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Abstract
The current LiDAR-inertial odometry is prone to cumulative Z-axis error when it runs for a long time. This error
can easily lead to the failure to detect the loop-closing in the correct scenario. In this paper, a ground-constrained
LiDAR-inertial SLAM is proposed to solve this problem. Reasonable constraints on the ground motion of the mobile
robot are incorporated to limit the Z-axis drift error. At the same time, considering the influence of initial positioning
error on navigation, a keyframe selection strategy is designed to effectively improve the flatness and accuracy of
positioning and the efficiency of loop detection. If GNSS is available, the GNSS factor is added to eliminate the
cumulative error of the trajectory. Finally, a large number of experiments are carried out on the self-developed robot
platform to verify the effectiveness of the algorithm. The results show that this method can effectively improve
location accuracy in outdoor environments, especially in environments of feature degradation and large scale.

1. Introduction
Simultaneous localization and mapping (SLAM) has been widely used in autonomous navigation, [1–3]
augmented reality [4–5], and medical equipment [6–7] with the basis of continuous and accurate posi-
tioning. In a complex and changeable environment, it is a great challenge to obtain accurate positioning
in real time. The main sensors usually include cameras and LiDARs. Although visual slam has been used
widely [8–10], a camera is easily affected by light in outdoor environments, which is why it is mainly
used in indoor environments with rich texture features due to the small field of view and low resolution
[11–12]. However, LiDAR can provide high-quality point clouds in the surrounding environment, and
it is capable of working well even at night as it is not sensitive to light. Therefore, it has high accuracy
and robustness, and hence, it is widely used in outdoor scenes.

Since a single sensor is difficult to meet the needs of an actual scene, mobile robots need to carry
sensors, such as LiDAR, IMU, and GNSS, for simultaneously interpreting the advantages of different
sensors to enhance the overall performance of the system. The design scheme of multi-sensor fusion can
be divided into loosely coupled fusion and tightly coupled fusion. The LOAM algorithm proposed by
Zhang et al. divides the positioning and mapping into two parts [13–14]. The LiDAR odometry obtained
after fusion significantly improves the real-time performance of the system, where the IMU data are used
as the distortion removal of the LiDAR point cloud and it does not join the back-end optimization pro-
cess. Therefore, it belongs to the loosely coupled method. Improving this algorithm framework, Shan
et al. proposed the LeGO-LOAM algorithm [15] that can meet the real-time performance of the embed-
ded platform and added loop detection to eliminate the cumulative error of the odometry. The processing
of the IMU data is consistent with LOAM. The implementation of the loose coupled method is mainly
performed using Extended Kalman Filters (EKF). For example, some works like [16–19] integrated
measurements from LiDAR, IMU, and optionally from GNSS to perform pose estimation, and use an
EKF in the optimization process. Generally, the tightly coupled system can provide better positioning
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accuracy and has become the main research direction at present [20]. Ye et al. [21] proposed the LIO-
mapping algorithm to jointly optimize the cost function of LiDAR and inertial measurement unit, so
that the cumulative drift of odometry after long-time operation comes within an acceptable range. Shan
et al. [22] proposed the LIO-SAM algorithm that established a tightly coupled LiDAR odometry frame-
work and added the global GNSS factor to the back-end optimization to further reduce the impact of the
cumulative error. In terms of loop detection, Wang et al. [23] used global descriptor and intensity scan
context to explore geometric and intensity features, which improved the efficiency of loop detection.

Although the LiDAR SLAM has achieved good localization performance [24–26] in GNSS-limited
scenes, the cumulative error cannot be corrected in time, especially in the scenes with feature degra-
dation and large scale where the error in height is more significant. This is mainly because the LiDAR
is generally placed horizontally, and the observation amount on the Z-axis outdoors is relatively small
and the accuracy is poor as the observation incidence angle is large. Although in the presence of GNSS
signals, the Z-axis displacement estimated by the robot still drifts due to the inaccurate GNSS height
measurement. By adding ground constraints to visual SLAM, positioning accuracy can be effectively
improved [27, 28]. However, these camera-based methods are more suitable for indoor environments
with rich textures. In ref. [29] to improve the data association of visual odometry, the complete ground
plane is detected on the image and used in the optimization function of coarse pose estimation. Chen
et al. [30] assume that the ground is approximately a plane to reduce elevation errors and propose a road
edge detection algorithm to introduce prior constraints. Reference [31] mainly focuses on ground seg-
mentation algorithms to generate cleaner static maps for navigation rather than positioning. Zhao et al.
[32] proposed a method for optimizing LiDAR point processing based on ground conditions determined
by the output data of IMU and ESKF. Jiang et al. [33] proposed that if two frame point clouds share the
same ground, the pose transformation between two frames in the robot’s local coordinate system sat-
isfies �z = 0. The current LiDAR-based algorithms directly constrain the Z-axis displacement without
considering the construction of actual ground constraints. In addition, when adding the GNSS factor
into optimization, the influence of the positioning error of the initial state on the robot navigation task
is not considered. On the premise that the robot moves on the ground if the angle between the Z-axis
and the ground normal vector tends to zero, it can be recognized as a horizontal ground. The included
angle becoming greater than a certain threshold indicates that the ground height changes and the robot
moves on non-horizontal ground. To solve the above problems, an outdoor LiDAR-Inertial SLAM using
ground constraints is proposed for accurate pose estimation of mobile robots. Firstly, in the prepro-
cessing stage, the ground point cloud is extracted, and the global factor graph is used for LiDAR and
IMU measurements for data fusion. Then, ground constraints are added to the optimization, and global
measurements are introduced when GNSS data are available. In addition, when performing keyframe
screening, the keyframe selection strategy is switched according to different states of the system to
reduce the positioning error of the initial state and to increase the success rate of loop detection.

The main contributions of this paper are as follows: Firstly, a ground segmentation algorithm is pro-
posed, which uses the prior installation height of the LiDAR to extract the ground point cloud, and adds
the ground plane constraints to the factor graph optimization. Secondly, a keyframe selection strategy
is designed to further reduce the positioning error of the initial state. In addition, this strategy increases
both the keyframe set adjacent to the current keyframe and loop detection efficiency. Thirdly, a robotic
platform is developed to conduct experiments in a variety of outdoor scenarios to verify the impact of
the proposed method on localization accuracy in outdoor environments, especially in environments of
feature degradation and large scale.

2. Extrinsic parameter calibration
The calibration of different sensors is the first problem to be solved before fusion. In this paper, offline
calibration is performed by collecting LiDAR and IMU datasets. To make the calibration results as accu-
rate as possible, the recorded IMU data contain sufficient rotational excitation. The rotational part uses
the linear rotation calibration proposed by Yang [34], and the translational part uses only the hand-eye
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calibration. It is assumed that the rotation matrix and translation vector from LiDAR to IMU are RI
Land

tI
L, and the rotation matrix and translation vector of LiDAR from time k + 1 to time k are RLk

Lk+1
and tLk

Lk+1
.

The related rotation and translation obtained by integrating IMU measurements described in the IMU
frame are denoted as RIk

Ik+1
and tIk

Ik+1
. The transformation matrix TI

L from LiDAR to IMU can be expressed
as:

TI
L =

[
RI

L tI
L

0 1

]
(1)

The following equation holds for any k:

TIk
Ik+1

TI
L = TI

LTLk
Lk+1

(2)

Rewritten Eq. (2) combined with Eq. (1):

RIk
Ik+1

RI
L = RI

LRLk
Lk+1

(3)(
RIk

Ik+1
− I

)
tI
L = RI

LtLk
Lk+1

− tIk
Ik+1

(4)

Using quaternion instead of rotation matrices, Eq. (3) can be written as:

qIk
Ik+1

⊗ qI
L = qI

L ⊗ qLk
Lk+1

(5)

Rewritten as left-multiply and right-multiply form:[
Q1

(
qIk

Ik+1

) − Q2

(
qLk

Lk+1

)] · qI
L = Qk

k+1 · qI
L = 0 (6)

Q1 (q)=
[

qωI3 + ⌊
qxyz×

⌋
qxyz

−qT
xyz qw

]

Q2 (q)=
[

qωI3 − ⌊
qxyz×

⌋
qxyz

−qT
xyz qw

] (7)

In the above formula, qxyz takes the imaginary part of the quaternion q and qωtakes its real part. There
is a linear equation system corresponding to n groups of measurement values as follows:⎡⎢⎢⎢⎢⎢⎣

ω0
1 · Q0

1

ω1
2 · Q1

2

...

ωN−1
N · QN−1

N

⎤⎥⎥⎥⎥⎥⎦ · qI
L = 0 (8)

where ωi
i+1 is the weight of each set of transformation equations, determined by the angular interpolation

of the transformation vector between the adjacent LiDARs and the transformation vector derived by the
IMU. Through singular value decomposition, the rotational external parameter of LiDAR and IMU qI

L

can be obtained. By substituting the result of the rotational external parameter into Eq. (4), the translation
vector between LiDAR and IMU can be obtained.

RTK (real-time kinematics) differential technique can help improve GNSS’s accuracy and reliability.
The antennas and combined navigation modules used in this paper need to be calibrated according to
the antenna phase center calibration method [35] before use. After calibration, the positioning accuracy
can reach the centimeter level in an open environment. Hardware synchronization is not applied in the
paper. The timestamp for each sensor data is set to the time the data is received.

3. System overview
Aiming at the problem of smooth and accurate positioning for outdoor navigation, we propose an outdoor
LiDAR-Inertial SLAM using ground constraints as shown in Fig. 1. The data preprocessing module

https://doi.org/10.1017/S0263574724000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000237


Robotica 1249

Figure 1. The overall system of the proposed method.

includes ground point extraction and point cloud clustering to remove outliers and abnormal points,
point cloud distortion removal, and IMU pre-integration processing. The extracted ground points are
fitted into a plane, which is added to the back-end optimization as a height constraint to improve the
positioning accuracy. When the system is initialized, the corresponding keyframe strategy is selected
according to the state of the system to ensure a smooth and accurate initial pose and to increase the loop
detection efficiency.

3.1. Data preprocessing
Due to the LiDAR carrier’s or object’s movement, the coordinate system of the start and end moments of
the laser beam deviates, and the collected point cloud data are severely distorted. Point cloud de-skewing
is performed by fusing the IMU data to obtain the transformation matrix of the end moment relative to
the start moment of the laser beam [13].

To extract ground points accurately and efficiently, the LiDAR prior installation height and measure-
ment model are used. In a 16-line LiDAR, only the 7 laser beams with a pitch angle of less than 0 are
likely to scan the ground. When the robot moves on the plane, the coordinates of the point of the LiDAR
beam on the jth (1 ≤ j ≤ 7) line in space pi are set as (px, py, pz). Then, the projection value from the
point to the LiDAR on the XY plane D1 can be expressed as follows:

D1 = √
px

2 + py
2 (9)

As shown in Fig. 2, according to the definition of the LiDAR pitch angle, given the angle between
the beam and vertical direction, and the installation height h, the projection value from the theoretical
point on the ground to the LiDAR on the XY plane D2 can be calculated as:

α= 75◦ + (j × 2) (10)

D2 = h × tan α (11)
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Figure 2. The upper figure is the definition of the pitch angle of the RS-LiDAR-16, and the middle and
lower figures are the ground measurement model of LiDAR when a robot moves on flat ground (the lines
of different colors represent different LiDAR beams, and p2 and p3 are not ground points as |D2 − D1|< δ
is not satisfied).

If the point is on the ground, as shown in Fig. 2, D1 and D2 should be equal. The point cloud that
satisfies the following formula is marked as the ground point:

|D2 − D1|< δ (12)

The threshold δ is set to determine whether a point is on the ground or not. As shown in the upper
figure of Fig. 2, since 7 laser beams have different α, different values of δ are set for points on different
laser beams. If the α is larger, the difference between D1 and D2 is allowed to be larger. The constant
parameter s is obtained according to the actual results of ground point extraction. In this paper, it is set
as 0.6.

δ = j

7
× s (13)

Point cloud clustering removes noise from the environment by classifying adjacent points as identical
objects. Horizontal downsampling is performed if the objects are too small to meet the requirement.
Based on the labeled point cloud data, edge features and planar features are extracted by calculating the
smoothness of the point [14]. The smoothness of the point is calculated as follows:
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R = 1

|S| · ∥∥rL
(k,i)

∥∥
∥∥∥∥∥ ∑

j∈S,j �=i

(
rL
(k,j) − rL

(k,i)

)∥∥∥∥∥ (14)

S is the set of consecutive points of i returned by the laser scanner at time k.
According to the above calculation, ground features Fg

k , edge features Fe
k , and planar features Fp

k are
extracted from a LiDAR scan at time k to form a LiDAR frame Fk.

3.2. Front-end odometry
Some LiDAR keyframes in the past were selected and converted to the robot world coordinate system
using the transform associated with them. ′Fg

k−1,
′Fe

k−1, and ′Fp
k−1 are the transformed features in the

world coordinate system. The voxel map Mk−1 is constructed using some recently transformed keyframes,
which consists of three sub-voxel maps of ground, edge, and planar features.

Mk−1 = {
Mg

k−1, Me
k−1, Mp

k−1

}
(15)

Mχ

k−1 = ′Fχ

k−1 ∪ ′Fχ

k−2 ∪ · · · ∪ ′Fχ

k−n, χ = g, e, p (16)

A newly acquired LiDAR keyframe Fkcan be firstly converted to the world coordinate system as F′
k

using predicted motion T̃W
Ik

from IMU. The matching method in ref. [14] is chosen to find the corre-
sponding features in Mk−1 for each feature in F

′
k. The distance of a feature to its corresponding edge

dei or plane match dpj is calculated in the form of point-to-line or point-to-surface [22]. Gauss-Newton
method can be used to solve this least squares optimization problem as follows:

min
TW

Ik

⎧⎨⎩ ∑
pe

k,i∈′Fe
k

dei +
∑

pp
k,j∈′Fp

k

dpj

⎫⎬⎭ (17)

The pose transformation of the keyframe at time k in the world coordinate system can be obtained
by the above calculation. This transformation is further optimized as a LiDAR odometry factor in factor
graph optimization.

3.3. Factor graph optimization
When the robot moves on the horizontal ground, the ground constraint is introduced into the back-end
optimization to limit the change in pose between two adjacent keyframes. However, the actual situation
is in the scenes of uneven pavement, stone arch bridges, steps, slopes, and other non-horizontal ground.
In these cases, the ground constraint is no longer established. When moving on these complex roads,
increasing ground constraints may add error information to the back-end optimization process. In this
paper, the following two factors are mainly used to determine whether to add ground constraints:

1. If the angle between the normal vector of the fitting ground plane →
n and the z-axis of the robot

β exceeds the given threshold range, it is considered that the mobile robot is not moving on the
horizontal ground. From the results of the fitted planes when moving on planar and non-planar
surfaces, it is clear that setting the threshold to 10◦ can be consistent with the actual motion.

2. Since the experimental scene is an arch bridge of a short length in the campus, the proportion
of internal points in the point cloud contained in the current frame ρ is calculated based on the
fitted ground plane. If it is less than a certain threshold of 0.8, the ground is considered uneven.
The threshold ρ is determined based on the results of calculations during multiple motions.

If one of the above conditions is met, the ground constraint is not added to the pose optimization of
the back end. On the contrary, if the robot runs on horizontal ground, the corresponding constraints are
added to improve the accuracy of the optimization process.
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If the ground constraints hold, the ground correspondence of any feature in ′Fg
kcan be found in Mg

k−1.
The general equation for the ground plane is solved by constructing the transcendental equation using
ground patch correspondence.

Ax + By + Cz + D = 0, A2 + B2 + C2 = 1 (18)

The distance from the jth ground point pg
k,j at time k to the plane can be constructed as a residual.

dgj = Axg
k,j + Byg

k,j + Czg
k,j + D (19)(

xg
k,j, yg

k,j, zg
k,j

)
are the coordinates of point pg

k,j. TW
Lk

is the pose of the LiDAR at time k in the world coor-
dinate system. Therefore, the Jacobian matrix of the above residuals to LiDAR pose can be decomposed
into (1) the Jacobian of residuals dgj to points pg

k,j, and (2) the Jacobian of points pg
k,j to LiDAR pose

TW
Lk

.

J = ∂dgj

∂TW
Lk

= ∂dgj

∂pg
k,j

· ∂pg
k,j

∂TW
Lk

(20)

Jacobi in the first part can be derived from Eq. (19) as the coefficients of the plane equation. The
Jacobi of the second part needs to be derived according to the transformation formula of the point from
the LiDAR coordinate system to the world coordinate system.

To avoid recalculating the IMU integral after optimizing the bias, IMU pre-integration is applied
to obtain the IMU increment between the previous and current frames. (xutm0, yutm0, zutm0) is the UTM
coordinate of the first GNSS data. 	, θ and ψ are the roll, pitch, and yaw of the robot’s initial UTM
frame. The transform T converts the robot world coordinate system (i.e., the system whose origin is
at the starting position of the robot) to the GNSS UTM coordinate system [36]. By taking the LiDAR
odometry and GNSS data separately, T can be calculated as follows. c and s stand for cosine and sine
functions respectively.

T =

⎡⎢⎢⎢⎢⎣
cθcψ cψs	sθ − c	sψ c	cψsθ + s	sψ xutm0

cθsψ c	cψ + s	sθsψ −cψs	+ c	sθsψ yutm0

−sθ cθs	 c	sθ zutm0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (21)

For any time, the GNSS measurements are transformed to the robot’s world coordinate frame by the
following equation. A GNSS factor is added to the system only if the running distance exceeds a certain
threshold or if the covariance matrix of the odometry is larger than the covariance of the GNSS.⎡⎢⎢⎢⎢⎣

xW
k

yW
k

zW
k

1

⎤⎥⎥⎥⎥⎦ = T−1

⎡⎢⎢⎢⎢⎣
xutmk

yutmk

zutmk

1

⎤⎥⎥⎥⎥⎦ (22)

3.4. Loop-closing detection
When the difference between the robot’s current position TW

Ik
and previous position TW

Ik−1
exceeds the

defined threshold, the LiDAR frame Fk is selected as the keyframe. The selection of keyframes in this
way can achieve a balance between the estimated state of the robot and memory consumption, which
is beneficial to improve the accuracy and robustness of the SLAM system. Although it can meet the
positioning requirements of small scenes, this keyframe selection strategy still has some problems.

Loop-closing detection is commonly used to mitigate the drift during long-term operation. Based on
the point cloud of the current frame, a set of keyframes within the distance threshold will be searched in
the KD tree. These candidate keyframes are filtered through feature matching and geometric validation.
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Table I. Keyframe selection strategy.

1 input: last LiDAR keyframe Fk−1; current LiDAR frame Fk;
relative pose between Fk−1 and Fk;

2 output: latest LiDAR keyframe;
3 begin
4 If the moving distance of the robot is less than 1 m,

System is initialized;
Set the displacement increment �X of the keyframe selection:
�X = 0.1;
Set the rotation increment �R = 0.1

5 else
Positioning initialization is completed;
Set �X = 1;
Set �R = 0.2;

6 end
7 Determine whether to set the current frame as a keyframe;
8 end

If the loop-closing is confirmed to be effective, graph optimization is performed to adjust the map and
trajectory. After a long period of accumulation of odometry errors, the loop-closing detection fails when
it finally returns to the origin.

In a scene with feature degradation, the drift of the pose is to be increased rapidly. To reduce the
localization error of the initial state and the accumulated drift for a long time, as shown in Table I, this
paper proposes a keyframe strategy, which sets the corresponding keyframe filter conditions according
to different system states. During positioning initialization, the threshold for keyframe selection will be
lowered, increasing the number of keyframes. In loop-closing detection, the strategy avoids the situation
that too few constraints lead to poor matching effect or even non-convergence in feature matching. Thus,
it can effectively identify the environment scanned at the beginning and reduce the localization error in
large scenes.

4. Experiments and results
As shown in Fig. 3, the experiments are conducted using the outdoor four-wheeled ground robot. The
experimental platform is developed to integrate sensing and computing, including a LiDAR and a nine-
axis IMU sensor (RS-LiDAR-16, LPMS-IG1-RS232 series), an Intel Corei9-10900 model (memory
32 GB) on-board computer, and a power supply system. The scanning frequency of the LiDAR sensor
is set to 10 Hz for obtaining a horizontal angular resolution of 0.2◦. The robot is also equipped with
high-precision RTK, which is used to collect the outdoor motion trajectory of the robot when the GNSS
data is reliable. For the experiments, the external parameters of the LiDAR and IMU are calibrated using
the method described in Section 2.

An outdoor LiDAR-Inertial SLAM is built using ground constraints. The data sets for experiments
are collected from a variety of scenes, including scenes with a certain slope, outdoor stone arch bridge,
and degradation characteristics. Through the following four experiments (point cloud segmentation, out-
door large scene, positioning initialization, and loop detection), the effect of this method on positioning
accuracy in different environments is verified.

4.1. Ground point segmentation
To verify the effectiveness of our proposed ground segmentation algorithm, experiments are carried
out in both uphill and downhill scenes. The method proposed by Shan et al. [15] is relatively simple.
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Figure 3. Mobile robot experimental platform.

Figure 4. A scene of uphill (the left picture is obtained by the LeGO-LOAM segmentation algorithm,
and the right picture is obtained by the method proposed in this paper. The yellow dots are considered
ground points).

It only judges whether the point belongs to the ground according to the height difference of scanning
points in the same column of adjacent lines. If it encounters some high planes, it will also be wrongly
recognized as the ground. Our method not only considers the installation height of LiDAR but also sets
the corresponding threshold according to the number of lines where the scanning points are located. As
shown in Fig. 4, the LeGO-LOAM algorithm mistakenly identifies weeds, small trees, and stone arch
bridges as ground points, whereas our method performs accurate segmentation. As shown in Fig. 5, our
method eliminates a large number of non-ground points, such as mounds, walls, and lower parts of trees.
The experimental results prove the accuracy and robustness of this method.

4.2. Outdoor large scene experiment
In order to verify the improvement of the positioning accuracy in the height direction by the ground con-
straint in the GNSS-limited scene, the experiment is carried out in the scene containing two-stone arch
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Figure 5. A scene of downhill (The LeGO-LOAM segmentation algorithm is on the left side, and our
method is on the right side).

Figure 6. (a) 3D point cloud and (b) trajectory comparison of different algorithms.

bridges. Accurate trajectory values could not be obtained in this experiment due to the absence of GNSS
signals. As shown in Fig. 6(a), the mobile robot returns to the origin counterclockwise with a total path
length of 327 m. The loop detection function is turned off during the operation. As the robot eventually
returns to its initial position in the experiment, the final robot position is anticipated to be close to the
origin of the trajectory. The motion trajectories obtained by different algorithms are shown in Fig. 6(b).
Further, as shown in Fig. 7, there are displacement curves in different directions. The LIO-SAM grows
the displacement in height rapidly, reaching 8 m after arriving at Bridge A. The displacement decreases
rapidly after passing Bridge B. This result is very different from the case that the robot predominantly
moves on a horizontal road surface, except for the bridges. Upon the robot eventually returning to its
initial point, the height error of LIO-SAM is measured at 2.14 m, markedly surpassing the error of
our algorithm which is 0.92 m. Our method adds corresponding ground constraints to the factor graph
optimization according to the actual motion, reducing the error in the height direction. Experimental
results show that the accuracy of robot positioning is effectively improved when moving in outdoor
environments.

To prove the effect of ground constraint in large scene motion, the experiment was carried out accord-
ing to the path shown in Fig. 8 (a). LiDAR and IMU data are collected simultaneously, and the GNSS data
are obtained as the truth value of the trajectory. The open sources of LOAM, LeGO-LOAM, LIO-SAM,
and hdl-graph-slam [37] are used to obtain the trajectories and to measure the errors in the experi-
ments. Hdl-graph-slam is a graph optimization-based SLAM approach that introduces GPS position
constraints for outdoor environments. For a fair comparison, all algorithms use only LiDAR and IMU
data. The error data of each axis of different algorithms are counted, as shown in Table II. IMU data
in LOAM and LeGO-LOAM are only used for distortion removal of point clouds. Since no loopback
occurs, the error of the proposed algorithm in the x and y axes is close to that of other algorithms. Due
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Table II. Absolute trajectory errors(m) of each axis of different algorithms in a real scenario.

X-axis Y-axis Z-axis

Max Min RMSE Max Min RMSE Max Min RMSE
LOAM 1.49 0.15 0.69 1.79 0.17 0.97 1.81 0.24 0.95
LeGO-LOAM 1.37 0.13 0.57 1.33 0.15 0.69 1.03 0.18 0.54
LIO-SAM 1.17 0.14 0.50 1.28 0.14 0.66 1.28 0.17 0.67
hdl_graph_slam 1.25 0.19 0.58 1.51 0.20 0.78 1.47 0.24 0.73
Ours 1.19 0.13 0.52 1.25 0.17 0.67 0.42 0.03 0.26

Figure 7. Variation curve of displacement along each axis.

Figure 8. (a) The planning path of the experiment and (b) 3D point cloud of our algorithm.

to the addition of ground constraints, the positioning accuracy of our proposed algorithm in the Z-axis
is higher than other algorithms.

4.3. Positioning initialization
In this experiment, the improved effect of the keyframe selection strategy on the initial positioning error
is verified. As shown in the first row in Fig. 9, the mobile robot makes a clockwise circle and then returns
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Table III. Absolute trajectory errors(m) of different algorithms in a real scenario.

Max Mean Median Min RMSE Std
LOAM 4.97 1.75 1.79 0.10 1.93 0.82
LeGO-LOAM 3.58 1.46 1.37 0.35 1.52 0.58
LIO-SAM 3.61 1.44 1.28 0.69 1.53 0.52
hdl_graph_slam 3.84 1.57 1.46 0.89 1.68 0.65
Ours 3.08 1.05 0.94 0.06 1.20 0.62

Figure 9. Point cloud image of LIO-SAM (upper left), point cloud image of the method proposed in this
paper (upper right), and the corresponding absolute trajectory error with GNSS (lower part).

to the origin in the campus environment. The track length is 590 m and the duration is 251s. As depicted
in the sub-figure of the lower left in Fig. 9, the green line corresponds to the output generated by the
LIO-SAM, while the blue line represents the actual trajectory obtained by RTK. The experimental results
show that during the initialization process, the LIO-SAM algorithm faces a large cumulative error from
the beginning of the movement to the time when the number of keyframes is not zero. After receiving the
GNSS data, the pose is optimized and adjusted. At this moment, the positioning changes greatly, which
is difficult to meet the continuity requirements of positioning in outdoor autonomous navigation. In
this paper, more keyframes are reasonably added at the initial stage of the system, so that a continuous
and accurate pose can be obtained. After completing the initialization state, the threshold values of
displacement and rotation are automatically adjusted to reduce the resource consumption caused due
to the selection of too many keyframes. In addition, as shown in the second row in Fig. 9, since our
method extracts more keyframes near the starting point, the set of keyframes close to the current frame
is increased during the loopback, which further improves the positioning accuracy and consistency of
trajectory. The absolute trajectory errors of localization for different algorithms in this scenario are
shown in Table III.

In addition, our proposed algorithm and other algorithms are tested on the KITTI data set. The exper-
iments are performed on the dataset numbered 2011_09_30_drive_0018, and the absolute trajectory
errors are evaluated. Table IV shows that most data related to our algorithm’s absolute trajectory error
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Table IV. Absolute trajectory errors(m) of different algorithms on the KITTI data set.

Max Mean Median Min RMSE Std
LOAM 9.64 4.39 4.78 2.49 4.61 1.79
LeGO-LOAM 5.01 2.92 3.05 1.98 2.90 0.64
LIO-SAM 8.84 3.28 2.99 2.18 3.46 1.08
hdl_graph_slam 7.35 3.65 3.36 2.67 3.74 1.65
Ours 4.94 2.82 2.88 2.06 2.87 0.50

Figure 10. Point cloud generated by the LIO-SAM algorithm (left), trajectory comparison of the two
algorithms (middle), and point cloud generated by the algorithm proposed in this paper (right).

are smaller than others, which indicates the localization performance of our algorithm is better than
others in this data set. This is mainly because our proposed algorithm inhibits error growth in the Z-axis
direction.

4.4. Loop detection
In order to verify the improvement in positioning accuracy of this method when the GNSS signal is lim-
ited, only the LiDAR point cloud and IMU data are used. As shown in Fig. 10, the mobile robot moves
clockwise back to the origin, with a total length of 953 m. The elliptical marking area is a narrow and
long road section formed by the building. As shown in Fig. 11, when passing through two characteris-
tic degradation environments, the displacement change in the z-axis direction increases rapidly. In the
point cloud generated by the LIO-SAM due to the continuous accumulation of errors in the process of
movement, no loop is detected after returning to the starting point. Our method reasonably introduces
ground constraints according to the state of the ground during the movement of the mobile robot, which
effectively reduces the continuous accumulation of height errors. At the same time, more keyframes
are reserved during the positioning initialization. After moving to the origin, the candidate loopback
frames can be effectively detected, and more adjacent keyframes can be obtained to form a local map.
In the process of using the iterative closest point, it can effectively converge from the current frame to
the local map, and get good enough matching results. Compared with the original LIO-SAM method,
this proposed method significantly improves the positioning accuracy in the height direction.

5. Conclusion
To reduce the large Z-axis error caused by grand movement, an outdoor fusion positioning method
is proposed. The framework adds LiDAR and IMU to a tightly coupled factor graph and introduces
global observations when GNSS data are available. A new method of ground segmentation is proposed,
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Figure 11. Variation curve of displacement along each axis.

which can obtain good segmentation performance even in cluttered scenes. When the ground condition is
satisfied, the ground constraint is added to the factor graph optimization. In addition, to effectively reduce
the positioning error in the initial state, a keyframe selection strategy is proposed. It adjusts and optimizes
the threshold of keyframe selection according to different states of the system and retains more keyframes
at the starting point. A large number of experiments have been carried out on the self-developed robot
platform. In Section 4, ground segmentation experiments are first conducted in uphill and downhill
scenarios to verify the proposed segmentation algorithm. Secondly, the results of our algorithm are
compared with those of other algorithms in GNSS-constrained environments to demonstrate that the
proposed ground constraints are effective in reducing the Z-axis error. Then, experiments on campus
environments and data sets are performed. The absolute trajectory errors of different algorithms are
evaluated to prove the effectiveness of the keyframe strategy and ground constraints. In addition, loop
closure is turned on in the experiment in Section 4.4, which verifies that the algorithm can correctly
detect the loop to eliminate the cumulative error of long-term operation.

Experiments show that the proposed algorithm is suitable for outdoor large-span environments and
can effectively reduce cumulative error. However, some problems faced in this paper still need to be
solved. In scenes with fewer edge features, cameras can be added to the proposed framework to extract
richer information from the environment and better deal with complex environments. By making full
use of environmental information and installing sensors, it is expected to achieve more powerful slam
systems.
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