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Abstract. In this paper we introduce a vector-valued uncentred maximal operator
in the setting of one-dimensional Bessel–Kingman hypergoups, and prove a maximal
theorem for it.
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1. Introduction. A hypergroup is a pair (K, ∗), where K is a locally compact space
and ∗ is a binary operation (usually called generalized convolution), which is defined
on the measure space on K and satisfies certain properties. The reader is referred to a
monograph by Bloom and Heyer [5] for a precise definition and a thorough description
of hypergroups.

An important class of hypergroups is the Chébli–Trimèche hypergroups, which
are one-dimensional hypergroups on �+ with a convolution structure related to the
second-order differential operator

LA = − d2

dx2
− A′(x)

A(x)
d

dx
,

where A is a continuous function on �+, twice continuously differentiable on
]0; +∞[ and satisfies the following properties (see [15, p. 12]):

(1) A(0) = 0 and for every x > 0, A(x) > 0,
(2) A is increasing and unbounded,
(3) A′(x)

A(x) = 2α+1
x + B(x) on a neighbourhood of 0, where α > − 1

2 , and B is an odd
and smooth function on �,

(4) A′
A is a decreasing and smooth function on ]0; +∞[ and

(5) ρ = 1
2 limx→+∞

(
A′(x)
A(x)

)
� 0 exists.

Harmonic analysis of these hypergroups has been developed recently by several authors
(see, for instance, [3, 4, 6–9, 13]). In particular, a theory of scalar maximal functions
has been established (see [6, 9, 13]). The main aim of this paper is to prove some
vector-valued analogues which could be useful for a thorough study of both singular
integrals and the Littlewood–Paley theory in this setting.

Therefore, we introduce a vector-valued uncentred maximal operator associated
with Bessel–Kingman hypergroups which corresponds to the special case where the
function A is defined for every x ∈ �+ by A(x) = x2α+1 (with α > − 1

2 ), and we prove
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a maximal theorem for it. We restrict ourselves to this case because Haar measure
satisfies doubling condition enjoyed by Euclidean spaces or homogeneous spaces; in
other words, we do not consider a hypergroup of exponential growth (like Jacobi
hypergroup) for which a complete vector-valued maximal theorem seems to be out of
reach for the moment. To become more precise, we first define the scalar uncentred
maximal operator M by

Mf (x) = sup
ε>0, z∈I(x,ε)

1

A
(
]0, ε[

)
∫ ε

0
Tz|f |(y)A(y) dy, x ∈ �+,

where we denote by I(x, ε) the open interval ] max{0; x − ε}, x + ε[, byA(]0, ε[) the
Haar measure of the interval ]0, ε[, with A the Haar measure on the Bessel–Kingman
hypergroup and by Tx (for x ∈ �+) the generalized translation by x (see Section 2 for
more details). We then define the vector-valued uncentred maximal operator by

Mrf (·) =
(+∞∑

n=0

(Mfn(·))r
) 1

r

, 1 < r < +∞,

where f = (fn)n∈� is a sequence of measurable functions on �+. In order to state
the main result of this paper, let us introduce some notations.

For 1 < r < +∞, we use the following notation:

|f (·)|r =
(+∞∑

n=0

|fn(·)|r
) 1

r

,

and we write |f (·)|r ∈ Lp
A (where we denote by Lp

A the space Lp(�+; A(x) dx)) if

(∫
�+

(+∞∑
n=0

|fn(x)|r
) p

r

A(x) dx
) 1

p

< +∞.

We also use the notation ‖·‖A,p instead of ‖·‖Lp
A
. With these notations in mind, we

can now state the following theorem that we will prove.

THEOREM 1.1. Let f = (fn)n∈� be a sequence of measurable functions on �+ and A
be the function defined on �+ by A(x) = x2α+1, with α > − 1

2 . Let 1 < r < +∞.
(1) If |f (·)|r ∈ L1

A, then for every λ > 0 we have

A
(
Eλ

)
� C

λ

∫
�+

|f (x)|rA(x) dx,

where Eλ = {x ∈ �+ : Mrf (x) > λ} and C = C(α, r) is a positive constant independent
of f and λ.

(2) If |f (·)|r ∈ Lp
A, with 1 < p < +∞, then Mrf ∈ Lp

A and

‖Mrf ‖A,p � C‖f ‖A,p,

where C = C(α, r, p) is a positive constant independent of f .

The proof for the classical vector-valued maximal operator (associated with the
Hardy–Littlewood maximal operator on �d) is due to Fefferman and Stein [11]. Their
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proof is mainly based on three tools: a Calderón–Zygmund decomposition, a maximal
theorem and a weighted inequality for the Hardy–Littlewood maximal operator.
However, we cannot apply this method in our setting because of the generalized
translation operator which prevents from using classical techniques of real analysis.
Thus, our aim is to construct a more convenient operator M which controls M in the
sense that for every x ∈ �+ M f (x) � CM f (x) (with C a positive constant independent
of x and f ) and to prove for M a maximal theorem and a decisive weighted inequality.
Recently, similar techniques have been used in the setting of Dunkl’s analysis (see [10]).

The paper is organized as follows. In the next section, we recall some definitions
and properties which are related to Bessel–Kingman hypergroups and will be relevant
for the sequel. Section 3 is devoted to the proof of our main result.

Throughout this paper, C denotes a positive constant, which depends only on fixed
parameters, and whose value may vary from line to line.

2. Preliminaries. This section is concerned with the preliminaries and
background. We consider the Bessel–Kingman hypergroup (�+, ∗A), where the
function A is given for x ∈ �+ by A(x) = x2α+1 with α > − 1

2 . The convolution structure
is related to the second-order differential operator

L = LA = − d2

dx2
− 2α + 1

x
d

dx
.

Let us clarify our statement. The solutions ϕλ, λ ∈ � of the differential equation

Lϕλ(x) = λ2ϕλ(x), ϕλ(0) = 1, ϕ′
λ(0) = 0 (2.1)

are multiplicative (and these solutions give all multiplicative functions on the
hypergroup) in the sense that ϕλ(x)ϕλ(y) = ∫

�+
ϕλ(z) d(εx ∗A εy)(z), where εt is the unit

point mass at t ∈ �+. Solutions of (2.1) are ϕλ(·) = jα(λ·), where we denote by jα,
for α > − 1

2 , the normalized Bessel function of the first kind and of order α, that is

jα(x) = 2α�(α + 1)
Jα(x)

xα
,

with Jα, the usual Bessel function of the first kind and of order α, given as

Jα(x) =
(x

2

)α
+∞∑
n=0

(−1)nx2n

22nn!�(n + α + 1)
.

Then the well-known product formula for x > 0 and y > 0 (see [14, p. 367] or
[2, p. 217]),

jα(x)jα(y) = �(α + 1)

�
(
α + 1

2

)
�

( 1
2

)
∫ π

0
jα

(√
x2 + y2 − 2xy cos θ

)
sin2α θ dθ

implies for x > 0 and y > 0 the following one

ϕλ(x)ϕλ(y) =
∫ +∞

0
ϕλ(z)Kα

x,y(z)A(z) dz,
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with Kα
x,y being the positive function given by

Kα
x,y(z) =

�(α + 1)22α−3
((

(x + y)2 − z2
)(

z2 − (x − y)2
))α− 1

2

�
(
α + 1

2

)
�

( 1
2

)
(xyz)2α

χ[|x−y|,x+y](z),

where χX is the characteristic function of the set X . The convolution on the measure
space on �+ is then defined by d(εx ∗A εy)(z) = Kα

x,y(z)A(z) dz and we have the following
support property supp(εx ∗A εy) = [|x − y|, x + y]. It is well known (see [15, especially
Proposition 2.3, Corollary 2.4 and Theorem 4.5]) that (�+, ∗A) is commutative with
neutral element 0 and the identity mapping as involution. Haar measure A on (�+, ∗A)
is absolutely continuous with respect to the Lebesgue measure and can be chosen to
have Lebesgue density A. We denote by A(]a, b[) the Haar measure of the interval ]a, b[
for any 0 � a < b, that is A(]a, b[) = ∫ b

a A(x) dx.
The convolution of two functions f and g is defined by

f ∗A g(x) =
∫

�+
Txf (y)g(y)A(y) dy, x ∈ �+,

where Tx is the generalized (left) translation given by

Txf (y) =
∫

�+
f (z) d(εx ∗A εy)(z) =

∫
�+

f (z)Kα
x,y(z)A(z) dz, y ∈ �+.

The convolution is associative and commutative, and since Tx is for every x ∈ �+
a bounded operator on Lp

A (for 1 � p � +∞), the convolution satisfies usual Young’s
inequalities (see in particular [1]). We conclude this section with a sharp inequality
which is due to Bloom and Xu [6, Proposition 4.6 and Lemma 5.1].

PROPOSITION 2.1. There exists a positive constant C such that for every x, y ∈ �+
and for every ε > 0 we have

∣∣Tx(χ]0,ε[)(y)
∣∣ � C

A
(
]0, ε[

)
A

(
I(x, ε)

) ,

where we denote by I(x, ε) the following set

I(x, ε) = ]
max{0; x − ε}, x + ε

[
.

3. Proof of the main result. This section is devoted to the proof of Theorem
1.1. As we have already claimed, we shall construct a more convenient operator M,
which controls M point-wise and for which we can apply standard techniques. For
the construction, the idea is to use the inequality of Proposition 2.1 to bypass some
difficulties related to the translation operator. The following proposition gives us this
new operator M.

PROPOSITION 3.1. There exists a positive constant C such that for every locally
integrable (with respect to A) function f and every x ∈ �+ we have

Mf (x) � CMf (x),
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where the operator M is given by

Mf (x) = sup
ε>0, z∈I(x,ε)

1

A
(
I(z, ε)

)
∫

I(z,ε)
|f (y)|A(y) dy.

Proof. Let ε > 0, x ∈ �+ and z ∈ I(x, ε). The commutativity of ∗A implies that
∫ ε

0
Tz|f |(y)A(y) dy =

∫
�+

|f (y)|Tz(χ]0,ε[ )(y)A(y) dy.

Using the support property of the generalized translation, it follows at once that
∫ ε

0
Tz|f |(y)A(y) dy =

∫
I(z,ε)

|f (y)|Tz(χ]0,ε[ )(y)A(y) dy.

According to Proposition 2.1, we get the existence of a positive constant C such
that

∫ ε

0
Tz|f |(y)A(y) dy � C

A
(
]0, ε[

)
A

(
I(z, ε)

)
∫

I(z,ε)
|f (y)|A(y) dy.

Since this inequality is valid for every ε > 0 and z ∈ I(x, ε), we deduce that

Mf (x) � CMf (x),

which is precisely what we wanted to prove. �
As a trivial consequence of the above proposition, we have for 1 < r < +∞

Mrf (·) =
(+∞∑

n=0

(
Mfn(·)

)r
) 1

r

� C
(+∞∑

n=0

(
Mfn(·)

)r
) 1

r

= CMr f (·).

Then we are left with the task of establishing the following result in order to prove
Theorem 1.1.

THEOREM 3.1. Let f = (fn)n∈� be a sequence of measurable functions on �+.
Let 1 < r < +∞.

(1) If |f (·)|r ∈ L1
A, then for every λ > 0 we have

A
(
Eλ

)
� C

λ

∫
�+

|f (x)|rA(x) dx,

where Eλ = {x ∈ �+ : Mr f (x) > λ}, and C = C(α, r) is a positive constant independent
of f and λ.

(2) If |f (·)|r ∈ Lp
A, with 1 < p < +∞, then Mr f ∈ Lp

A and

‖Mr f ‖A,p � C‖f ‖A,p,

where C = C(α, r, p) is a positive constant independent of f .

Following the proof given in [11], we claim that this theorem is proved if we
establish a maximal theorem and a weighted inequality for M. Indeed, the case p = r
is nothing more than a scalar case (that is, we only use a maximal theorem); the case
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p = 1 is based on a Calderón–Zygmund decomposition; the case 1 < p < r is easily
deduced from the two previous cases by the Marcinkiewicz interpolation theorem; the
case r < p < +∞ is based on a weighted inequality. Let us begin with the following
maximal theorem.

THEOREM 3.2. Let f be a measurable function defined on �+.
(1) If f ∈ L1

A, then for every λ > 0 we have

A
(
Eλ

)
� C

λ

∫
�+

|f (x)|A(x) dx,

where Eλ = {x ∈ �+ : Mf (x) > λ} and C = C(α, r) is a positive constant independent of
f and λ.

(2) If f ∈ Lp
A, with 1 < p � +∞, then Mf ∈ Lp

A and

‖Mf ‖A,p � C‖f ‖A,p,

where C = C(α, r, p) is a positive constant independent of f .

For the first inequality of the previous theorem, we need the following covering
lemma of Vitali type (the proof can be found in [12, p. 9], see also [6, Lemma 4.21]).

LEMMA 3.1. Let E be a measurable (with respect to A) subset of �+. Suppose that
we have E ⊂ ∪j∈JIj with Ij = I(zj, rj) bounded for every j ∈ J (where zj ∈ �+ and rj > 0).
Then, from this family, we can choose a sequence (which may be finite) of disjoint sets
I1, . . . , In, . . ., such that

A(E) � C
∑

n

A(In),

where C is a positive constant, which depends only on α.

REMARK 3.1. In the standard proof of this lemma (which uses the doubling
property of A), we note that E ⊂ ⋃

n I5
n , where for every integer k � 1, Ik(x, ε) =

I(x, kε).

Thanks to this lemma, we can now turn to the proof of Theorem 3.2.

Proof. Let us begin with the first inequality.
Let f ∈ L1

A, λ > 0 and x ∈ E×
λ = Eλ \ {0}. By definition, there exist εx > 0 and zx ∈

I(x, εx) such that

λA
(
I(zx, εx)

)
<

∫
I(zx,εx)

|f (y)|A(y) dy. (3.1)

Since we have x ∈ I(zx, εx) (since x ∈ ]0,+∞[ and zx ∈ I(x, εx)), we assert that E×
λ ⊂⋃

x∈E×
λ

I(zx, εx). Thanks to the previous lemma, we can then select a disjoint collection
of intervals denoted by I1 = I(z1, ε1), . . . , In = I(zn, εn), . . . , with each In satisfying
(3.1) and such that A(Eλ) = A(E×

λ ) � C
∑

n A(In), with C being a positive constant
depends only on α. It follows that

A(Eλ) � C
λ

∑
n

∫
In

|f (y)|A(y) dy � C
λ

∫
∪nIn

|f (y)|A(y) dy � C
λ

‖f ‖A,1,
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where we have used inequality (3.1) in the first step, the disjoint property of the
intervals In in the second step and where we have enlarged the domain of the integral
in the last step. The first inequality of Theorem 3.2 is then proved. There is nothing to
do for the second one. Indeed, by the Marcinkiewicz interpolation theorem (see [12]),
it is a simple consequence of the trivial fact that M is bounded on L∞

A together with
the first inequality. The whole theorem is then proved. �

We now state a weighted inequality for the operator M.

THEOREM 3.3. Let W be a positive and locally integrable (with respect toA) function
defined on �+. For 1 < r < +∞, there exists a positive constant C, which depends only
on α and r and such that for every f ∈ Lr(�+;MW (x)A(x) dx)

∫
�+

(
Mf (y)

)rW (y)A(y) dy � C
∫

�+
|f (y)|rMW (y)A(y) dy.

Proof. By the Marcinkiewicz interpolation theorem and since the operator M is
obviously bounded on L∞

A , this theorem is a consequence of the the following inequality

AW (Eλ) � C
λ

∫
�+

|f (y)|MW (y)A(y) dy, λ > 0, (3.2)

where AW (X) = ∫
X W (y)A(y) dy and C is a positive constant, which depends only on

α. Thus, we now turn to the proof of (3.2).
Let E be any compact subset of E×

λ . By a reprise of the argument given in the proof
of Theorem 3.2, we have the existence of a disjoint collection of intervals denoted by
I1 = I(z1, ε1), . . . , In = I(zn, εn), . . . so that E×

λ ⊂ ⋃
n I5

n (invoking Remark 3.1), with
each In satisfying

λA(In) <

∫
In

|f (y)|A(y) dy. (3.3)

Since E is a compact subset of E×
λ , we can then select a finite and disjoint subcollection

(Ink )1�k�m from the sequence (In)n such that E ⊂ ⋃
1�k�m I5

nk
.

Let t be an element of Ink . Then znk ∈ I(t, 5εnk ) and we can write

∫
I(znk ,5εnk )

W (y)A(y) dy � A
(
I
(
znk , 5εnk

))
MW (t) � CA

(
I
(
znk , εnk

))
MW (t),

where we have used the definition of the operator M for the first inequality and
the doubling property of the measure A for the second one. We obtain by multiplying
both sides by |f (t)|A(t) and by integrating over Ink

(∫
Ink

|f (t)|A(t) dt
)(∫

I(znk ,5εnk )
W (y)A(y) dy

)

� CA
(
I
(
znk , εnk

)) ∫
Ink

|f (t)|MW (t)A(t) dt.
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On account of (3.3), we are readily led to
(∫

I5
nk

W (y)A(y) dy
)

� C
λ

∫
Ink

|f (t)|MW (t)A(t) dt. (3.4)

Since we have

AW (E) � AW
( ⋃

1�k�m

I5
nk

)
�

∑
1�k�m

(∫
I5

nk

W (y)A(y) dy
)

,

we can deduce from (3.4) that

AW (E) � C
λ

∑
1�k�m

∫
Ink

|f (t)|MW (t)A(t) dt.

We obtain by using the disjoint property of (Ink )1�k�m and then by enlarging the
domain of the integral

AW (E) � C
λ

∫
�+

|f (t)|MW (t)A(t) dt.

It follows at once that

AW (
E×

λ

)
� C

λ

∫
�+

|f (t)|MW (t)A(t) dt,

from which we deduce inequality (3.2). Then the theorem is proved. �
REMARK 3.2. Since we readily have Mf (x) � Mf (x), where M is the centred

maximal operator introduced by Bloom and Xu [6] and given by

Mf (x) = sup
ε>0

1

A
(
]0, ε[

)
∫ ε

0
Tx|f |(y)A(y) dy, x ∈ �+,

it follows that Theorem 1.1 is also true if we replace Mr by the operator Mr given
by

Mrf (·) =
(+∞∑

n=0

(
Mfn(·)

)r
) 1

r

, f = (fn)n∈�.
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