = < (x,v) £ R 2 : - L - 2 L j : - - - -

Qn = {(x,v) Ç R* : ( - * , -v) G Pn\,n ^ 0, 
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where J^i = 0- Notice that (7.19) determines g on the set P 0 ^ (V Further
more, 

<=> ( - x , - y ) G Pw 

n ra—1 

« I - 2 i y -r^-r < -x S L - 2L Y, -T^-T , v < 0 

(»)/ e l —^4*_i(i;) 

-(x + L) ^ - 2 L ( - - ^ ) è ^ ( P ) / N ^ < 0 

~ -L - 2L g - ^ 
fc=l ^»UW) 

^A^l{x + L)_L^_L_2L±JA^_yA{v)>0 

^\^-(x + L)-L,A(v)j 6P, w+1 

for w ^ 1. A slightly modified proof holds when n = 0. Thus (7.18), with the 
lower sign, can be used to determine g in Pn+\ from its values in Qn. Similarly 
(7.18), with the upper sign, gives g in Qn+i from its values in Pn. Thus (7.18) 
and (7.19) determine g uniquely on the set 

CO 

(2* = U (Pn U Qn) 
n=0 

= \ (x, v) £ R2 : -L ^ x ^ L, or -L - 2L f^ ITT^ 
{ k=i Ak{v) 

< x < —L and v > 0, or L ^ x ^ L + 2L Y] . , . and v < Of . 
ifci Ak{v) ) 

Recall t h a t / is determined by g from (7.17). To know/ for all x £ [ — L,L], 
t ^ 0, and v £ P 1 is equivalent to knowing g on the set 

P* = {(*, v) £ R2 : -L ^ x S L,orx ^ -L and 
v > 0, or x ^ L and v < 0}-

Notice that Q* C JP .̂ If Q* = P*, t h e n / is determined uniquely by (7.17)-
(7.19), that is, by (3.21)-(3.23). On the other hand, if Q* ^ P*, then g can be 
assigned any value consistent with (7.18) on the set P* — Ç*. The initial 
condition (7.19) has no effect on the values of g in P* — Q*. Thus / is not 
determined uniquely in this case. In short, unique solution to (3.21)-(3.23) 
for a standard one-dimensional gas is equivalent to the condition P* = Q*. 
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Bu t this condition is equivalent to (7.16), as can be seen from the definitions 
of P * and Q*. 

If (7.16) holds, the solution found by the method described above is dif-
ferentiable. T o prove this, we need only show t h a t g is d i f fe ren t i a te on the set 
P* = (?*• I n the method of reflection the only possible non-differentiable points 
for g are points on the boundaries of Pn and Qn. However, the conditions (7.2) 
o n / o G sé and (7.18) on g assure us (by induction on n) t h a t the method a t 
least gives a continuous g. Fur thermore , derivat ives of g in the tangential 
direction to the boundaries of Pn and Qn are cont inuous a t these boundaries. 
Finally (7.17) shows t ha t the values of g on the line v = v0 in Pn (or Qn) 
determine g on the line v = A(VQ) in Qn+i (or Pn+i). By induction from (7.3), 
it follows tha t dx g = 0 on the boundaries of Pn and Qn for all n. I t is for this 
s tep t ha t we require (7.3) fo r / 0 £ s/. T h u s a t each boundary point of Pn and 
Qn, g has continuous directional derivatives in two independent directions. 
(The tangential direction is independent of the direction along v = cons tant 
because A'' (v) < 0 for v 9e 0.) I t follows tha t g is d i f fe ren t ia te . This proves 
Theorem 7.2. 

W h a t is the physical significance of the condition (7.16) on the reflection 
law A ? One way to assess this is to consider what happens when A is linear. 
In this case we have 

T H E O R E M 7.3. Exactly one of three alternatives holds for the initial value 
problem for a standard one-dimensional gas with A linear and B conservative. 
These alternatives are: 

(1) The solution to the problem is not unique for any fo £ s/ on any time interval 
L0, / i ) , t\ > 0; however, for each / 0 (E S$ there is exactly one solution f which 
satisfies criterion (1.2) and exists for all time t ^ 0. 

(2) The problem has a unique solution for every / 0 G stf and all t ^ 0; however, 
for each / 0 there is a time t\ > 0 when 

(7.20) I I j\h,x,v)dvdx < 1. 
J - L J -co 

(3) The problem has a unique solution for every fu G se and all t ̂  0; further
more, each solution satisfies criterion (1.2) and the entropy is constant: 

(7.21) v(t) = 77(0), t ^ 0. 

Before proceeding to the proof of this theorem, notice t ha t a l ternat ives (1) 
and (2) seem to contradict Theorem 4.3. According to tha t theorem, criterion 
(1.2) holds for solutions to both models 1 | and 2. However, in (1) and (2), 
hypotheses of Theorem 4.3 are violated. We have assumed in model 1 | t ha t 
^ _ 1 (/, •) exists with ^ _ 1 ( ^ S) = S and in model 2 t ha t J vf exists. Nei ther of 
these hypotheses is valid in (1) or (2) for all / > 0 and all so lu t ions / . These 
difficulties will be clarified in the proof of the theorem and the comments which 
follow it. 
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Proof of Theorem 7.3. Since A is linear, 

(7.22) A(v) = -av 

for some constant a > 0. We will show tha t 0 < a < 1 implies (1), a > 1 
implies (2), and a = 1 implies (3). This will prove the theorem. 

For the reflection law (7.22), it is a straightforward mat te r to find the set 
P* — (?* defined in the proof of theorem 7.2. Notice tha t 

A~\v) = - - v, An(v) = — , - j-TT = an, and 
a an An{v) 

P* - Q* = 
^ \x\, ocv < Of , a < 1, 

i — a 

IE, a ^ 1, 
o} 

where E is the empty set. 
If 0 < a < 1, g can be prescribed arbitrari ly on a vertical strip in P * — Q*. 

Fur thermore , for any t > 0 and x G [ —L, L] , there is a ^ large enough (positive 
or negative) so t ha t the point (x — vt, v) lies in this str ip. Since f{t, x, v) = 
g{x — vt, v), it follows t h a t / is not determined uniquely for any / > 0 or any 

Let g be the part icular g which vanishes in P* — Q*. With this choice we 
can show tha t the moments p(t, x) and ps(t, x) are defined and d i f ferent ia te 
so t h a t Theorem 4.3 holds. I t follows tha t criterion (1.2) applies to the solution 
/ determined from g. Any o t h e r / comes from a g not always zero in P * — Q*. 
If g < 0 somewhere, then (1.2) fails. On the other hand, if g ^ 0 , then 

/ : / / > i 

for some t > 0 because supp g 2 supp g. Again (1.2) fails. This proves (1) 
when 0 < a < 1. 

If a > 1, then P * = Q#, and the problem has a unique global solution for 
each /o G s/t as shown in Theorem 7.2. However, in computing the trajectory 
map ^ i for this case, we find tha t a molecule s tar t ing a t (x, v) with x Ç [~L,L] 
and v 7e 0 reaches infinite speed by the time 

x L , 2L Y> 1 _ x La + 1 

because a t each reflection the molecule's speed is increased by the factor « > 1. 
Using this fact, we can show tha t 

(7.23) ¥,-»(*, T) = T(t), t > 0, 

where T = [-L,L] X R* and 

T(0 {(«,„): -L S*£L fL+f I < ^ i | } 
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By (7.23) and conservation of probability for model 1^, 

(7.24) I / ( / , x,v)dx dv = I f0(x,v)dxdv. 
J T J T(t) 

As / -> + oo, T(t) -> [-L, L] X {0}. Thus for some h > 0, T(h) is smaller 
that the support of /0. With this tu the left hand side of (7.24) is less than 1. 
This proves (2), in particular (7.20), when a < 1. 

When a = 1, again P* = Q* and global solutions always exist. Furthermore, 
molecules are not speeded up by reflection and ^ i - 1 ( ^ T) = T. From this, 
criterion (1.2) follows. Also, drj/dt = 0 by (6.73), since 

l0£ {TK J*) = '«g i = o 

when a = l. This proves (3), in particular (7.21), when a = 1, and completes 
the proof of Theorem 7.3. 

Using Theorem 7.1, we can describe the physical significance of each of the 
alternatives in Theorem 7.3. According to (7.5), the value of / at time / is 
obtained by referring backward along trajectories of a single molecule. Let A 
be the linear law, A(v) = —av. If 0 < a < 1, then the molecule is slowed 
down every time it reflects. However, following a trajectory backward, we find 
that a molecule is sped up by reflection. In fact, the speed-up effect is geo
metric; at each backward reflection the molecule's speed is increased by the 
factor 1/a. Thus the molecule always reaches infinite speed in finite time along 
a backward trajectory with v 5* 0. Precisely this fact is detected by the failure 
of (7.16) when a < 1. It follows that \Fi( — /, x, v) is not defined for any fixed 
t > 0 when \v\ is large enough. This difficulty leads to alternative (1) in 
Theorem 7.3. 

On the other hand, if a > 1, the molecule is sped up on forward trajectories 
but only slowed down on backward trajectories. Thus ^ i ( — /, x, v) exists for 
all / > 0 and (7.5) gives a solution / ( / , x, v) for / > 0. However, there is a 
a serious difficulty with this solution. Although backward trajectories exist 
for all time, forward trajectories do not; the molecule always reaches infinite 
speed in finite time unless v = 0. A molecule with infinite speed is, in effect, 
lost from state space. Thus mass is not conserved and criterion (1.2) is violated. 
This leads to alternative (2) of Theorem 7.3. 

Alternative (2) poses a much more serious difficulty than (1). In (1), 
although / is not determined uniquely by the axioms of model 2, there is a 
unique/satisfying both these axioms and criterion (1.2). Th i s / i s defined to be 
zero whenever ^r

1( —/, x, v) does not exist and is otherwise given by (7.5). 
However, in alternative (2) the failure of criterion (1.2) cannot be avoided. 

According to Theorem 7.3, either criterion (1.1) fails, or (1.2) fails, or the 
entropy is constant. It seems that the model "wants" a constant entropy. 
However, this is the case only for linear reflection laws as we see in 
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T H E O R E M 7.4. It is possible to choose the input data for model 2 and the initial 
distribution f0 in such a way that the following three conditions hold: 

(1) the initial value problem is uniquely solvable for all time and criterion (1.2) 
holds; 

(2) the macroscopic gas satisfies the no-slip boundary condition, ps = 0 on 
3D; and 

(3) the entropy rj is strictly decreasing for all time t ^ 0. 

Proof. Choose the da t a for a s tandard one-dimensional gas with A (v) = — v* 
and B conservative. Let 

(7.25) f0(x,v) = ( l + s i n g ) </>(*>) + ( l - sin | | ) 4>(-v), where 

(7.26) <*> G C'CR1), 

(7.27) <t>(v) > 0 when 0 < v < a, <t>(v) = 0 when v è a, a G (0, è) 

(7.28) 4>(-*>3) = À <l>(v),v > 0, and 

(7.29) J_°° * ( » ) * = ^ 
4L* 

T h e function/o so defined lies in s/, since the s ta tements (7.25)-(7.29) imply 
(7 .1)- (7 .4) . 

Notice t ha t 

A-l/ \ 1/3 A / \ 3 _ n i ^ l - 3 " n / 3 ~ n \ 3 n - l 

A (v) = -v , i4n(fl) = v , and . , . = v = (v ) 
^4nW 

This is positive for v ^ 0 since 3'4 — 1 is even. Fur thermore, 

T h u s the condition (7.16) applies to this gas; the initial value problem has a 
unique s o l u t i o n / for all t ^ 0 and any / 0 Ç ^ / , in particular (7.25). As in the 
proof of Theorem 7.2, we can write 

f(t, x} v) — g(x — vt, v), t ^ 0, 

where g is found from / 0 by a method of reflection. 
We next prove by induction tha t 

(7.30) g(x, v) = 0 if (pc, v) 6 PnU Qn and |v| ^ a3". 

By definition of / 0 , in particular (7.27), it follows tha t (7.30) is t rue for n = 0 
since g — fo in P0 ^J Q0. Fur thermore the values of g on the line v = v0 in 
Pn ^ Qn are used to define g on the line v = A (VQ) in Pn+i KJ Qn+\. Thus , 
if g = 0 for \v\ ^ a3n in Pn \J Qn} then g = 0 for |v| ^ (a3")3 = a3n+1 
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in Pn+i \J Qn+\. This proves (7.30). Figure 1 illustrates the support for g in 
the (x, v)-plane and the regions Pn and Qn which enter into the construction of g. 
Notice that there is a band along the x-axis, increasingly narrow as x tends 
to ±oo, in which g is non-zero. 

FIGURE 1. The support for g (shaded) in Theorem 7.4. The vertical scale is distorted. 

For x Ç [-L, L] and t ^ 0, notice that p(t, x), ps(t, x) ,and rj(t) are integrals 
which reference the values of g on the lines 

lx,t = [(y,v) : y = x — vt,v £ R1} 

in P*. Since g is differentiate with compact support on each lXA (see Figure 1), 
it follows that these moments exist and are differentiable. The hypotheses 
leading to (4.13) are satisfied, and, since g ^ 0 by construction, criterion (1.2) 
holds. This proves (1). Also, notice from (5.1) and (5.3) that the reflection 
law A (v) = — vd = — \v\2v implies the boundary condition ps = 0. This proves 
(2). 

To prove (3), notice that by (6.13) 

(7.31) 
drj 

dt 
L — vt, v) log (3z> )dv 

+ /
vg(L — vt, v) log (3v*)dv. 

0 
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These integrals reference values of g along the lines l±L,t for fixed / ^ 0. Any 
such line crosses the support of g, so the integrals are not zero. However, g = 0 
forz; ^ \ > a ^ a's\ Consequently, if g(v) ^ 0, then 3v* < 3 ( ^ ) 4 < 1; tha t is, 
if g > 0, then log (3^4) < 0. Using this fact in (7.31), we find drj/dt < 0 for 
/ ^ 0. This completes the proof of Theorem 7.4. 

T o unders tand the physical significance of Theorem 7.4, notice tha t / 0 is 
chosen to admit only slow molecules with speeds less than | . Since A (v) = 
— Vs, such molecules never a t ta in a speed greater than 1, either on backward 
or forward trajectories. Consequently, trajectories for these molecules are 
defined for all positive and negative time, and there is no difficulty with 
criteria (1.1) and (1.2). 

On forward trajectories these slow molecules are slowed still further by 
reflection. This is precisely the significance of the shrinking support for g as 
x —> zhoo in figure 7. Thus the s ta te of the gas moves from a comparatively 
w7ide distribution of speeds to an increasingly narrowr distribution. This is a 
change from more "chaos" to less. In effect, the boundary feeds information 
into the system: it says, "Slow down". As a result, we can have more accurate 
information later than earlier. After a long time we can say with near cer tainty 
t ha t the molecules have almost stopped. 

The reader may be tempted to think tha t the only examples of decreasing 
entropy are those in which the gas is brought to a stop. This is not true, how
ever. Another entropy-reducing reflection law is shown in figure 2, along with 
the impor tan t ratio 

A{v)A'{v) 
v 

which appears in (6.13). In this case molecules with speeds in the interval 
(vi, v2) are slowed toward the speed v\ by reflection but , beyond that , are 
slowed no further. Beginning with a probabili ty distribution which admits 
only speeds in this range, we find tha t the band of available speeds shrinks, 
as time passes, toward V\. And, since (A(v)A'(v))/v < 1 on (vi, v2), we can 
use (6.13) to show tha t drj/dt < 0. 

T h e impor tan t feature of entropy-reducing reflection laws seems to be 
"en t r a inmen t" , the tendency to entrain the molecules into a narrow band of 
possible speeds. A reflection law which "en t ra ins" supplies information to the 
gas. T h e entropy detects this increasing information as a concentration of the 
probabil i ty distribution / over a shrinking support in velocity-space. 

T h e rigorous examples of this section have all been one-dimensional to keep 
the analysis simple. But the physical and mathematical phenomena which 
they suggest can be extended to higher dimensions. For example, versions of 
Theorems 7.3 and 7.4 certainly exist for a Knudsen gas confined to a sphere. 
In such a gas, a molecule never travels farther than the sphere diameter 
between reflections. Thus , when A(x, v) = —av on the surface of the sphere, 
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A(v)A'(v) 

¥v 

FIGURE 2. Another entropy-reducing reflection law. 

with a > 0 and a ^ 1, molecules are sped up geometrically by reflection on 
either forward or backward trajectories. Because of this, the difficulties (1) 
and (2) of theorem 7.3 carry over to a sphere. Similarly, if A (x, v) = — \v\2v on 
the surface of the sphere, slow molecules are slowed further by reflection along 
forward trajectories. If we choose /o to admi t only slow speeds, then we can 
exhibit a Knudsen gas flow in the sphere which satisfies the no-slip boundary 
condition as well as dr)/dt < 0 for / ^ 0. 
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