THE ESTIMATION OF THE PARAMETERS OF AN EXPONENTIALLY DECLINING POPULATION

By C. C. SPICER
Central Public Health Laboratory, Colindale Avenue, London, N.W. 9

In certain kinds of bacteriological work it is necessary to study the rate of killing of organisms by disinfectants which act according to the exponential law, the number surviving after a time t being given by the equation

$$
N(t)=N(0) e^{-k t} .
$$

The estimate of the constant k given by the ordinary least-squares fit of $\log N$ against t is not a good one, since it takes no account of the accuracy of the observations and in general gives far too much weight to the smaller values of N. In many applications this is not an important objection since the experiment can be arranged to correct for it; however, in other cases this may not be so. For example, in the testing of air disinfectants the usual technique is such that later samples often contain small numbers of organisms with occasional zero values.

In the air disinfection problem which gave rise to this note the observed bacterial counts are samples from a very much larger population, and it can be assumed that the inevitable correlated errors between successive samples are negligible compared with the errors of sampling, which are of the Poisson form. Similar conditions hold in some other bacteriological applications, and in any case the estimate of k suggested here is rationally weighted and seems preferable to the least-squares fit.

With the assumption of independent errors each count can be regarded as a Poisson variable with expectation

$$
\bar{n}_{t}=\nu_{0} e^{-k t}
$$

where ν_{0} is the baseline count. The likelihood of the observed counts is then the product of a series of Poisson terms as follows

$$
e^{L} \alpha \frac{e^{-\nu_{0}}\left(\nu_{0}\right)^{n_{0}}}{n_{0}!} \times \ldots \times e^{-\nu_{0} e^{-k t}} \frac{\left(\nu_{0} e^{-k t}\right)^{n_{t}}}{n_{t}!} \times \ldots \times \text { etc. }
$$

and the \log likelihood is

$$
\begin{equation*}
L=\text { const. }-v_{0} \Sigma e^{-k t}+\log \nu_{0} \Sigma n_{t}-k \Sigma t n_{i}, \tag{1}
\end{equation*}
$$

from which estimates of k and ν_{0} can be obtained in the usual way by differentiating and equating to zero. This gives

$$
\begin{equation*}
\frac{\Sigma t e^{-k t}}{\Sigma e^{-k t}}=\frac{\Sigma t n_{t}}{\Sigma n_{t}} \tag{2}
\end{equation*}
$$

and ν_{0} is found from the equation

$$
\begin{equation*}
\nu_{0}=\frac{\Sigma n_{t}}{\Sigma e^{-k t}} . \tag{3}
\end{equation*}
$$

These equations can be solved by trial and error using a table of e^{x}, but, for the purpose of the present application, a table of the function on the left-hand side of (2) was computed and is given in Table 1. It covers the range from 0.01 to 1.0 and enables a sufficiently accurate value to be obtained by interpolation when the values of t are spaced at equal intervals. The constant k has dimensions t^{-1}, and for comparability with other such values must be converted to its proper value if necessary. For example, if equally spaced counts are made at intervals of 3 min . and a value of k (say k_{1}) is found using the table, then its value in (hr. $)^{-1}$

		Table 1. Table of values of the function $\sum_{t=0}^{r} t e^{-k t} / \sum_{0}^{r} e^{-k t}$								
	$\backslash k$	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	1	0.4975	0.4961	$0 \cdot 4922$	$0 \cdot 4898$	$0 \cdot 4876$	$0 \cdot 4849$	$0 \cdot 4826$	$0 \cdot 4800$	0.4775
	2	0.9965	0.9879	0.9794	0.9732	0.9667	0.9599	0.9534	0.9467	0.9401
	3	1-4897	1.4758	1-4620	$1 \cdot 4499$	$1 \cdot 4376$	1-4250	1-4127	1-4002	1.3878
	4	1.9815	1.9609	1.9395	1.9199	$1 \cdot 9001$	1-8801	1.8603	$1 \cdot 8405$	1-8207
	5	$2 \cdot 4732$	$2 \cdot 4426$	$2 \cdot 4120$	$2 \cdot 3833$	$2 \cdot 3544$	2-3253	$2 \cdot 2965$	$2 \cdot 2676$	2.2388
	6	$2 \cdot 9614$	$2 \cdot 9209$	$2 \cdot 8796$	$2 \cdot 8401$	$2 \cdot 8005$	$2 \cdot 7606$	$2 \cdot 7212$	$2 \cdot 6817$	$2 \cdot 6424$
	7	$3 \cdot 4491$	$3 \cdot 3959$	$3 \cdot 3421$	$3 \cdot 2902$	$3 \cdot 2383$	3.1861	$3 \cdot 1345$	3.0829	3.0316
	8	3.9347	3.8675	3.7997	3.7338	$3 \cdot 667$	$3 \cdot 6018$	$3 \cdot 5365$	$3 \cdot 4713$	3-4066
	9	$4 \cdot 4192$	4.3360	$4 \cdot 2524$	4-1708	4.0893	4.0079	$3 \cdot 9272$	3.847	3.76
	10	$4 \cdot 9016$	$4 \cdot 8010$	$4 \cdot 7000$	$4 \cdot 6012$	$4 \cdot 5026$	$4 \cdot 4042$	4-3069	$4 \cdot 2102$	$4 \cdot 1145$
	11	$5 \cdot 3826$	5-2627	5•1427	5.0250	4.9078	$4 \cdot 7910$	$4 \cdot 6756$	4.5611	$4 \cdot 4480$
	12	5-8614	5.7211	$5 \cdot 5806$	5.4424	5•3049	5•1683	$5 \cdot 0334$	$4 \cdot 8998$	4.7680
	13	6.3393	6.1763	6.0135	$5 \cdot 8533$	5.6941	5.5362	5•3804	$5 \cdot 2265$	$5 \cdot 0750$
	14	6.8149	6.6281	$6 \cdot 4414$	6.2577	6.0754	$5 \cdot 8948$	5.7169	$5 \cdot 5415$	$5 \cdot 3692$
	15	7.2893	$7 \cdot 0766$	6.8644	6.6556	6.4487	$6 \cdot 2441$	6.0429	5.8449	$5 \cdot 6508$
	16	$7 \cdot 7618$	7.5218	7.2826	7.0472	6.8143	6.5843	6.3585	6-1369	$5 \cdot 9201$
	17	8.2325	$7 \cdot 9636$	$7 \cdot 6959$	7.4324	$7 \cdot 1721$	6.9155	6.6641	6.4178	6.1776
	18	$8 \cdot 7020$	$8 \cdot 4023$	8-1043	$7 \cdot 8113$	$7 \cdot 522$	7.2378	6.9596	6-6879	4234
	19	9-1695	$8 \cdot 8376$	5080	8-1839	7-864	7.5513	7.2454	6.9473	580
	20	9.6352	9-2697	$8 \cdot 9067$	8.5502	8-199	7.8561	7.5215	7-1963	.8372
$\backslash \quad \underset{r}{k}$	$0 \cdot 1$	0.2	0.3	0.4	$0 \cdot 5$	$0 \cdot 6$	0.7	$0 \cdot 8$	$0 \cdot 9$	$1 \cdot 0$
1	0.4750	0.4502	0.4256	0.4013	0.3775	0.3543	0.3318	0.3100	0.2891	0.2689
2	0.9334	$0 \cdot 8675$	$0 \cdot 8029$	0.7402	$0 \cdot 6798$	0.6223	0.5678	0.5167	$0 \cdot 4690$	0.4248
3	$1 \cdot 3754$	$1 \cdot 2528$	1-1342	1.0214	0.9154	0.8173	0.7274	0.6460	0.5728	0.5073
4	$1 \cdot 8009$	$1 \cdot 6068$	$1-4222$	1.2507	1.0944	0.9544	0.8307	0.7227	0.6289	0.5481
5	$2 \cdot 2101$	$1 \cdot 9306$	1.6701	1-4346	1-2271	$1-0478$	0.8951	0.7662	0.6579	0.5671
6	$2 \cdot 6033$	$2 \cdot 2255$	1.8815	1.5800	$1 \cdot 3235$	1-1098	0.9339	0.7900	$0 \cdot 6722$	0.5756
7	$2 \cdot 9806$	$2 \cdot 4929$	2.0601	1.6933	1.3922	$1 \cdot 1500$	0.9567	$0 \cdot 8027$	$0 \cdot 6791$	0.5793
8	$3 \cdot 3423$	2.7343	$2 \cdot 2099$	1.7804	$1 \cdot 4404$	$1 \cdot 1755$	0.9699	$0 \cdot 8092$	0.6824	0.5809
9	$3 \cdot 6886$	2.9515	2.3343	$1 \cdot 8467$	1.4737	$1 \cdot 1915$	0.9773	$0 \cdot 8126$	0.6839	0.5815
10	4.0198	3-1459	$2 \cdot 4370$	1.8965	$1 \cdot 4964$	1-2014	0.9815	0.8143	0.6846	0.5818
11	$4 \cdot 3362$	$3 \cdot 3194$	$2 \cdot 5212$	1.9337	1.5117	1-2074	0.9837	0.8152	0.6849	0.5819
12	$4 \cdot 6381$	$3 \cdot 4736$	2.5897	1.9611	1.5219	1-2110	0.9850	0.8156	0.6850	0.5819
13	$4 \cdot 9260$	3-6102	$2 \cdot 6452$	1.9813	$1 \cdot 5287$	1.2132	0.9866	0.8158	0.6851	0.5820
14	$5 \cdot 2001$	3.7307	$2 \cdot 6898$	$1 \cdot 9960$	$1 \cdot 5332$	1.2145	0.9860	0.8159	$0 \cdot 6851$	0.5820
15	$5 \cdot 4608$	$3 \cdot 8367$	$2 \cdot 7255$	$2 \cdot 0066$	1.5361	$1 \cdot 2153$	0.9862	0.8159	0.6851	0.5820
16	$5 \cdot 7085$	3.9297	2.7540	2.0143	1.5380	1.2157	0.9863	0.8159	0.6851	0.5820
17	$5 \cdot 9437$	$4 \cdot 0110$	$2 \cdot 7766$	2.0198	1.5393	$1 \cdot 2160$	0.9864	0.8160	0.6851	0.5820
18	6.1667	$4 \cdot 0819$	2.7945	2.0237	1.5401	1.2162	0.9864	0.8160	0.6851	0.5820
19	6.3780	$4 \cdot 1435$	$2 \cdot 8086$	2.0265	$1 \cdot 5406$	1.2162	0.9864	$0 \cdot 8160$	$0 \cdot 6851$	0.5820
20	6.5779	4-1970	$2 \cdot 8197$	2.0285	1.5409	$1 \cdot 2163$	0.9864	$0 \cdot 8160$	0.6851	0.5820

will be $20 k_{1}$, and in (min. $)^{-1}$ it will be $\frac{1}{3} k_{1}$. If the results justify it, more accurate estimates of k and ν_{0} can be obtained by solving the following simultaneous equations:

$$
\left.\begin{array}{l}
\delta k \frac{\partial^{2} L}{\partial k^{2}}+\delta \nu_{0} \frac{\partial^{2} L}{\partial k \partial \nu_{0}}=-\frac{\partial L}{\partial k} \\
\delta k \frac{\partial^{2} L}{\partial k \partial v_{0}}+\delta v_{0} \frac{\partial^{2} L}{\partial \nu_{0}^{2}}=-\frac{\partial L}{\partial \nu_{0}}, \tag{4}
\end{array}\right\}
$$

and adding the corrections δk and $\delta \nu_{0}$ to the first approximations. The values of the differential coefficients are:

$$
\begin{aligned}
\frac{\partial^{2} L}{\partial k^{2}} & =-\nu_{0} \Sigma t^{2} e^{-k t}, \\
\frac{\partial^{2} L}{\partial k \partial \nu_{0}} & =\Sigma t e^{-k t}, \\
\frac{\partial^{2} L}{\partial \nu_{0}^{2}} & =-\frac{\Sigma n_{t}}{\nu_{0}^{2}} .
\end{aligned}
$$

Table 2. Successive counts of a micrococcus exposed to hexanediol

t (min.)	Count
0	58
$\frac{1}{18}$	34
$\frac{1}{9}$	10
$\frac{1}{6}$	10
$\frac{2}{9}$	7
$\frac{5}{18}$	3
$\frac{1}{3}$	5
$\frac{7}{18}$	2

The variances of the estimates are obtained using the determinant of the information matrix
from which are computed

$$
I=\left|\begin{array}{cc}
\frac{\partial^{2} L}{\partial k^{2}} & \frac{\partial^{2} L}{\partial k} \partial \nu_{0} \tag{5}\\
\frac{\partial^{2} L}{\partial k \partial \nu_{0}} & \frac{\partial^{2} L}{\partial \nu_{0}^{2}}
\end{array}\right|
$$

$$
\left.\begin{array}{r}
\operatorname{var}(k)=-\frac{\partial^{2} L}{\partial \nu_{0}^{2}} / I, \\
\operatorname{var}\left(\nu_{0}\right)=-\frac{\partial^{2} L}{\partial k^{2}} / I . \tag{6}
\end{array}\right\}
$$

The goodness of fit of the observations to the hypothesis of logarithmic decay can be decided by a χ^{2} test comparing the observed and calculated counts. If there are r counts, \mathcal{X}^{2} will have ($r-2$) degrees of freedom.

The calculations may be illustrated by some results, kindly given by Mr T. Nash, which show the killing effect of hexanediol on a micrococcus. Counts were made at intervals of $\frac{1}{18} \mathrm{~min}$., with the results shown in Table 2. Giving t the values 0,1 , $2, \ldots, 7$ the sums $\Sigma\left(t n_{t}\right)$ and $\Sigma\left(n_{t}\right)$ are computed, and then the ratio

$$
\frac{\Sigma\left(t n_{t}\right)}{\Sigma\left(n_{t}\right)}=\frac{171}{129}=1 \cdot 325 .
$$

Entering Table 1 with $r=7$ this value of $\Sigma t e^{-k t} / \Sigma e^{-k t}$ is found to be given by a k between 0.5 and 0.6 , since
and

$$
\frac{\Sigma t e^{-k t}}{\Sigma e^{-k t}}=1.3922 \quad \text { if } \quad k=0.5
$$

$$
\frac{\Sigma t e^{-k t}}{\Sigma e^{-k t}}=1 \cdot 1500 \quad \text { if } \quad k=0 \cdot 6
$$

The first estimate of k is therefore

$$
\begin{aligned}
k_{1} & =0 \cdot 6-\frac{1 \cdot 325-1 \cdot 150}{1 \cdot 39} \frac{2-1 \cdot 150}{2} \times 0 \cdot 1 \\
& =0.528 .
\end{aligned}
$$

Using this value of k, ν_{0} is found to be 53.50 .
To find the standard errors of k and ν_{0} it is necessary to calculate

$$
\begin{aligned}
\Sigma t e^{-k t} & =3 \cdot 176, \\
\nu_{0} \Sigma t^{2} e^{-k t} & =550 \cdot 24, \\
\frac{\Sigma n t}{\nu_{0}^{2}} & =0 \cdot 04506,
\end{aligned}
$$

from which is derived the determinant of the information matrix

$$
\begin{aligned}
I & =\left|\begin{array}{cc}
-550 \cdot 24 & 3 \cdot 176 \\
3.176 & -0.04506
\end{array}\right| \\
& =550 \cdot 24 \times 0.04506-(3.176)^{2} \\
& =14.729 .
\end{aligned}
$$

The variances of k and ν_{0} are then

$$
\begin{aligned}
\operatorname{var}(k) & =\frac{0 \cdot 04506}{14 \cdot 729}=0 \cdot 00306 \\
\operatorname{var}\left(\nu_{0}\right) & =\frac{550 \cdot 24}{14 \cdot 729}=37 \cdot 4 . \\
k & =0.528 \pm 0 \cdot 055 \\
\nu_{0} & =53 \cdot 5 \pm 6 \cdot 12
\end{aligned}
$$

Finally, then,

As the observations were made at intervals of $\frac{1}{18} \mathrm{~min}$. the value of k in $(\mathrm{min} .)^{-1}$ is $18 \times 0.528=9.51$, of which the standard error will be $(18 \times 0.055)=0.99$. The corrections introduced by a second approximation are negligible compared with these standard errors.

It sometimes happens that a series of baseline counts are available before the disinfectant is applied. In this case the method of estimation is unaltered but the equations may be written

$$
\begin{equation*}
\nu_{0}=\frac{\sum_{1}^{r} n_{t}+\sum n_{0}}{s+\sum_{1}^{r} e^{-k t}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sum_{1}^{r} t e^{-k t}}{s+\sum_{1}^{r} e^{-k t}}=\frac{\sum_{1}^{r} t n_{t}}{\sum n_{0}+\sum_{1}^{r} n_{t}}, \tag{8}
\end{equation*}
$$

where Σn_{0} is the sum of all the counts made before the application of the killing agent, and s is the number of such counts. The information matrix is

$$
I=\left|\begin{array}{cc}
-\nu_{0} \sum_{1}^{r} t^{2} e^{-k t} & \sum_{1}^{r} t e^{-k t} \tag{9}\\
\sum_{1}^{r} e^{-k t} & -\frac{\Sigma n_{0}+\sum_{1}^{r} n_{t}}{\nu_{0}^{2}}
\end{array}\right|,
$$

and the variances of k and ν_{0} are

$$
\left.\begin{array}{l}
\operatorname{var}(k)=\frac{\Sigma n_{0}+\sum_{1}^{r} n_{t}}{\nu_{0}^{2}} / I, \tag{10}\\
\operatorname{var}\left(\nu_{0}\right)=\nu_{0} \sum_{1}^{r} t^{2} e^{-k t} / I
\end{array}\right\}
$$

These equations are identical in form with those given for a single baseline count, the estimate of ν_{0} now being a weighted mean of those provided by the baseline counts and by the killing curve respectively.
The estimates of k and ν_{0} given above seem to be generally preferable to those found by fitting a straight line, as they are more reasonably weighted and also, given the table, more easily calculated. On the other hand, the variances may be disturbed by the occurrence of correlated errors among the counts, and if such errors cannot be discounted the variance formulae cannot be said to give more than an order of magnitude.

The case of an exponential decay curve whose total number is known at the outset has not been encountered in bacteriology though a haematological example has been pointed out to me by Dr Armitage. The problem seems to merit some discussion as it provides a further possible estimate of k which is very easy to compute. An analogous but more complex situation has been discussed by Kendall (1949, 1950) and by Moran (1951, 1953). The exponential decay process depends essentially on the fact that the deaths of individual organisms are quite independent, the probability that an organism is still alive at time t being

$$
p(t)=e^{-k t} .
$$

Now, if there are n_{t} organisms still alive at time t then the probability that there will be $n_{t+\tau}$ alive at time $t+\tau$ is

$$
\binom{n_{t}}{n_{t+\tau}}\left(e^{-k \tau}\right)^{n_{t+\tau}}\left(1-e^{-k \tau}\right)^{n_{t}-n_{t+\tau}}
$$

If a series of observations is taken at equal intervals of time the overall likelihood of the observed results will be proportional to

$$
\begin{gathered}
\left(e^{-k \tau}\right)^{n_{1}}\left(1-e^{-k \tau}\right)^{n_{0}-n_{\mathbf{1}}} \\
\times\left(e^{-k \tau}\right)^{n_{2}}\left(1-e^{-k \tau}\right)^{n_{1}-n_{2}} \\
\vdots \\
\times\left(e^{-k \tau}\right)^{n_{r}}\left(1-e^{-k \tau}\right)^{n_{r-1}-n_{r}},
\end{gathered}
$$

and maximizing the \log likelihood gives for the estimate of k
whence

$$
\begin{align*}
\frac{\partial L}{\partial k} & =-\tau \sum_{1}^{r} n_{i}+\frac{\left(n_{0}-n_{r}\right) \tau e^{k \tau}}{1-e^{-k \tau}}, \tag{11}\\
e^{-k \tau} & =\frac{n_{1}+n_{2}+\ldots+n_{r}}{n_{0}+n_{1}+\ldots+n_{r-1}} \\
k & =\frac{1}{\tau} \log \left\{\frac{n_{0}+n_{1}+\ldots+n_{r-1}}{n_{1}+n_{2}+\ldots+n_{r}}\right\} . \tag{12}
\end{align*}
$$

The estimate of k given by this expression is based on a weighted mean of the individual values of n_{k} / n_{k-1}, the weights being equal to the denominator in each case.

The variance of the estimate is given by differentiating the likelihood expression again

$$
\left.\begin{array}{rl}
\frac{\partial^{2} L}{\partial k^{2}} & \left.=-\frac{\tau^{2}\left(n_{0}-n_{r}\right) e^{-k r}}{\left(1-e^{-k \tau}\right)^{2}}=-\frac{1}{\operatorname{var}(k)}\right) \tag{13}\\
\operatorname{var}(k) & =\frac{4 \sinh ^{2}\left(\frac{1}{2} k \tau\right)}{\tau^{2}\left(n_{0}-n_{r}\right)} .
\end{array}\right\}
$$

It has been pointed out to me by Dr Armitage that this variance is appropriate, in the present case, to the results of single experiments provided that the number of organisms is reasonably large.

The methods discussed in this note are put forward as being preferable to an unweighted estimate of the decay constant. Probably both the suggested models are too simple to be completely applicable to any practical situation, but the estimators are simple and logical enough to deserve consideration in their own right.

SUMMARY

Methods are proposed for measuring the constants of an exponentially declining population under conditions in which the least-squares method is unsuitable. A table is given to facilitate the calculations.

My thanks are due to Miss Shirley Johnson for helping to compute Table 1, to Mr T. Nash who brought this problem to my notice and to Dr P. Armitage for his comments on the MS.

REFERENCES

Kendall, D. G. (1949). Stochastic processes and population growth. J.R. statist. Soc. B, 11, 230-64.
Kendall, D. G. (1950). An artificial realisation of a simple birth and death process. J.R. statist. Soc. B, 12, 116-19.
Moran, P. A. P. (1951). Estimation methods for evolutive processes. J.R. statist. Soc. B, 13, 141-6.
Moran, P. A. P. (1953). The estimation of the parameters of a birth and death process. J.R. statist. Soc. B, 15, 241-5.
(MS. received for publication 8. II. 56)

