
Elliptic Springer theory

David Ben-Zvi and David Nadler

Compositio Math. 151 (2015), 1568–1584.

doi:10.1112/S0010437X14008021

https://doi.org/10.1112/S0010437X14008021 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X14008021
https://doi.org/10.1112/S0010437X14008021


Compositio Math. 151 (2015) 1568–1584

doi:10.1112/S0010437X14008021

Elliptic Springer theory

David Ben-Zvi and David Nadler

Abstract

We introduce an elliptic version of the Grothendieck–Springer sheaf and establish elliptic
analogues of the basic results of Springer theory. From a geometric perspective, our
constructions specialize geometric Eisenstein series to the resolution of degree-zero,
semistable G-bundles by degree-zero B-bundles over an elliptic curve E. From a
representation theory perspective, they produce a full embedding of representations
of the elliptic or double affine Weyl group into perverse sheaves with nilpotent
characteristic variety on the moduli of G-bundles over E. The resulting objects are
principal series examples of elliptic character sheaves, objects expected to play the role
of character sheaves for loop groups.

1. Introduction

Let G be a connected reductive complex algebraic group, B ⊂ G a Borel subgroup, N ⊂ B its
unipotent radical, andH =B/N the universal Cartan. Let g, b, n, and h denote the corresponding
Lie algebras. Let W denote the Weyl group.

1.1 Springer theory
Let us begin by recalling the standard sheaf-theoretic formulations [Lus81, BM81, KL80] of
Springer theory [Spr76, Spr78, Spr82]. We will emphasize an interpretation in terms of geometric
Eisenstein series [Lau88, BG96] but in the nonstandard setting of singular curves of arithmetic
genus one. (See [Nad11] for a parallel symplectic treatment of Springer theory, and [BN08] for a
survey of moduli of bundles on cubic curves.)

1.1.1 Rational setting. Let Xg be the flag variety of Borel subalgebras (or equivalently,
subgroups), and N ⊂ g the nilpotent cone. The Springer resolution

µN : Ñ ' T ∗Xg ' {v ∈ b} ⊂ N ×Xg
// N

is a semi-small map and so the Springer sheaf SN = µN !CÑ [dimN ] is perverse. The
endomorphisms of SN as a perverse sheaf are equivalent to the group algebra C[W ] of the
Weyl group. The Grothendieck–Springer resolution

µg : g̃ ' {v ∈ b} ⊂ g×Xg
// g

is a small map and its restriction to the regular semisimple locus grs ⊂ g is the natural W -cover.
Hence the Grothendieck–Springer sheaf Sg = µg!Cg̃[dim g] is the middle extension of the natural
C[W ]-regular local system over grs ⊂ g. Thus the endomorphisms of Sg as a perverse sheaf are
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equivalent to the group algebra C[W ]. Furthermore, under any invariant isomorphism g ' g∗,

one can identify SN and Sg as Fourier transforms of each other [Gin83, HK84]. Thus Springer

theory compatibly realizes representations of W as perverse sheaves on N and g.

Taking quotients by the adjoint action of G, one can identify the equivariant Grothendieck–

Springer resolution with the natural induction map of adjoint quotients

µg : g̃/G ' b/B // g/G.

For a cuspidal cubic curve Ecusp ' Ga ∪ {∞} (or any simply-connected projective curve of

arithmetic genus one), this admits the interpretation as the induction map

µg : Bun0
B(Ecusp) // Bunss,0

G (Ecusp)

from degree-zero B-bundles to degree-zero, semistable G-bundles. Any degree-zero, semistable

bundle pulls back to the trivial bundle along the normalization map P1
→ Ecusp, and the Lie

algebra appears as descent data at the cusp {∞}. The correspondence of adjoint quotients

h/H b/B
νgoo µg // g/G

admits the interpretation as the correspondence of moduli of bundles

Bun0
H(Ecusp) Bun0

B(Ecusp)
νgoo µg // Bunss,0

G (Ecusp).

The W -action on the Grothendieck–Springer sheaf Sg = µg!ν
∗
gCh/H [dim g] reflects the functional

equation of the geometric Eisenstein series construction applied to the constant sheaf.

Remark 1.1. In addition to the endomorphisms of Sg as a perverse sheaf, the differential graded

algebra of endomorphisms of Sg as an equivariant complex can be calculated:

EndD[
c(g/G)(Sg) ' H

∗(BH) oC[W ] ' Sym∗(h∨[−2]) oC[W ].

Thus the full subcategory of D[
c(g/G) generated by Sg is equivalent to the category of finitely-

generated H∗(BH) oC[W ]-modules. (See [Rid13] for a definitive account and mixed version.)

Going further, the category of finitely-generated H∗(BH) o C[W ]-modules is equivalent to

the full subcategory of D[
c((h/H)/W ) generated by the pushforward q!Ch/H of the constant sheaf

along the natural quotient map

q : h/H // (h/H)/W.

The geometric Eisenstein series construction µg!ν
∗
g [dim g] descends to a fully faithful embedding

D[
c((h/H)/W ) �

� // D[
c(g/G)

which recovers Springer theory on the full subcategory generated by q!Ch/H . (See [Gun13] where

the theory is in fact established in the group-theoretic setting and for all D-modules.)
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1.2 Trigonometric setting
Now let us expand our scope to the group-theoretic Grothendieck–Springer resolution

µG : G̃ ' {g ∈ B} ⊂ G×Xg
// G.

One recovers the linear Grothendieck–Springer resolution µg : g̃ → g by deforming to the normal
cone of the identity of G. Taking quotients by the adjoint action of G, we obtain the natural
induction map of adjoint quotients

µG : G̃/G ' B/B // G/G.

For a nodal cubic curve Enode ' Gm∪{∞} (or any projective curve of arithmetic genus one with
fundamental group Z), this admits the interpretation as the induction map

µG : Bun0
B(Enode) // Bunss,0

G (Enode)

from degree-zero B-bundles to degree-zero, semistable G-bundles. Any degree-zero, semistable
bundle pulls back to the trivial bundle along the normalization map P1

→ Enode, and the group
appears as descent data identifying the two preimages of the node {∞}. The correspondence of
adjoint quotients

H/H B/B
νGoo µG // G/G

admits the interpretation as the correspondence of moduli of bundles

Bun0
H(Enode) Bun0

B(Enode)
νGoo µG // Bunss,0

G (Enode).

We will focus on the geometric Eisenstein series construction

µG!ν
∗
G[dimG] : D[

c(H/H) // D[
c(G/G).

The fundamental group π1(H) is the coweight lattice ΛH = Hom(Gm, H) with spectrum the
dual torus H∨ = SpecC[ΛH ]. Thus finite-rank W -equivariant local systems on H correspond
to finite-dimensional representations of the affine Weyl group Waff = ΛH o W which in turn
correspond to W -equivariant coherent sheaves on H∨ with finite support.

Starting from a finite-rank local system L, the corresponding Grothendieck–Springer sheaf

SG,L = µG!ν
∗
GL[dimG]

is a perverse sheaf.

Example 1.2. If we begin with the trivial local system L0 with its tautological W -equivariant
structure, the endomorphisms of the resulting Grothendieck–Springer sheaf

SG,0 ' µG!CG̃[dimG]

are equivalent to the group algebra C[W ].
If we begin with the universal local system Luniv corresponding to the natural Waff -

representation C[ΛH ] and in turn to the structure sheaf OH∨ , we obtain the universal
Grothendieck–Springer sheaf

SG,univ = µG!ν
∗
GLuniv[dimG].

Although SG,univ is not constructible, it is cohomologically bounded, and informally one can
view it as a perverse sheaf with endomorphisms equivalent to the group algebra C[Waff ].
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Remark 1.3. Suppose a W -equivariant local system L comes from a finite-dimensional C[ΛH ]W -
module, or in other words, a coherent sheaf on H∨//W with finite support. Then we may lift L
to a module over the Harish-Chandra center Zg ' C[h]W , or in other words, to a coherent sheaf
on h∨//W . If we view this lift as a generalized eigenvalue for Zg, the D-module corresponding
to SG,L is equivalent to the Harish-Chandra system of differential equations on G where the
differential operators from Zg are prescribed to act by this generalized eigenvalue.

In summary, the geometric Eisenstein series construction µG!ν
∗
G[dimG] descends to a fully

faithful embedding

Locfin(H/W ) ' C[Waff ]-modfin ' Cohfin(H∨/W ) �
� // Perv(G/G)

with domain finite-rank W -equivariant local systems on H, or equivalently, finite-dimensional
Waff -representations, or equivalently, W -equivariant coherent sheaves on H∨ with finite support,
into G-equivariant perverse sheaves on G.

Remark 1.4. Going beyond abelian categories, one can keep track of the derived structure of
H-equivariance, and also allow arbitrary W -equivariant constructible complexes on H/H. The
geometric Eisenstein series construction µG!ν

∗
G[dimG] descends to a fully faithful embedding

D[
c((H/H)/W ) �

� // D[
c(G/G).

For example, the differential graded algebra of endomorphisms of SG,0 is the twisted product
H∗(H/H) o C[W ], and that of SG,univ is the twisted product H∗(BH) o C[Waff ]. (See [Gun13]
where the theory is in fact established for all D-modules.)

Remark 1.5. Continuing with the derived structure of H-equivariance in the picture, the derived
category of local systems on H/H ' H ×BH is equivalent to modules over C[ΛH ]⊗ Sym∗(h[1])
via the identification H−∗(H) ' Sym∗(h[1]). Observe that the Langlands parameter moduli
LocH∨(Enode) of H∨-local systems on Enode admits the presentation

LocH∨(Enode) ' H∨ × SpecSym∗(h[1])×BH∨.

Thus one can view the natural domain of the geometric Eisenstein series embedding as
W -equivariant coherent sheaves with finite support and trivial H∨-equivariant structure on
LocH∨(Enode). (A similar interpretation applies in the rational setting discussed earlier, where
the moduli LocH∨(Ecusp) is more simply the product SpecSym∗(h[1])×BH∨.)

1.3 Elliptic Springer theory
From a geometric viewpoint, this paper extends the above story from the rational and
trigonometric settings to the elliptic setting of smooth elliptic curves. Via the restriction of
geometric Eisenstein series to degree-zero semistable bundles, we introduce an elliptic version
of Grothendieck–Springer sheaves and calculate their endomorphisms. For degree-zero semistable
bundles in arithmetic genus one, the induction map from B-bundles to G-bundles is already
proper, and so there is no need for the intricacies of Laumon or Drinfeld compactifications.
The Weyl group symmetry of the construction is a simple form of the functional equation and
admits a straightforward verification. The construction also works universally over the moduli
of smooth elliptic curves (compatibility with the rational and trigonometric constructions at the
boundary).
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As discussed below in more detail, our primary motivation stems from understanding

character sheaves for loop groups in the guise of perverse sheaves with nilpotent singular

support on the moduli of G-bundles on a smooth elliptic curve E. Within this framework, the

Grothendieck–Springer sheaves produced by the following theorem form the elliptic principal

series, or geometric avatars of principal series representations of loop groups. To simplify the

story, let us assume that the derived group [G,G] ⊂ G is simply connected.

Theorem 1.6. For a smooth elliptic curve E, there is a fully faithful embedding

C[WE ]-modfin
� � // PervN (Bunss

G(E))

from finite-dimensional representations of the elliptic or double affine Weyl group

WE = (π1(E)⊗ ΛH) oW

to perverse sheaves with nilpotent singular support on the moduli of semistable G-bundles on E.

Remark 1.7. The domain category C[WE ]-modfin of the theorem has two Langlands dual

descriptions: on the one hand, it is equivalent to finite-rank W -equivariant local systems on

the automorphic moduli Bun0
H(E) of degree-zero H-bundles on E; on the other hand, it is

equivalent to W -equivariant coherent sheaves with finite support and trivial equivariance for

automorphisms on the Langlands parameter moduli LocH∨(E). One can view the theorem as a

small but interesting part of the geometric Langlands correspondence for the elliptic curve E.

Remark 1.8. Geometric Eisenstein series in genus one, as well as modified versions such as the

elliptic Grothendieck–Springer sheaves of the theorem, are objects of the elliptic Hall category,

introduced and studied in depth by Schiffmann and Vasserot [Sch11, Sch12, SV13, SV11, SV12].

Notably, the trace functions of geometric Eisenstein series are identified with Macdonald’s

symmetric functions. The elliptic Hall algebra, the Grothendieck group spanned by geometric

Eisenstein series, is identified with a variant of Cherednik’s double affine Hecke algebra and

related to K-groups of Hilbert schemes of points. One can view elliptic Springer theory as a

categorical aspect of elliptic Hall algebras.

Remark 1.9. With the results of this paper in hand, it is not difficult to adapt the arguments of

the trigonometric case [Gun13] to understand the monadic structure of the elliptic Grothendieck–

Springer construction and enhance the theorem to a statement on the level of derived categories.

What results is a fully faithful embedding

D[
c(Bun0

H(E)/W ) �
� // D[

c(Bunss
G(E))

which recovers the statement of the theorem at the level of abelian categories of local systems

and perverse sheaves.

For a precise account of the functor of Theorem 1.6 and further details, the reader could

proceed to § 2. We conclude the present introduction with an informal discussion of motivation

from the theory of character sheaves, in particular for loop groups. This is not needed to read

§ 2 and the arguments in the subsequent sections.
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1.3.1 Brief recollection about character sheaves. Our interest in Springer theory stems from

its central role in Lusztig’s theory of character sheaves [Lus85]. In the traditional group-theoretic

setting, the Grothendieck–Springer sheaves SG,λ attached to W -invariant characters λ : ΛH → C∗
provide the geometric avatars of principal series representations of finite groups of Lie type.

For each W -invariant character λ : ΛH → C∗, the category ChλG of character sheaves with

central character λ forms the categorical Hochschild homology of the monoidal λ-monodromic

Hecke category HλG [BN09]. Any (sufficiently finite) HλG-module category defines a character

object in the categorical Hochschild homology which is thus a character sheaf. The Grothendieck–

Springer sheaf SG,λ is the trace of the unit of HλG, or equivalently, the character of the

regular HλG-module. The Grothendieck–Springer sheaves collectively provide the principal series

character sheaves underlying the principal series representations of finite groups of Lie type.

More strikingly, every character sheaf appears as the trace of an endomorphism of a regular

monodromic Hecke module category. Thus the entire spectrum of finite groups of Lie type is

captured by the categorified principal series.

From the perspective of topological field theory, one can view each monoidal monodromic

Hecke category as a quantization of G-gauge fields on an interval with B-reductions at the

end points. From general principles, one expects its categorical Hochschild homology to be

the analogous quantization of G-gauge fields on the circle, and thus the appearance of character

sheaves is not surprising. But we will now turn to loop groups where this viewpoint leads to less

evident conclusions.

1.3.2 Towards character sheaves for loop groups. While Lusztig’s character sheaves account

for characters of finite groups of Lie types, for p-adic groups, such a theory is still not available

but highly desirable. One obvious approach is to pass from p-adic groups to loop groups (from

mixed to equal characteristic) and then attempt to follow Lusztig’s constructions. In particular,

one might hope that the monoidal λ-monodromic affine Hecke categories HλLG would be rich

enough to produce all depth-zero characters. Unfortunately, with standard techniques, such a

direct approach encounters serious obstructions in the infinite-dimensional and codimensional

nature of adjoint orbits in loop groups. But as demonstrated most strikingly by Ngô in his proof

of the fundamental lemma [Ngô10], Hitchin systems over global curves provide finite-dimensional

models of this geometry.

Returning to the perspective of topological field theory, and in particular the geometric

Langlands program as a quantization of four-dimensional super Yang–Mills theory, one might

look specifically to the Hitchin system for an elliptic curve E to model the geometry of

the adjoint quotient of the loop group. Indeed, this is not a new idea: it has precedents in

Looijenga’s (unpublished) identification of holomorphic G-bundles on the Tate curve Eq with

twisted conjugacy classes in loop groups (see [EFK95] and Baranovsky and Ginzburg’s refinement

for semistable bundles and integral twisted conjugacy classes [BG96]). Thus it is reasonable to

look for a theory of character sheaves for loop groups in the geometry of the moduli BunG(E)

of G-bundles on an elliptic curve E. (This is discussed for example by Schiffmann [Sch12] who

attributes the idea to Ginzburg.)

With the preceding motivation and geometric reformulation of character sheaves [MV88,

Gin89] in mind, we propose the following definition.

Definition 1.10. Given a smooth elliptic curve E, an elliptic character sheaf is a constructible

complex on the moduli BunG(E) with singular support in the global nilpotent cone (the 0-fiber

of the Hitchin system). We denote the category of elliptic character sheaves by ChG(E).
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While it appears difficult to construct a theory of character sheaves from the elliptic picture
of twisted conjugacy classes, a more structured approach is available via the degeneration of the
Tate curve Eq ; E0 to a nodal elliptic curve and then the passage to its normalization P1 ' Ẽ0.
This sequence offers an analogue of the horocycle transform for loop groups completely within the
setting of finite-dimensional geometry. Via the geometry of degenerations and normalizations,
we expect that the categorical Hochschild homology of the λ-monodromic affine Hecke category
HλLG is equivalent to the category of elliptic character sheaves with central character λ. Any
(sufficiently dualizable) HλLG-module category has a character in the categorical Hochschild
homology which will then be such an elliptic character sheaf.

Finally, the results of this paper independently produce the elliptic Grothendieck–Springer
sheaf SE,λ ∈ D[

c(Bunss
G(E)) whose extension by zero is the elliptic character sheaf which should

arise via the trace of the unit of HλLG, or equivalently, the character of the regular HλLG-module
category.

1.3.3 Langlands duality/mirror symmetry. Let us mention further developments related to
the preceding discussion.

Following Kazhdan and Lusztig [KL87, CG97], the affine Hecke algebra admits a Langlands
dual presentation as equivariant coherent sheaves on the Steinberg variety of the dual group.
Bezrukavnikov [Bez06, Bez12] categorifies this to an equivalence of the monoidal affine Hecke
category (consisting of unipotent bimonodromic sheaves on the affine flag variety) with
equivariant coherent sheaves on the Steinberg variety.

From this Langlands dual starting point, one can ask what are the geometric avatars of
characters. In joint work with Preygel [BNP13], we provide the following answer for the ‘global’
version of the affine Hecke category, where we take into account all monodromies at once. Recall
that fixing a basis of π1(E) produces an equivalence from the moduli LocG∨(E) of dual group
local systems on the elliptic curve E to the derived stack of commuting pairs of dual
group elements up to conjugacy: the two commuting elements are given by the monodromies
of a local system around the basis of loops.

Theorem 1.11 [BNP13]. The Hochschild homology category of the global affine Hecke category
is equivalent to the derived category D[

NCoh(LocG∨(E)) of coherent sheaves with nilpotent
singular support on the moduli of dual group local systems on the elliptic curve E.

Remark 1.12. Coherent sheaves with nilpotent singular support on moduli of local systems were
introduced by [AG15] as the natural target for the spectral side of the geometric Langlands
conjecture.

Remark 1.13. The commuting stack LocG∨(E) plays a central role in representation theory. We
mention two recent exciting developments. Its K-groups play a central role (as the Langlands
dual form of the elliptic Hall algebra) in the work of Schiffmann and Vasserot [SV13, SV11, SV12],
with close ties to the theory of Macdonald polynomials and double affine Hecke algebras. The
work of Ginzburg [Gin12] unveils and exploits a direct link between the (Lie algebra) commuting
variety, Cherednik algebras and the Harish-Chandra system or Springer sheaf.

Remark 1.14. It is natural to ask which coherent sheaf on LocG∨(E) corresponds to the universal
elliptic Grothendieck–Springer sheaf, or in other words, the character of the regular ‘global’
affine Hecke module. Following through the constructions, one finds the coherent Grothendieck–
Springer sheaf resulting from the pushforward of the structure sheaf along the induction map
LocB∨(E) → LocG∨(E). (In fact, a slight modification of this object matches where we take into
account the natural linearity over H∨.)
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In joint work with Helm (in preparation), we relate a natural q-deformation of this sheaf to
the representation theory of affine Hecke algebras, and more broadly, relate all coherent character
sheaves with representations of p-adic groups. We expect elliptic and coherent character sheaves
to elucidate the depth-zero representation theory of p-adic groups.

2. Main statements

Throughout the rest of the paper, we will make the simplifying assumption that the derived
group [G,G] ⊂ G is simply connected.

Fix an elliptic curve E (or more precisely, a smooth projective curve of genus one; our
assertions will not involve any choice of a base point). The geometry of G-bundles on E, in
particular the stack of semistable bundles and its coarse moduli, is well understood, with an
extensive literature going back to Atiyah [Ati57]. We have found the beautiful sources [Ram75,
Ram96, Las98, FMW97, FM98] to be especially helpful.

Consider the Eisenstein diagram of stacks of principal bundles

BunG(E) BunB(E)
pEoo qE // BunH(E).

Recall that BunH(E) is naturally a commutative group-stack, and there is a canonical
equivalence

BunH(E) ' Pic(E)⊗Z ΛH

where ΛH = Hom(Gm, H) denotes the coweight lattice of H and Pic(E) denotes the Picard stack.
In particular, the group of connected components π0 BunH(E) is canonically isomorphic to ΛH .
We denote the neutral component of degree-zero H-bundles by

HE ⊂ BunH(E).

Recall that the Weyl group W naturally acts on ΛH and hence also on BunH(E) and hence in
turn on HE . An H-bundle is said to be regular if it is not isomorphic to any of its W -translates.
We denote the open substack of W -regular degree-zero H-bundles by

Hr
E ⊂ HE .

Observe that π0 BunG(E) is canonically equivalent to ΛH/RG where RG ⊂ ΛH denotes the
coroot lattice of G. We say that a G-bundle is degree zero if it lies in the connected component
of the trivial G-bundle. Consider the open substack of degree-zero semistable G-bundles

GE ⊂ BunG(E).

According to [Las98, FM98], the coarse moduli of S-equivalent degree-zero semistable G-bundles
admits the description

GE/{S-equivalence} ' [HE ]/W

where [HE ] denotes the coarse moduli of degree-zero H-bundles, and we take the naive finite
quotient by W on the right.

Consider further the open substack of regular semisimple degree-zero semistable G-bundles

Grs
E ⊂ GE .
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Here ‘regular’ means that their automorphisms are as small as possible (of the dimension of H)
and ‘semisimple’ means they are induced from a torus bundle. The above identification restricts
to induce a canonical equivalence

Grs
E ' Hr

E/W

where the W -action on Hr
E is free (and so may be interpreted in any fashion).

Example 2.1. Take G = SL2, so that W ' Z/2Z, H ' Gm, and ΛH ' Z. Then [HE ] ' E, and
the naive quotient E ' [HE ] → [HE ]/W ' P1 is the usual Weierstrass ramified two-fold cover.
The moduli of semistable bundles lying above any of the four points of ramification is equivalent
to the adjoint quotient of the nilpotent cone N/G, and the semistable bundles lying above the
complement of the four points form the regular semisimple locus.

Recall that qE : BunB(E) → BunH(E) is a bijection on connected components. We say that
a B-bundle is degree zero if it projects to a degree-zero H-bundle. We denote the connected
component of degree-zero B-bundles by

BE ⊂ BunB(E).

We have the natural restriction of the Eisenstein diagram

GE BE
µEoo νE // HE .

We refer to the map µE as the elliptic Grothendieck–Springer resolution.
Recall that a representable map f : X → Y of irreducible stacks is said to be small if f is

proper, surjective, and, for all k > 0, we have codimf(Xk) > 2k where Xk ⊂X denotes the union
of fibers of f of dimension k.

Theorem 2.2. (1) The elliptic Grothendieck–Springer resolution

µE : BE // GE

is a small map.
(2) The restriction of the elliptic Grothendieck–Springer resolution to the inverse image

Brs
E = µ−1

E (Grs
E ) of the regular semisimple locus fits into the Cartesian diagram of W -covers

Brs
E

∼
��

µrsE // Grs
E

∼
��

Hr
E

// Hr
E/W

The proof of the theorem will be given in § 4 after collecting some preliminaries in § 3.

Remark 2.3. Some simple observations:
(1) The theorem and its proof extend universally over the moduli of elliptic curves.
(2) The theorem holds equally well over any projective curve of arithmetic genus one, and in

fact the resulting objects are well known when no component is a smooth elliptic curve (so that
the fundamental group of the curve is less than rank two). For example, over a cuspidal elliptic
curve, one finds the Lie algebra version of the Grothendieck–Springer resolution; and over any
nodal necklace of projective lines, in particular a nodal elliptic curve, one finds the group version.
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The fundamental group π1(HE) is the tensor product lattice π1(E)⊗ΛH with spectrum two
copies of the dual torus H∨×H∨ = SpecC[π1(E)⊗ΛH ]. Thus (finite-rank) W -equivariant local
systems on HE correspond to (finite-dimensional) representations of the elliptic Weyl group

WE = (π1(E)⊗ ΛH) oW

which in turn correspond to W -equivariant quasicoherent sheaves on H∨×H∨ (with finite global
sections).

Starting from a finite-rank local system L, we define the corresponding elliptic Grothendieck–
Springer sheaf by the formula

SE,L = µE!ν
∗
EL ∈ D[

c(GE).

For the elliptic curve E, the Hitchin system reduces to the natural map T ∗BunG(E) → h∗//W
that assigns to a covector ξ ∈ H0(E, g∗P) at a bundle P ∈ BunG(E) its characteristic polynomial
(or equivalently, image under the geometric invariant quotient of the coadjoint action). We define
the nilpotent cone N ⊂ T ∗BunG(E) to be the 0-fiber of the Hitchin system.

Corollary 2.4. Let L be a finite-rank local system on HE , or equivalently, a finite-dimensional
π1(HE)-representation.

(1) The elliptic Grothendieck–Springer sheaf SE,L is the middle extension of its restriction
to the regular semisimple locus.

(2) The elliptic Grothendieck–Springer construction factors into induction followed by a fully
faithful embedding

SE : C[π1(HE)]-modfin
// C[WE ]-modfin

� � // PervN (Bunss
G(E))

into perverse sheaves with nilpotent singular support.

The corollary follows closely from the theorem. The proof of the corollary will be given in
§ 4 following the proof of the theorem.

Remark 2.5. If we begin with the universal local system Luniv corresponding to the natural
WE-representation C[π1(E)⊗ΛH ] and in turn to the structure sheaf of H∨×H∨, we obtain the
universal Grothendieck–Springer sheaf

SE,Luniv = µE!ν
∗
ELuniv.

Although SE,Luniv is not constructible, it is cohomologically bounded, and informally one can
view it as a perverse sheaf with endomorphisms equivalent to the group algebra C[WE ].

3. Tannakian reminders

Following the account in [BG02], we recall a useful way to translate Borel structures on principal
bundles into linear algebra.

We continue with the setup of G a connected reductive group with simply connected derived
group, B ⊂ G a Borel subgroup, N ⊂ B its unipotent radical, and H = B/N the universal
Cartan.

Let Λ̌H = Hom(H,Gm) denote the weight lattice, and Λ̌+
G ⊂ Λ̌H the cone of dominant weights.

For λ ∈ Λ̌G, let V λ denote the irreducible G-representation of highest weight λ.
Recall that specifying the Borel subgroup B ⊂ G, or in other words, a point of the flag variety

of G, is equivalent to specifying a collection of lines

Lλ ⊂ V λ, for λ ∈ Λ̌G,
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satisfying the Plucker relations: the natural projections

V λ ⊗ V µ // V λ+µ, for λ, µ ∈ Λ̌G,

restrict to isomorphisms

Lλ ⊗ Lµ ∼ // Lλ+µ.

Now let X be any base scheme. The moduli BunB(X) represents the following data: an
S-point of BunB(X) is an S-point ξ of BunG(X), together with a collection of invertible
subsheaves

Lλ ⊂ Vλξ , for λ ∈ Λ̌G,

such that the quotients Vλξ /Lλ are flat over S × X, and the collection satisfies the Plucker
relations: the natural projections

Vλξ ⊗ V
µ
ξ

// Vλ+µ
ξ , for λ, µ ∈ Λ̌G,

restrict to isomorphisms

Lλ ⊗ Lµ ∼ // Lλ+µ.

Now suppose X is a smooth connected projective curve. Unlike the absolute case over a point
where the flag variety is connected and proper, the fibers of the map p : BunB(X) → BunG(X)
need not be connected or proper. Following Drinfeld, to compactify the connected components
of the fibers of p, one can consider generalized B-structures. The moduli BunB(X) of generalized
B-bundles represents the following data: an S-point of BunB(X) is an S-point ξ of BunG(X),
together with a collection of invertible subsheaves

Lλ ⊂ Vλξ , for λ ∈ Λ̌G,

such that the quotients Vλξ /Lλ are flat relative to S (but not necessarily over S ×X), and the
collection satisfies the Plucker relations: the natural projections

Vλξ ⊗ V
µ
ξ

// Vλ+µ
ξ , for λ, µ ∈ Λ̌G,

restrict to isomorphisms

Lλ ⊗ Lµ ∼ // Lλ+µ.

The following statements can all be found in [BG02]. There is an evident open embedding
BunB(X) ⊂ BunB(X) whose image is dense. The projection q : BunB(X) → BunH(X) extends
to a projection q : BunB(X) → BunH(X). The map p : BunB(X) → BunG(X) extends to
a representable map p : BunB(X) → BunG(X), and the restriction of p to any connected
component is proper.

4. Proofs

We prove here our main statements made earlier: Theorem 2.2 (which also appeared in a less
precise form as Theorem 1.6) as well as Corollary 2.4. The arguments are assembled from familiar
statements about vector bundles on smooth projective curves. The Tannakian reminders in § 3
above allow one to reduce abstract statements about G-bundles to more concrete versions about
vector bundles.
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Let X be a smooth projective curve. We continue to use interchangeably the geometric
language of vector bundles and line bundles and the algebraic language of locally free sheaves
and invertible sheaves. It is worth pointing out one important distinction in terminology (which
played a role above in the discussion of Drinfeld compactifications): an inclusion W ⊂ W of
locally free sheaves need not be a fiberwise inclusion of vector bundles; namely, the quotient
V/W may have torsion in the former case while it will be a vector bundle in the latter case.

Given a vector bundle V → X, we have its degree degV (first Chern class integrated over X)
and rank rkV (dimension). One says that V is semistable if it satisfies the slope inequality

degW/rkW 6 degV/rkV

for all proper nonzero vector subbundles W ⊂ V. In particular, if V has degree zero, then W
must have nonpositive degree.

Lemma 4.1. Suppose L ⊂ V is the inclusion of a degree-zero invertible sheaf into a degree-zero
locally free sheaf on X. If V is semistable, then V/L is locally free, and so L ⊂ V is a vector
subbundle.

Proof. If V/L contains torsion, then we may twist L to obtain a positive locally free subbundle
of V, in contradiction to the fact that V is degree zero and semistable. 2

Let GX be the moduli of degree-zero, semistable G-bundles on X. Let BX be the moduli of
degree-zero B-bundles on X, where by ‘degree’ we mean the degree of the induced H-bundle.

Lemma 4.2. The induction map µX : BX → GX is representable and proper.

Proof. As established in [BG02], the Plucker presentation of § 3 shows µX is representable. Then
Lemma 4.1 shows it coincides with the Drinfeld compactification and hence is proper. 2

Let x ∈ X be a geometric point.

Lemma 4.3. Suppose V is a degree-zero semistable vector bundle, and L1,L2 ⊂ V are degree-zero
line subbundles. If L1|x = L2|x inside V|x, then L1 = L2 inside V.

Proof. Suppose not. Then the composition L1 ⊂ V → V/L2 is an inclusion of a degree-zero
invertible sheaf into a degree-zero semistable locally free sheaf. By Lemma 4.1, the composition
must be an inclusion of vector bundles, in contradiction to the fact that it must also have a zero
at x. 2

Let GX,x = GE ×BG BB be the moduli of a degree-zero semistable G-bundle ξ together with
a flag in the fiber ξ|x. We have a natural map rX : BX → GX,x given by taking µX : BX → GX
in the first factor and the fiber at x in the second factor.

Lemma 4.4. The natural map rX : BX → GX,x is a closed embedding.

Proof. Apply Lemma 4.3 to the Plucker presentation of µX . 2

Let ZX = BX ×GX BX be the moduli of a pair of degree-zero B-bundles together with an
isomorphism of their induced G-bundles.

Lemma 4.5. If X is an elliptic curve, then the irreducible components of ZX are in natural
bijection with the Weyl group W, and the dimension of each irreducible component is zero.

1579

https://doi.org/10.1112/S0010437X14008021 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14008021


D. Ben-Zvi and D. Nadler

Proof. Fix x ∈ X a geometric point, and consider the natural restriction map πX : ZX →

BB ×BG BB ' B\G/B given by taking fibers at x. By Lemma 4.4, for a given relative position

Yw ⊂ B\G/B represented by two Borel subgroups B1, B2 ⊂ G, the inverse image π−1
X (Yw) is

equivalent to the moduli of degree-zero B1 ∩B2-bundles. Using only that the canonical bundle

of X is trivial, it is straightforward to check this moduli has the correct dimension by induction

on the solvable filtration of B1 ∩B2. 2

Consider the composition q1 : ZX → BX → HX where the first map is projection along the

first factor and the second is the usual projection.

Lemma 4.6. The restriction of q1 to each irreducible component of ZX has equidimensional

fibers.

Proof. The lemma follows from the proof of Lemma 4.5 where the components are shown to be

moduli of degree-zero B1 ∩B2-bundles. 2

Now let us turn to the proofs of Theorem 2.2 as well as Corollary 2.4.

A representable map f : X → Y of irreducible stacks is said to be small (or semi-small) if f

is proper, surjective, and, for all k > 0, we have codimf(Xk) > 2k (or codimf(Xk) > 2k) where

Xk ⊂ X denotes the union of fibers of f of dimension k. Traditionally (see, for example, [DM09])

the prior definitions are made for a map of varieties or schemes, but they can be checked after

smooth base change, and so extend naturally to stacks.

We will employ the following general strategy to establish that a map f : X → Y is small.

First, suppose f is proper, surjective, and V ⊂ Y is an open substack such that f : U =

X ×Y V → V is finite. Let X ′ = X\U , Y ′ = Y \V , and g : X ′ → Y ′ be the restriction of f . It is

immediate from the definitions that if g is semi-small, then f is small.

Second, to see that g : X ′ → Y ′ is semi-small, it suffices to show that the dimension of each

irreducible component of Z = X ′ ×Y ′ X ′ is less than or equal to dimY .

Proof of Theorem 2.2. Fix a splitting H ⊂ B of the projection B → H so that we obtain a

maximal torus H ⊂ B ⊂ G. By [Las98, Theorem 4.16] or [FM98, Corollary 5.12], the induction

from H-bundles to G-bundles provides an equivalence

Hr
E/W

∼ // Grs
E .

Strictly speaking, this is stated on the level of coarse moduli in [Las98, FM98], but the

additional necessary ingredients for stacks are readily available. First, the induction map is

defined on the level of stacks. Second, the automorphisms of a regular bundle are simply H

(see, for instance, [FM98, Theorem 4.1]), and hence the induction map is an isomorphism on

automorphisms as well.

For assertion (2), it now suffices to show that the natural map

Brs
E

// Hr
E

is an equivalence.

Given the splitting H ⊂ B, and corresponding map

Hr
E

// Brs
E
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it suffices to show, for any ξ ∈ Hr
E , that all B-bundles lying over it are equivalent to the B-bundle

it induces by the splitting.

To see the above assertion, we can appeal to the Plucker presentation of the previous

section. Given a weight µ ∈ Λ̌G, let us denote by Lµξ ∈ Pic0(E) the associated degree-zero

line bundle. Thanks to the Plucker presentation of the previous section, it suffices to show

that for any weight µ ∈ Λ̌G, and any simple root α ∈ Λ̌G, any extension between the degree-

zero line bundles Lµξ ,L
µ+α
ξ canonically splits. It follows immediately that any B-structure is

unique.

Thus we are reduced to needing, for any simple root α ∈ Λ̌G, the vanishing H1(E,Lαξ ) ' 0.

By Serre duality, this holds over an elliptic curve E if and only if the degree-zero line bundle Lαξ
is nontrivial. This is in fact an equivalent formulation of what it means for ξ to be regular.

Let us check that it is indeed implied by the assumption that the W -orbit of ξ is a free

W -orbit. Let σ ∈ W be the simple reflection corresponding to the root α. Choose µ ∈ Λ̌G
regular and dominant, so that by assumption the degree-zero line bundles Lµξ ,L

σ(µ)
ξ are not

isomorphic. But then Lσ(µ)
ξ ' Lµξ ⊗ (Lαξ )k, for some integer k, so we see that Lαξ must be

nontrivial.

Finally, for assertion (1), the above discussion, together with Lemmas 4.2, 4.5, and 4.6,

shows that the restriction of µX to the complement of the regular semisimple locus is semi-

small. 2

Proof of Corollary 2.4. Assertion (1) is a standard consequence of assertion (1) of Theorem 2.2.

Namely, the pushforward of a (shifted) local system along a small resolution produces a perverse

sheaf that is the middle extension of its generic pushforward (see, for example, [DM09]).

For assertion (2), let us first establish that the construction SE produces complexes with

nilpotent singular support. At a B-bundle P, the pullback of covectors along µE is given by

H0(E, g∗P) → H0(E, b∗P). The Hitchin system factors through the natural projection H0(E,

b∗P) → h∗. Thus SE will take local systems, i.e. sheaves with vanishing singular support on HE ,

to complexes with nilpotent singular support on GE . Once we have seen the asserted factorization

of SE , it will follow immediately that all complexes in the image of the fully faithful embedding

have nilpotent singular support, since every finite-dimensional C[WE ]-module appears within an

induction of a finite-dimensional C[π1(HE)]-module.

Recall that, in general, the middle extension off an open locus is fully faithful, as can be

seen as follows. Restriction to the open locus provides a left inverse so the middle extension

is faithful. If it were not full, then from the preceding observation we could find a nontrivial

morphism restricting to zero over the open locus. But by the the minimality of the middle

extension, it must equal the kernel of such a morphism, and hence the morphism must in fact

be trivial.

Introduce notation for the embeddings jH/W : Hr
E/W → HE/W , jG : Grs

E → GE . Note that

restriction j∗H/W to a dense open locus is fully faithful on local systems. Using the identification

Grs
E ' Hr

E/W , we can thus take the fully faithful embedding to be the composition jG!∗j
∗
H/W on

local systems on HE/W .

Finally, for the factorization, introduce notation for the open embedding jB : Brs
E → BE . We

have seen that

SE ' jG!∗µ
rs
E!j
∗
Bν
∗
E .
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Recall that we can drop the middle extension and work with the functor µrs
E!j
∗
Bν
∗
E . Introduce

notation for the open embedding jH : Hr
E → HE and natural projection πr

H : Hr
E → Hr

E/W . We
have the canonical isomorphism

µrs
E!j
∗
Bν
∗
E ' πr

H!j
∗
H

thanks to the diagram of assertion (2) of Theorem 2.2.
Finally, note that restriction j∗H to a dense open locus is fully faithful on local systems. And

the pushforward πr
H! along a W -cover is precisely the induction map on local systems. 2
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