INTEGRATION OF SUBSPACES DERIVED FROM A LINEAR TRANSFORMATION FIELD

EDWARD T. KOBAYASHI

1. Introduction. The problem we study is a generalization of a problem first solved by Tonolo (6), then generalized successively by Schouten (5), Nijenhuis (4), Haantjes (3), and Nijenhuis-Frölicher (2). The Tonolo-Schouten approach is distinct from that of Nijenhuis-Haantjes-Frölicher in the sense that the former consider the problem on a Riemannian space, while the latter consider it on a manifold without any further structure.

The object of investigation is the integrability of the distribution θ of vector subspaces θ_p of the tangent space T_p to a manifold M, when θ_p is intrinsically related to a given field h on M, of linear transformations h_p on T_p . The research has so far been restricted to certain types of h. The result, under the weakest restriction, was that of Haantjes, which states that if h is of "type A"* then all the distributions are integrable if and only if the following condition is satisfied:

$$hh[h,h](u,v) + [h,h](hu,hv) - h[h,h](hu,v) - h[h,h](u,hv) = 0$$

where u, v are two vector fields over M, and [h, h] is a vector 2-form introduced by Nijenhuis (cf. § 2).

We free ourselves from any restriction on h. Our result depends entirely on the local factorization of the characteristic polynomial χ of h. To each factor χ_i of χ , there corresponds a distribution θ_i and a projection operator $\epsilon_i(h)$, which is a polynomial in h, and the local integrability condition of θ_i is $(I - \epsilon_i(h))[\epsilon_i(h), \epsilon_i(h)] = 0$ (Theorem 4.2). To each product $\chi_{i_1} \dots \chi_{i_k}$ of distinct factors of χ , there corresponds a distribution $\theta_{i_1} \dots i_k$. The necessary and sufficient condition for these distributions to be all locally integrable is $[\epsilon_i(h), \epsilon_i(h)] = 0$ for all i (Corollary 4.3).

2. Vector forms and projection operators. Let M be a C^{∞} -manifold and Φ the ring of C^{∞} -functions on M. By a neighbourhood of a point p in M, we mean an open, connected subset of M containing p.

Received September 23, 1959. This research was supported by an Office of Naval Research contract at the University of Washington.

^{*}h is said to be of type A if (i) there are functions $\alpha_1, \ldots, \alpha_g$ on M, such that $(\alpha_1)_p, \ldots, (\alpha_g)_p$ are distinct at each p, and give the eigenvalues of h_p , and if (ii) there are vector fields v_{i1}, \ldots, v_{im_i} on M, $i = 1, \ldots, g$, $m_1 + \ldots + m_g = n$ such that $(v_{i1})_p, \ldots, (v_{im_i})_p$ are eigenvectors corresponding to $(\alpha_i)_p$ and are linearly independent.

Definition 2.1. A vector q-form is a C^{∞} -tensor field over M, skew-symmetric in the covariant part, of covariant degree q, and of contravariant degree 1.

Let h be a vector 1-form. Then we see that h is nothing but a rule which assigns to each point p of M a linear transformation h_p of the tangent space T_p at p to M. Following Nijenhuis (4, 2) we introduce a vector 2-form [h, h] defined by

where u, v are vector fields over M. That (2.1) does define a tensor, follows from the Φ -linearity in u and v of the right side of (2.1).*

Definition 2.2. A vector 1-form e satisfying $e^2 = e$ on a neighbourhood U is called a projection operator on U.

Remark 1. dim e_qT_q is constant for $q \in U$, and we call this constant the rank of e. In fact, dim e_qT_q , which is an integer, is equal to the trace of e_q , which depends continuously on q, hence is a constant.

Remark 2. If e is a projection operator on U, so is e' = I - e, where I is the identity vector 1-form. We have e + e' = I, ee' = e'e = 0 and

$$T_q = c_q T_q \oplus c_q' T_q$$
 for $q \in U$.

Furthermore we have

$$[e, e] = [e', e'].$$

Definition 2.3 A law θ which assigns to each point p in a neighbourhood U of M, an r-dimensional vector subspace θ_p of the tangent space T_p of M at p, is called an r-dimensional distribution over U. If at each $p \in U$, we can find a neighbourhood U' of p, U' contained in U, and r C^{∞} -vector fields X_1, \ldots, X_r over U', such that $(X_1)_q, \ldots, (X_r)_q$ form a basis for θ_q at each $q \in U'$, we say that θ is C^{∞} .

Definition 2.4. Let θ be an r-dimensional C^{∞} -distribution over a neighbourhood U of p. If there is a neighbourhood U' of p and, for each $q \in U'$, an r-dimensional submanifold N contained in U' and passing through q, such that $\theta_{q'}$ is the tangent space of N at each $q' \in N$, then we say that θ is integrable in U', a neighbourhood of p.

Definition 2.5. Let θ be a C^{∞} -distribution over a neighbourhood U of p. If there is a neighbourhood U' of p contained in U such that, for any two C^{∞} -vector fields X_1, X_2 over U', satisfying $(X_1)_q$, $(X_2)_q \in \theta_q$ $(q \in U')$, we have $[X_1, X_2]_q \in \theta_q$, then we say that θ is involutive in U'.

A C^{∞} -distribution θ over a neighbourhood U of p is integrable in a neighbourhood U' of p, contained in U, if and only if θ is involutive in the neighbourhood U' of p, Frobenius (1).

Now, if e is a projection operator of rank r over U, then θ , defined by $q \to e_q T_q$, where T_q is the tangent space of M at $q \in U$, is an r-dimensional

^{*}For details of this type of argument, see the proof of Proposition (3.4) in (2).

 C^{∞} -distribution over U. To see that θ is C^{∞} , choose a co-ordinate system x_1, \ldots, x_n in a neighbourhood of q. Then we can pick r C^{∞} -vector fields from

$$e\frac{\partial}{\partial x_i}$$
, $i=1,\ldots,n$,

say,

$$e \frac{\partial}{\partial x_1}, \ldots, e \frac{\partial}{\partial x_n},$$

so that

$$\left(e\frac{\partial}{\partial x_1}\right)_{g',\ldots}\left(e\frac{\partial}{\partial x_7}\right)_{g'}$$

are linearly independent, hence form a basis for $e_{q'}T_{q'}$, for q' in a neighbourhood of q.

LEMMA 2.1. Let e be a projection operator over a neighbourhood U of p, and let θ be the C^{∞} -distribution defined by $q \to e_q T_q$, $q \in U$. Then θ is integrable in a neighbourhood of p, if and only if (I - e)[e, e] = 0 on a neighbourhood of p.

Proof. If u, v are two C^{∞} -vector fields over a neighbourhood of p, then we have

$$\frac{1}{2}(I-e)[e,e](u,v)
= (I-e)[eu,ev] - (I-e)e[eu,v] - (I-e)e[u,ev] + (I-e)e^{2}[u,v]
= (I-e)[eu,ev].$$

If u is a C^{∞} -vector field over a neighbourhood U' of p, then eu is a C^{∞} -vector field over U' such that $e_qu_q \in e_qT_q$, $q \in U'$. Conversely, if u is a C^{∞} -vector field over U' such that $u_q \in e_qT_q$, $q \in U'$, then $u_q = e_qu_q$, hence u = eu. Hence, using Frobenius' theroem, we see that θ is integrable in a neighbourhood of p if and only if $[eu, ev]_q \in e_qT_q$ for all q in a neighbourhood U'' of p, and all C^{∞} -vector fields u, v over U''. This condition is equivalent to $(I - e)[eu, ev]_q = 0$, and the computation above shows that the latter in turn is equivalent to $(I - e)[e, e](u, v)_q = 0$. Q.E.D.

If e_i , $i = 1, \ldots, g$ are projection operators on U, $p \in U$, satisfying

$$\sum_{i=1}^{g} e_i = I, \quad e_i e_j = e_j e_i,$$

then it can be shown that $e_i e_j = 0$ for $i \neq j$, and that $T_q = (e_1)_q T_q \oplus \ldots \oplus (e_g)_q T_q$ for $q \in U$. Let $\theta_{i_1 \ldots i_k}$ be the C^{∞} -distribution over U defined by

$$q \to (e_{i_1})_q T_q \oplus \ldots \oplus (e_{i_k})_q T_q$$
.

Here i_1, \ldots, i_k should be all distinct.

If $\theta_1 \dots \theta_{g-1}$ and $\theta_2 \dots \theta_g$ are both integrable in a neighbourhood of p, then using Frobenius' theorem, we see that $\theta_2 \dots \theta_{g-1}$ is integrable in a neighbourhood of p. Repeating this argument, we have: the distributions

$$\theta_{i_1 \ldots i_k} (k = 1, \ldots, g - 1; i_s = 1, \ldots, g; s = 1, \ldots, k)$$

are all integrable in a neighbourhood of p if and only if the distributions $\theta_{i_1,\ldots,i_{n-1}}$ are all integrable in a neighbourhood of p.

LEMMA 2.2. The distributions

$$\theta_{i_1, \dots, i_k}$$
 $(k = 1, \dots, g - 1; i_s = 1, \dots, g; s = 1, \dots, k)$

are all integrable in a neighbourhood of p if and only if $[e_i, e_i] = 0$ for all i in a neighbourhood of p.

Proof. Notice first that $e_1 + ... \wedge ... + e_g = I - e_i$. Using Lemma 2.1. and (2.2) the integrability of the distribution $\theta_1 ... \wedge ... g$ can be expressed as, $e_i[e_i, e_i] = 0$.

Now if all the distributions $\theta_{i_1 \dots i_k}$ are integrable in a neighbourhood of p, then in particular $\theta_{1 \dots n}$ and θ_i are integrable in a neighbourhood of p, so we have $e_i[e_i, e_i] = 0$ and $(I - e_i)[e_i, e_i] = 0$, and hence $[e_i, e_i] = 0$ on a neighbourhood of p.

Conversely if $[e_i, e_i] = 0$ on a neighbourhood of p then of course $e_i[e_i, e_i] = 0$ on a neighbourhood of p, thus the integrability of $\theta_1 \dots \theta_r$.

3. The characteristic polynomial of a vector 1-form. Let h be a vector 1-form on M and let λ be an indeterminate. Suppose $\{x_1, \ldots, x_n\}$ is a co-ordinate system in a neighbourhood of p in M. h has components $h_i{}^j(x)$ in this neighbourhood, where

(3.1)
$$h \frac{\partial}{\partial x_i} = \sum_{i=1}^n h_i{}^j(x) \frac{\partial}{\partial x_i}.$$

We can consider $\chi = \det[|\lambda \delta_i^j - h_i^j(x)|]$, which is a polynomial in λ of degree n with coefficients which are C^{∞} -functions of (x_1, \ldots, x_n) . It is easy to verify that the coefficients do not depend on the choice of the co-ordinate system, so we have an element χ in $\Phi[\lambda]$. χ is called *the characteristic polynomial of* h.

Proposition 3.1. Suppose χ_p , the characteristic polynomial of h_p , has a factorization over the reals R:

$$\chi_p = K_1^{m_1} \dots K_g^{m_g},$$

where $K_i \in R[\lambda]$, with leading coefficients 1, and K_i are all distinct and irreducible over R. Then there is a neighbourhood U of p, where χ has a unique factorization

$$\chi = \chi_1 \dots \chi_q \text{ on } U$$

satisfying

- (i) $\chi_i \in \Phi_U[\lambda]$, where Φ_U is the ring of C^{∞} -functions on U;
- (ii) χ_i has leading coefficient 1, $\deg \chi_i = \deg K_i^{m_i}$;
- (iii) $(\chi_i)_p = K_i^{m_i}$;
- (iv) $(\chi_i)_q$ and $(\chi_j)_q$ are relatively prime for $q \in U$, $i \neq j$.

For the proof, we apply the following lemma repeatedly.

LEMMA 3.2. Let $\phi \in \Phi[\lambda]$ with leading coefficient 1. Suppose for a point p in M, $\phi_p = PQ$; where $P, Q \in R[\lambda]$ (R = the real numbers), with leading coefficients 1, and relatively prime to each other. Then there is a neighbourhood U of p, and unique μ , $\pi \in \Phi_U[\lambda]$ ($\Phi_U =$ the ring of C^{∞} -functions over U), with leading coefficients 1, such that $\phi = \mu \pi$ holds over U, and $\mu_p = P$, $\pi_p = Q$. Moreover U can be so chosen that μ_q and π_q are relatively prime at each $q \in U$.

Proof. Let the degree of P and Q be k and l respectively. Let $x_t(i=1,\ldots,k)$, $y_j(j=1,\ldots,l)$, $z_s(s=1,\ldots,k+l)$ be variables, and $x_0=y_0=z_0=1$. For $\{x_1,\ldots,x_k\}$, $\{y_1,\ldots,y_l\}$, and $\{z_1,\ldots,z_{k+l}\}$, we write x,y, and z respectively. Let $\bar{P}(x)$, $\bar{Q}(y)$, and $\bar{F}(z)$ be polynomials in λ , defined by

(3.4)
$$\bar{P}(x) = \sum_{i=0}^{k} x_i \lambda^{k-i}, \, \bar{Q}(y) = \sum_{j=0}^{l} y_j \lambda^{l-j},$$

and

$$\bar{F}(z) = \sum_{s=0}^{k+l} z_s \lambda^{k+l-s}.$$

Let us take k + l functions of x, y, z defined by

(3.5)
$$G_s(x, y, z) = -z_s + \sum_{i+j=s} x_i y_j \qquad (s = 1, ..., k+l).$$

Finally, let $a_0(=1)$, a_1, \ldots, a_k ; $b_0(=1)$, b_1, \ldots, b_l ; $c_0(=1)$, c_1, \ldots, c_{k+l} be real numbers such that $\bar{P}(a) = P$, $\bar{Q}(b) = Q$, $\phi_p = \bar{F}(c)$. $PQ = \phi_p$ is now $G_s(a, b, c) = 0$, $s = 1, \ldots, k + l$.

The Jacobian

$$J(x, y; z) = \frac{\partial (G_1, \ldots, G_{k+1})}{\partial (x, y)}$$

has the form (3.6), which is nothing but the resultant of the two polynomials in λ , $\bar{P}(x)$ and $\bar{Q}(y)$.

$$(3.6) \quad J(x, y; z) = \begin{pmatrix} 1 & & & & & & & & & & & \\ y_1 & 1 & & & 0 & & x_1 & 1 & & & & \\ y_2 & y_1 & 1 & & & x_2 & x_1 & 1 & & & & & \\ & & & & & x_3 & x_2 & x_1 & 1 & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ &$$

As $\bar{P}(a) = P$ and $\bar{Q}(b) = Q$ are relatively prime, we have $J(a, b; z) \neq 0$. In particular $J(a, b; c) \neq 0$.

Furthermore, as $G_s(a, b, c) = 0$, $s = 1, \ldots, k + l$, we can use the implicit function theorem to find (i) an open neighbourhood V of c in \mathbb{R}^{k+l} , the (k+l)-dimensional euclidean space, and (ii) a unique set of \mathbb{C}^{∞} -functions $f_i, g_j, i = 1, \ldots, k, j = 1, \ldots, l$, defined on V and satisfying (A) and (B):

(A)
$$G_s(f_1(z), \ldots, f_k(z), g_1(z), \ldots, g_l(z), z) = 0$$
 for $z \in V$

(B)
$$f_i(c) = a_i, g_j(c) = b_j; i = 1, ..., k; j = 1, ..., l.$$

Now, let

$$\phi = \sum_{s=0}^{k+l} \phi_s \lambda^{k+l-s},$$

where $\phi_s \in \Phi$, $\phi_0 = 1$. By ψ we denote the C^{∞} -mapping $M \to R^{k+\ell}$ defined by $q \to (\phi_1(q), \ldots, \phi_{k+\ell}(q))$. Take U to be the connected component of $\psi^{-1}(V)$, containing p. If we let $\alpha_i = f_i \circ \psi$ and $\beta_j = g_j \circ \psi$, then our desired elements of $\Phi_U[\lambda]$ are

$$\mu = \sum_{i=0}^{k} \alpha_i \lambda^{k-i}$$

and

$$\pi = \sum_{j=0}^{l} \beta_j \lambda^{l-j},$$

where $\alpha_0 = \beta_0 = 1$.

As $J(a, b; c) \neq 0$ and as $J(q) = J(\alpha_1(q), \ldots, \alpha_j(q), \beta_1(q), \ldots, \beta_l(q); \phi_1(q), \ldots, \phi_{k+l}(q))$ is a continuous function of q in U, we can take a neighbourhood U' of p, contained in U, such that $J(q) \neq 0$ for $q \in U'$. Then for $q \in U'$, $\mu_q = \bar{P}(\alpha_1(q), \ldots, \alpha_k(q))$ and $\pi_q = \bar{Q}(\beta_1(q), \ldots, \beta_l(q))$ are relatively prime. Q.E.D.

Remark 1. If we let (3.2) to be the factorization of χ_p into irreducible factors over the complex numbers C, then all K_i are linear in λ , and we obtain $\chi_i \in \tilde{\Phi}_U[\lambda]$, where $\tilde{\Phi}_U$ is the ring of complex-valued C^{∞} -functions over U. However, this result does not appear to be necessary for our purpose.

Remark 2. If $m_i > 1$, one might expect to obtain a further factorization of

$$\chi_i = \chi_{i_1} \chi_{i_2}; \ \chi_{i_1}, \ \chi_{i_2} \in \Phi_{U'}[\lambda]$$

for a neighbourhood U' of p, contained in U. But the following example shows that this is not necessarily the case.

Let ϕ be a polynomial in λ , with coefficients depending on two real parameters x and y, and having the form

(3.7)
$$\phi = \lambda^4 - 2x\lambda^2 + (x^2 + y^2).$$

Then $\phi_{(0,0)} = 0$ has $\lambda = 0$ as a root of multiplicity 4. The solution of $\phi_{(x,y)} = 0$ has four roots $\pm r^{\frac{1}{2}}(\cos \frac{1}{2}\theta \pm i \sin \frac{1}{2}\theta)$, where $x = r \cos \theta$, $y = r \sin \theta$, and we pick fixed branches for $\cos \frac{1}{2}\theta$ and $\sin \frac{1}{2}\theta$. So (3.7) has a unique factorization over R at any point $(x_0, y_0) \neq (0, 0)$

(3.8)
$$\phi = (\lambda^2 - 2r_0^{\frac{1}{2}}\cos\frac{1}{2}\theta_0\lambda + r_0)(\lambda^2 + 2r_0^{\frac{1}{2}}\cos\frac{1}{2}\theta_0\lambda + r_0).$$

If we want to extend this factorization over a small neighbourhood of (x_0, y_0) we have

(3.9)
$$\phi = (\lambda^2 - 2r^{\frac{1}{2}}\cos{\frac{1}{2}}\theta\lambda + r)(\lambda^2 + 2r^{\frac{1}{2}}\cos{\frac{1}{2}}\theta\lambda + r).$$

This extension is uniquely determined by requiring the coefficients in the factors of (3.9) to be continuous in a small neighbourhood of (x_0, y_0) . However, (3.9) will not give a factorization in a neighbourhood of (0, 0) because in a neighbourhood of (0, 0), $\cos \frac{1}{2}\theta$ is not a single-valued function.

Remark 3. If in (3.3) we have $\chi_i = (\lambda - \alpha_i)^{m_i}$ for some i, then $(\chi_i)_q = 0$ has only one root of multiplicity m_i , for $q \in U$. If $\chi_i = (\lambda^2 + \beta_i \lambda + \beta_i')^{m_i}$ for some i, then $(\chi_i)_q = 0$ has two distinct complex roots, each of multiplicity m_i , for $q \in U'$, where the neighbourhood U' is chosen sufficiently small with $p \in U' \subset U$. In both cases it is easy to see that $\alpha_i \in \Phi_U$ or β_i , $\beta_i' \in \Phi_U$ (for example, by expanding $(\lambda - \alpha_i)^{m_i}$ or $(\lambda^2 + \beta_i \lambda + \beta_i')^{m_i}$ and using the fact that the coefficients in the expansion are C^{∞} -functions on U).

Remark 4. Although it may not be possible to factor χ_i any further into polynomials in λ with C^{∞} -coefficients over some neighbourhood, it is well known that the roots of $(\chi_i)_q = 0$, for each i, are continuous (multivalued) functions of q. In particular, the roots of $(\chi_i)_q = 0$ are close to those of $K_i = 0$ if q is close to p.

4. Integration. Let A be a linear transformation on a finite dimensional vector space V over the reals R. Let λ be an indeterminate, and consider V as an $R[\lambda]$ -module by letting Fv = F(A)v for $F \in R[\lambda]$, $v \in V$, where, if

$$F = \sum_{i=1}^{m} a_i \lambda^i,$$

F(A) denotes the linear transformation

$$\sum_{i=1}^{m} a_{i}A^{i}.$$

Let K be the characteristic polynomial of A, and suppose K = FG where $F, G \in R[\lambda]$; deg F, deg $G < \deg K$; F and G have leading coefficients 1 and are relatively prime over R. Then there exist unique $P, Q \in R[\lambda]$, with deg $P < \deg G$, deg $Q < \deg F$, satisfying

$$(4.1) PF + QG = 1.$$

Because KV=0, we have from (4.1), $(PF)^2v=(PF)v$ for all $v\in V$, Let $V_F=(QG)\,V$ and $V_G=(PF)\,V$, then we have

$$(4.2) V = V_F \oplus V_G.$$

It is also easy to see that, $V_F = \{v \in V \mid Fv = 0\}$ and $V_G = \{v \in V \mid Gu = 0\}$. In fact let $V_F' = \{v \in V \mid Fv = 0\}$. Then, as $FV_F = 0$, we have $V_F \subset V_{F'}$. Conversely, if $v \in V_{F'}$, then 0 = (PF)v = (1 - QG)v, hence $v = (QG)v \in V_F$, so $V_F \supset V_{F'}$. Finally, F is the characteristic polynomial of $A \mid V_F$, and dim $V_F = \deg F$; G is the characteristic polynomial of $A \mid V_G$, and dim $V_G = \deg F$.

Now, if we take A to be h_p and B to be T_p in the argument above, (4.2) gives a decomposition of T_p . We want to extend this decomposition to each T_q , for q in a neighbourhood of p, with the help of the factorization (3.3) of the characteristic polynomial χ of h. For this purpose we first prove a lemma.

Lemma 4.1. If ϕ and ψ are elements of $\Phi[\lambda]$ with leading coefficients 1 and degree k and l respectively, and if at each point q in a neighbourhood U, ϕ_q and ψ_q are relatively prime, then there exist unique μ , $\pi \in \Phi_U[\lambda]$ of degree $\leqslant l-1$, k-1 respectively, satisfying

$$(4.3) \mu\phi + \pi\psi = 1 over U.$$

Proof. Let

$$\phi = \sum_{i=0}^{k} \alpha_i \lambda^{k-i}, \psi = \sum_{i=0}^{l} \beta_i \lambda^{l-i},$$

where α_i , $\beta_i \in \Phi$, and $\alpha_0 = \beta_0 = 1$. Let

$$\mu \, = \, \sum_{i=1}^l \, \mu_i \lambda^{l-i}, \; \pi \, = \, \sum_{i=1}^k \, \, \pi_i \lambda^{k-i}.$$

Substituting these expressions in (4.3), we see that finding the required μ , π is equivalent to solve (4.4) for the μ_i and π_i 's:

(4.4)
$$\begin{cases} \sum_{i+j=p} \alpha_i \mu_j + \sum_{i+j=p} \beta_i \pi_j = 0 & 1 \leq p \leq k+l-1 \\ \alpha_k \mu_l + \beta_l \pi_k = 1. \end{cases}$$

The determinant D of the coefficients of the left member of (4.4) is

 D_q , $q \in U$, is the resultant of two polynomials ϕ_q , ψ_q in $R[\lambda]$, and as ϕ_q and ψ_q are relatively prime, we have $D_q \neq 0$. Hence we can solve (4.4) for μ_i and π_i over U (the solution is unique) and find them as rational functions of α_i

and β_i , with non-zero denominator over U. Hence μ_i , $\pi_i \in \Phi_U$. Thus μ , $\pi \in \Phi_U[\lambda]$ are uniquely determined. Q.E.D.

Now, if χ is the characteristic polynomial of h and if

$$\chi = \chi_1 \chi_2 \dots \chi_g$$
 over a neighbourhood U of p

is the factorization (3.3), then χ_i and $\hat{\chi}_i = \chi_1 \dots \wedge \dots \chi_g$ are relatively prime at each point of U. By Lemma 4.1 we have μ_i , $\pi_i \in \Phi_U[\lambda]$ satisfying

$$\mu_i \chi_i + \pi_i \hat{\chi}_i = 1 \text{ on } U.$$

As before, using $\chi_q T_q = 0$ for $q \in U$, and (4.6), we see that $[(\pi_i \hat{\chi}_i)(h)]^2 = (\pi_i \hat{\chi}_i)(h)$. Let us denote $\pi_i \hat{\chi}_i \in \Phi_U[\lambda]$ by ϵ_i , and $(\pi_i \hat{\chi}_i)_q T_q$ by $T_q(\chi_i)$. Then $\epsilon_i(h)$ is a projection operator on U, and dim $T_q(\chi_i) = \deg \chi_i$. As $T_q = T_q(\chi_i) \oplus \ldots \oplus T_q(\chi_q)$, we have

$$\sum_{i=1}^{g} \epsilon_i(h) = 1.$$

Furthermore θ_i defined by $q \to T_q(\chi_i)$, $q \in U$, is a C^{∞} -distribution over U. Using Lemma 2.1 we have:

Theorem 4.2. The distribution θ_i is integrable in a neighbourhood of p if and only if

$$(4.7) (I - \epsilon_i(h))[\epsilon_i(h), \epsilon_i(h)] = 0$$

holds on a neighbourhood of p.

As in § 2, if we define

$$\theta_{i_1 \ldots i_k}$$
 by $q \to T_q(\chi_{i_1}) \oplus \ldots \oplus T_q(\chi_{i_k})$,

we have, by Lemma 2.2:

COROLLARY 4.3. The distributions $\theta_{i_1 \dots i_k}$ $(k = 1, \dots, g - 1; i_s = 1, \dots, g; s = 1, \dots, k)$ are all integrable in a neighbourhood of p, if and only if $[\epsilon_i(h), \epsilon_i(h)] = 0$ holds on a neighbourhood of p for all i.

The important feature of the projection operator $\epsilon_i(h)$ is that $\epsilon_i(h)$ is a polynomial in h with coefficients in Φ_U . This property essentially characterizes $\epsilon_i(h)$, as shown below.

PROPOSITION 4.4. Let the characteristic polynomial χ of h have the factorization (3.2) $\chi_p = K_1^{m_1} \dots K_g^{m_g}$ at p, and (3.3) $\chi = \chi_1 \dots \chi_g$ on a neighbourhood U of p; and let $\epsilon_i(h)$ be the projection operator on U corresponding to χ_i . If e is a projection operator on U such that $e = \epsilon(h)$, $\epsilon \in \Phi_U[\lambda]$, then on U we have

(4.8)
$$e = \epsilon(h) = \sum_{i=1}^{g} \delta_i \epsilon_i(h) \text{ where } \delta_i = 0 \text{ or } 1.$$

First we prove a lemma.

LEMMA 4.5. Let A be a linear transformation on a real vector space V of finite dimension, and suppose that the characteristic polynomial of A is of the form K^m , where $K \in R[\lambda]$ is irreducible over R. Then if for $P \in R[\lambda]$, $P(A)^2 = P(A)$, then P(A) = I or O.

Proof. Let Q = 1 - P, then $Q(A)^2 = Q(A)$. If $P(A) \neq I$ and $P(A) \neq 0$, then V has a decomposition $V = V_1 \oplus V_2$; $V_1, V_2 \neq \{0\}$, where $V_1 = PV$, $V_2 = QV$. As

$$P(A|V_2) = P(AQ(A)) = P(A)Q(A) = 0,$$

P is divisible by the minimal polynomial of $A | V_2$, which in turn is equal to $K^{m'}$ for some m', $1 \le m' < m$. Hence P is divisible by K. Similarly Q is divisible by K. But P and Q = 1 - P are relatively prime, so we have a contradiction. Q.E.D.

Proof of the Proposition 4.4. As e is a polynomial in h with coefficients in Φ_U , $e_q T_q(\chi_i) \subset T_q(\chi_i)$. We can define projection operators e_i over U by letting $e_i = e\epsilon_i(h)$. Then $e_i e_j = 0$ for $i \neq j$ and $e = \sum_{i=1}^{g} e_i$ over U. We want to prove either $e_i = 0$ or $e_i = \epsilon_i(h)$ for each i.

We first notice that $e_i \mid T_p(\chi_i) = \epsilon(h \mid T_p(\chi_i))$, and that $h \mid T_p(\chi_i)$ has characteristic polynomial $K_i^{m_i}$. Hence, using Lemma 4.5, we see that either $e_i(T_p(\chi_i)) = \{0_p\}$ or $e_i(T_p(\chi_i)) = T_p(\chi_i)$. But, as $e_i(T_q(\chi_j)) = \{0_q\}$ for $j \neq i$, $q \in U$, and, as e_i has constant rank over U, we conclude that (i) if $e_i(T_p(\chi_i)) = \{0_p\}$ then $e_i(T_q(\chi_i)) = \{0_q\}$ for all $q \in U$, and that (ii) if $e_i(T_p(\chi_i)) = T_p(\chi_i)$ then $e_i(T_q(\chi_i)) = T_q(\chi_i)$ for all $q \in U$. In the first case $e_i = 0$; in the second case $e_i = \epsilon_i(h)$. Q.E.D.

References

- 1. C. Chevalley, Theory of Lie groups I (Princeton, 1946).
- A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms I, Proc. Kon. Ned. Ak. Wet. Amsterdam A 59 (3) (1956), 338-359.
- 3. J. Haantjes, On X_m-forming sets of eigenvectors, Proc. Kon. Ned. Ak. Wet. Amsterdam A 58 (2) (1955), 158-162.
- A. Nijenhuis, X_{n-1} forming set of eigenvectors, Proc. Kon. Ned. Ak. Wet. Amsterdam A 54
 (2) (1951), 200-212.
- J. A. Schouten, Sur les tenseurs de V_n aux directions principales V_{n-1} normales, Coll. de Geom. Diff. Louvain, avril (1951), 11-14.
- A. Tonolo, Sulle varietà riemanniane a tre dimensioni, Pont. Accad. Sci. Acta, 13 (1949), 29-53; Atti Accad. Naz. Lincei Rendi. Cl. Sci. Fis. Mat. Nat. (8), 6 (1949), 438-444.

University of Washington