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Significant influence of fluid viscoelasticity on
flow dynamics past an oscillating cylinder
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This study focuses on numerically investigating the impact of fluid viscoelasticity on the
flow dynamics around a transversely forced oscillating cylinder operating in the laminar
vortex shedding regime at a fixed Reynolds number of Re = 100. Specifically, we explore
how fluid viscoelasticity affects the boundary between the lock-in and no lock-in regions
and the corresponding wake characteristics compared with a simple Newtonian fluid.
Our findings reveal that fluid viscoelasticity enables the synchronization of the vortex
street with the cylinder motion at lower oscillation frequencies than those required for a
Newtonian fluid. Consequently, the lock-in region boundary for a viscoelastic fluid differs
from that of a Newtonian fluid and expands in the non-dimensional cylinder oscillation
amplitude and frequency parameter space. In the primary synchronization region, the wake
of a Newtonian fluid exhibits ‘2S’ (two single vortices) and ‘P+S’ (a pair of vortices and
a single vortex) shedding modes. In contrast, a ‘2P’ (two pairs of vortices) vortex mode is
observed for a viscoelastic fluid within the same region. To gain a deeper understanding of
the differences in the coherent flow structures and their associated frequencies between the
two fluids, we employ the data-driven reduced-order modelling technique, known as the
dynamic mode decomposition (DMD) technique. Utilizing this technique, we successfully
extract and visualize the two competing fundamental frequencies (cylinder oscillation and
natural vortex shedding frequencies) and their associated flow structures in the case of the
no lock-in state, whereas only the dominant cylinder oscillation frequency and associated
flow structure in the case of the lock-in state. Furthermore, we propose that the presence
of excess strain resulting from the stretching of polymer molecules in viscoelastic fluids
leads to a distinct difference in the wake structure compared with Newtonian fluids. This
observation aligns with the findings obtained from the Q-criterion and vorticity transport
analysis of the wake.
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1. Introduction

The flow past a cylinder is a widely studied problem in fluid mechanics, both from the
pragmatic and fundamental points of view. This benchmark problem provides essential
information on several aspects of flow past a bluff body, such as boundary layer
separation and vortex shedding, hydrodynamic drag and lift forces, transition among
several flow states, etc (Zdravkovich & Bearman 1997). Above a critical Reynolds number
(the ratio of the inertial to that of viscous forces), vortex-shedding from the cylinder
results in the oscillatory variations of the fluid forces acting on it. The frequency of
these fluctuations is related to the natural shedding frequency of the vortices, also
called the Strouhal frequency ( fst) (Gabbai & Benaroya 2005). From an engineering
perspective, understanding this phenomenon is essential as it is the underlying cause of
the vortex-induced vibrations (VIVs) in many structures (Zhu, Zhang & Liu 2019). The
VIVs occur in both flexibly mounted and deformable bodies when the vortex shedding
frequency lies in the close-by range of their natural frequency (Triantafyllou et al. 2016).
These are characterized by synchronizing the wake with the body’s motion, commonly
called the ‘lock-in’ condition. The importance of studying the ‘lock-in’ phenomenon
cannot be overstated due to its many applications in structural, offshore and thermal power
engineering (Sarpkaya 2004; Williamson & Govardhan 2004).

To gain insights into the fundamental mechanism underlying VIVs, researchers
commonly employ a simplified model involving an elastically mounted rigid cylinder that
is forced to oscillate either in the spanwise (cross-flow) or streamwise (in-line) direction
of the incoming flow (Dahl et al. 2007; Bearman 2011; Wang, Fan & Triantafyllou
2021). This model allows for a controlled investigation of the relationship between various
parameters, such as streaming velocity, oscillation amplitude and frequency. Previous
studies have extensively focused on vertically forced oscillating cylinders (Bourguet,
Karniadakis & Triantafyllou 2011; Wang et al. 2021), and a comprehensive collection
of these works can be found in Bourguet & Jacono (2015). It should be noted that in this
configuration, the formation of the wake and the phenomenon of vortex shedding differ
significantly from those observed with a stationary cylinder (Griffin & Ramberg 1974;
Anagnostopoulos 2000b), consequently affecting the lift and drag forces acting on the
cylinder (Bishop & Hassan 1964b; Kumar et al. 2013).

The advent of the lock-in condition depends on the amplitude and frequency of the
oscillations and leads to distinct changes in the wake topology. Numerous experimental
(Bishop & Hassan 1964a; Koopmann 1967; Carberry, Sheridan & Rockwell 2001, 2005;
Morse & Williamson 2009; Dahl et al. 2010) and numerical (Karniadakis & Triantafyllou
1989; Blackburn & Henderson 1999; Anagnostopoulos 2000a; Al-Jamal & Dalton 2004;
Alam et al. 2021) investigations have been performed to understand and characterize
the lock-in phenomenon for a wide range of Reynolds numbers (Jones 1968), cylinder
oscillation amplitude and frequency (Koopmann 1967). Sufficient information is now
available on various flow aspects such as different wake structures (e.g. ‘2S’-two single
vortices, ‘2P’-two pairs of vortices and ’P+S’-a pair of vortices and a single vortex
shed in one oscillation cycle) (Williamson & Roshko 1988; Leontini et al. 2006),
mechanisms of vorticity production (Blackburn & Henderson 1999) and hydrodynamic
forces (Konstantinidis et al. 2019) acting on the cylinder. Several works also aimed to map
the boundary between the lock-in and no lock-in conditions on the cylinder oscillation
amplitude and frequency space (Meneghini & Bearman 1995; Anagnostopoulos 2000a;
Nobari & Naderan 2006).

However, to date, almost all of these studies have dealt with simple Newtonian fluids like
water. On the other hand, most of the fluids encountered from our daily lives to several
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industrial settings exhibit various non-Newtonian behaviours, such as shear-thinning,
shear-thickening, viscoplasticity, viscoelasticity, etc (Chhabra & Richardson 2011).
Despite this, almost no study is available on how the complex rheological behaviour of a
fluid could influence the flow dynamics past a forced oscillating cylinder, particularly the
lock-in and no lock-in boundary and the associated vortex dynamics and hydrodynamic
forces. Only very recently, Alam et al. (2021) investigated the effect of the shear-thinning
rheological behaviour and found a significant difference in the vortex structures depending
upon the values of the cylinder oscillation amplitude and frequency. Viscoelasticity is
another non-Newtonian behaviour often seen in many complex fluids (Bird, Armstrong
& Hassager 1987). Adding a minute amount of solid polymers, even in parts per
million (ppm) quantity, into a Newtonian solvent like water dramatically changes the
flow behaviour compared with that seen in water alone due to the fluid viscoelasticity
(Bird et al. 1987; Phan-Thien & Mai-Duy 2013; Malkin & Isayev 2022). This is because
polymer molecules change their shape and undergo stretching and relaxation under flow
deformation, which causes nonlinear elastic stresses in these fluids and, consequently,
varying resistance to the flow. In the creeping flow regime and/or vanishingly small
Reynolds number regime where the inertial forces are less dominant, the presence of
these elastic stresses often results in the generation of purely elastic instability (McKinley,
Pakdel & Öztekin 1996; Pakdel & McKinley 1996), which can transit to a more chaotic and
fluctuating flow state on further increasing the fluid viscoelasticity, known as the elastic
turbulence (Groisman & Steinberg 2000; Steinberg 2021).

On the other hand, many experimental and numerical investigations have also attempted
to explore the effect of this fluid viscoelasticity on the flow dynamics at finite Reynolds
number regime, particularly for the problem of flow past a cylinder. It has been
observed that adding polymer molecules into a Newtonian fluid causes suppression of
wake instability for a wide range of Reynolds numbers. Cadot’s (2001) experimental
observations of the cylinder wake for a dilute polymeric liquid revealed that the
vortex shedding frequency is attenuated, the vortex formation length increases, and
clear separation of vorticity is inhibited due to viscoelasticity. These findings were
later confirmed by the two-dimensional simulations carried out by Oliveira (2001) and
Sahin & Atalik (2019) for several viscoelastic fluid models and at various Reynolds
numbers. Richter, Iaccarino & Shaqfeh (2010) also got similar results to those of
Oliveira (2001) at Re = 100 using three-dimensional numerical simulations based on
the FENE-P (finitely extensible nonlinear elastic-Peterlin) viscoelastic fluid model at
low extensibility parameter. Furthermore, they observed the stabilizing effect of fluid
viscoelasticity on the wake structures as the Reynolds number increases to 300.

In recent experiments conducted by Dey, Modarres-Sadeghi & Rothstein (2017), the
inertialess flow of viscoelastic fluid past a flexible sheet at various inclination angles was
investigated. Their findings revealed that the presence of viscoelastic stresses in the fluid
induces periodic oscillations in the structure, without the occurrence of vortex shedding.
Similar observations were made for a flexible cylinder immersed in the low Reynolds
number flow of viscoelastic worm-like micellar solutions (Dey, Modarres-Sadeghi &
Rothstein 2018). Furthermore, in the subcritical Reynolds number regime (at Re =
19), vortex shedding was observed for a flexibly mounted cylinder, leading to the
lock-in phenomenon (Boersma et al. 2021). Subsequently, Xiong et al. (2019) conducted
numerical simulations of VIVs of a cylinder in viscoelastic fluids across a Reynolds
number range of 30–500. Their simulations revealed significant modifications to the
vortex pattern in the wake, with stratified and elongated vortices aligned in the flow
direction. These changes were attributed to the elongation of polymer molecules in the
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fluid, resulting in an elongated recirculation region behind the cylinder. Moreover, they
observed a suppression of vibration amplitudes and the dissipation of flow fluctuations
due to the influence of fluid viscoelasticity.

However, there has been a notable absence of research exploring the impact of fluid
viscoelasticity on the flow dynamics of a periodically forced oscillating cylinder in
comparison with that available for simple Newtonian fluids. This study aims to address this
knowledge gap in the literature. Specifically, we numerically investigate how introducing
elasticity in a viscous fluid can modify the boundary between the lock-in and no lock-in
regimes and the associated vortex dynamics in flows past a forced oscillating cylinder.
These findings hold significance for various practical applications involving oscillating
structures and viscous fluids. To achieve this, we utilize the Oldroyd-B constitutive model,
which accurately represents the rheological behaviour of the viscoelastic fluid in our
study. The choice of this model is justified by its simplicity, depending on a single
conformation tensor and two parameters related to polymer concentration and relaxation
time. Additionally, the Oldroyd-B model is derived from the simplest kinetic theory of
polymers, assuming a dumbbell-like polymer molecule connected by a stretchable elastic
spring (Shaqfeh & Khomami 2021; Sánchez et al. 2022). It successfully mimics the
rheological behaviour of constant shear viscosity viscoelastic fluids, such as the Boger
fluid (James 2009).

Furthermore, we employ dynamic mode decomposition (DMD), a widely used
reduced-order modelling technique, to gain a visual and comprehensive understanding of
the differences in flow dynamics between viscoelastic and Newtonian fluids, particularly
within the lock-in and no lock-in regimes. By combining DMD with other analysis
techniques, such as vorticity transport rate, Q-criterion and polymer stretching analysis,
we aim to enhance our understanding and visualization of the distinct flow behaviour
exhibited by these two types of fluids in the present study.

2. Problem statement and governing equations

We investigate a two-dimensional, laminar and unbounded flow of viscoelastic fluid
past a periodically forced oscillating cylinder of diameter d, as shown schematically
in figure 1(a). The cylinder is placed at the centre of a fictitious circular domain of
viscoelastic fluid of diameter 100d, wherein the fluid enters the domain with a uniform
velocity of U∞. The cylinder is considered to be infinitely long in the z-direction so
that no gradient exists in this direction, i.e. ∂()/∂z∗ = 0 and also there is no flow in
this direction, i.e. u∗

z = 0. Furthermore, the cylinder is forcefully oscillated by applying
a harmonic oscillation with an amplitude of A∗ (normalized) and a frequency of f ∗

y
such that the normalized displacement (Y) of the cylinder with respect to time (t∗) is
given by Y = A∗ sin(2πf ∗

y t∗). Here, the cylinder oscillation amplitude and frequency are
normalized with the cylinder diameter (A∗ = A/d) and the Strouhal frequency ( fst) of the
stationary cylinder ( f ∗ = f ∗

y /fst), respectively. The incompressible flow of the viscoelastic
fluid, whose rheological behaviour is mimicked with the Oldroyd-B constitutive equation
(Oldroyd 1950), is governed by the following dimensionless equations:
the continuity equation,

∇ · u = 0; (2.1)

the Cauchy momentum equation,

∂u
∂t

+ u · ∇u = −∇p + β

Re
∇ · τs + (1 − β)

Wi
1

Re
∇ · τ p; (2.2)
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Figure 1. (a) Flow schematic of the present problem, (b) a typical grid used in the present study (inset shows
the zoomed view of the Mesh).

the Oldroyd-B constitutive equation,

Wi
(

∂τ p

∂t
+ u · ∇τ p − τ p · ∇u − (∇u)T · τ p

)
+ τ p = (1 − β)(∇u + ∇uT). (2.3)

The above equations have been non-dimensionalized using parameters d, d/U∞, U∞,
ρU2∞, η0U∞/d for length (x∗), time (t∗), velocity (u∗), pressure (p∗) and stress tensor (τ ∗),
respectively. Here, ρ is the fluid density, η0 is the zero-shear rate viscosity of the polymer
solution given by the sum of the solvent viscosity, and the contribution of the polymer, i.e.
η0 = ηs + ηp. The total deviatoric stress tensor in the fluid is a linear combination of the
viscous term τ∗

s (the solvent contribution) and the viscoelastic extra-stress term τ∗
p (the

polymer contribution). The Newtonian solvent contribution to the stress tensor is given by
τs

∗ = 2ηsD∗, where D∗ is the rate of deformation tensor given by 1
2 [(∇∗u∗) + (∇∗u∗)T]

and ηs is the viscosity of the Newtonian solvent. It can be seen that the present flow
is governed by three dimensionless numbers, namely, (Re = ρU∞d/η0), Weissenberg
number (Wi = λU∞/d) and polymer viscosity ratio (β = ηs/(ηs + ηp)). Here, λ is the
characteristic relaxation time of polymer molecules. Apart from these, normalized cylinder
oscillation amplitude (A∗) and frequency ( f ∗) are two additional dimensionless numbers
that will govern the present flow. The present investigation is carried out at a fixed value
of Re = 100 and for a range of values of the cylinder oscillation amplitude and frequency
as 0.4 ≤ A∗ ≤ 1.2 and 0.6 ≤ f ∗ ≤ 1.2, respectively. The extent of fluid viscoelasticity in
the present simulations is controlled by varying the Weissenberg number and polymer
viscosity ratio in the ranges of 0 ≤ Wi ≤ 2 and 1 ≤ β ≤ 0.5, respectively. These ranges of
parameters also include the limiting case of Newtonian fluids (Wi = 0, β = 1) in order to
directly compare the flow dynamics with viscoelastic fluids under identical conditions.
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The hydrodynamic drag (CD) and lift coefficients (CL) per unit length of the cylinder
are calculated from the following relations:

CD = 2
ρU2∞d

∫
s
[(−p∗δ + τ∗

s + τ∗
p) · ns]x dS, (2.4)

CL = 2
ρU2∞d

∫
s
[(−p∗δ + τ∗

s + τ∗
p) · ns]y dS. (2.5)

Where ns is the outward unit normal vector drawn on the cylinder surface and S is the
cylinder surface area.

3. Numerical method and validation

A detailed description of the numerical method employed in the present study is available
elsewhere (Khan, Sasmal & Chhabra 2020; Hamid, Sasmal & Chhabra 2022). However, a
summary of the essential techniques utilized in this study to discretize different terms of
the governing equations is presented here. Broadly, we have used the finite volume method
based open-source code OpenFOAM (Weller et al. 1998) coupled with RheoTool (Pimenta
& Alves 2016) to solve the governing mass, momentum and Oldroyd-B viscoelastic
constitutive equations. To discretize the advective terms in the momentum equation, the
CUBISTA (convergent and universally bounded interpolation scheme for treatment of
advection) scheme (Alves, Oliveira & Pinho 2003) has been employed. The Gauss linear
orthogonal interpolation scheme was used to discretize all the diffusion terms of the
governing equations. The discretization of the time derivatives was carried out using
the Euler scheme. The linear systems of the pressure and velocity fields were solved
using the preconditioned conjugate solver with diagonal-based incomplete Cholesky
preconditioner and the stress fields using the preconditioned biconjugate gradient solver
with diagonal-based incomplete LU precondition. The SIMPLE (semi-implicit method for
pressure linked equations) algorithm was used to attain the pressure-velocity coupling.
The present study used an automatic mesh motion scheme (dynamicFvMesh) to treat the
fluid–structure interaction. In this scheme, the mesh at the outer boundary was fixed, but
the mesh near the cylinder was deformed due to the motion of the cylinder. Furthermore,
the log-conformation tensor formulation was used to ensure the positive definiteness of the
polymeric conformation tensor (Afonso et al. 2009). The relative tolerance level was set
to 10−10 for all the fields. To maintain the stability and accuracy of the present numerical
solution, the Courant number (ratio of the time step size to the characteristic convective
time scale) was kept at Co < 0.5 in all our simulations.

An optimum grid density is always imperative in any computational fluid dynamics
study, which on the one hand, will not warrant excessive computational resources and, on
the other hand, will provide results with sufficient accuracy. Therefore, in the present study,
the standard grid independence study procedure was followed by making three different
grids consisting of regular hexahedral elements, namely, G1, G2 and G3. Table 1 presents
the details of these grids used to carry out this test. Figure 2 shows the temporal variations
of the drag (CD) and lift (CL) coefficients at extreme values of cylinder oscillation
parameters for two oscillation cycles. After carefully inspecting the results obtained with
different grid densities, G2 (see figure 1b) was chosen for the present study as the results
for G2 and G3 show a nearly perfect match with each other. The deviations in the average
drag coefficient (CD,avg) and the root-mean-square values of the lift coefficient (CL,rms)
were 2.74 % and 1.41 %, respectively, between these two grid densities. Furthermore, a
time step size of �t = 0.0001(d/U∞) was selected to carry out all the present simulations

975 A26-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.859


Viscoelastic fluid flow over a transversely oscillating cylinder

Grid Nr Nc �S × 10−5 N

G1 270 200 1.60 54 000
G2 340 300 0.80 102 000
G3 470 440 0.38 206 800

Table 1. Details of different grids used in the grid independence study. Here, Nr and Nc are the number of grid
points in the radial and circumferential directions, respectively. Here, N is the total number of hexahedral cells
in the whole computational domain, and �S= is the minimum cell area.

(b)

0
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12

1 2

Number of oscillation cycles

0 1 2

Number of oscillation cycles

(a)

Figure 2. (a) Temporal variations of the drag (CD) and (b) lift (CL) coefficients for three different grid
densities. The following values of the parameters are chosen to carry out the grid independence study:
Re = 100; Wi = 2; β = 0.5; A∗ = 1.2; f ∗ = 1.2.

CD St

Wi Peng et al. (2021) Present Peng et al. (2021) Present

0.1 1.425 1.424 0.165 0.169
0.2 1.454 1.451 0.163 0.162
0.5 1.469 1.463 0.154 0.155
1 1.564 1.551 0.138 0.139
2 1.876 1.964 0.111 0.106

Table 2. Comparison of the time-averaged drag coefficient (CD) and Strouhal frequency (St) in the case of a
stationary cylinder with Peng et al. (2021) at Re = 100 and β = 0.1.

after performing a rigorous time independence study, likewise, the grid independence
study.

Extensive validation studies have also been carried out to establish the accuracy and
reliability of the present numerical set-up. Our earlier study (Hamid et al. 2022) already
presented an extensive validation for the steady flow past a stationary cylinder up to
Re = 40. For an unsteady flow of viscoelastic Oldroyd-B fluid, the results obtained with
the present numerical set-up have further been validated with the study of Peng et al.
(2021) for a stationary cylinder. Table 2 compares the time-averaged drag coefficient and
Strouhal number variations with the Weissenberg number between the two studies. A good
correspondence can be seen between the two results with a maximum deviation well below
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Figure 3. Comparison of the temporal variation of the drag coefficient (CD) between the present results and
that of Alam et al. (2021) for an oscillating cylinder in Newtonian fluids.

Alam et al. (2021) Present
A∗ f ∗ CD,avg CD,avg

0.4 0.6 1.360 1.348
0.4 1 1.817 1.771
1 1 2.374 2.316
1.2 1 2.502 2.403

Table 3. Comparison of the time-averaged drag coefficient CD,avg between the present results and that of
Alam et al. (2021) at different combinations of cylinder oscillation amplitude and frequency.

5 %. Furthermore, we have also extensively validated the present numerical settings for
the case of an oscillating cylinder in simple Newtonian fluids. While figure 3 compares
the temporal variation of the drag coefficient with the results of Alam et al. (2021), table 3
compares its time-averaged values over each cycle. Once again, a very good agreement
can be seen between the two results with a maximum deviation of 3.96 % in comparing
the time-averaged values.

Finally, the following boundary conditions were employed to facilitate the present
simulations. At the inlet, ux = 1 and uy = 0 are used. Furthermore, the pressure gradient
and the extra stresses due to the polymeric contribution are set to zero at this boundary.
At the outlet, the pressure is set to zero, and the Neumann boundary condition is used for
the rest of the variables. At the cylinder surface, the standard no-slip boundary condition
and a zero gradient for the pressure are applied. The polymeric stresses are extrapolated
linearly onto this surface. The initial values of velocity, pressure and stress fields in the
whole computational domain are set to zero.

The DMD analysis has been carried out using the algorithm proposed by Schmid
(2011), which is also detailed in our recent study (Hamid et al. 2022). Briefly, temporally
equispaced (with 0.1 s interval) snapshots (a total of N = 501) of the vorticity field
in the unsteady periodic regime (t ≥ 500) are vectorized and assembled to form a
matrix SN

1 = {sj}N
j=1. The DMD assumes a linear map M that connects the consecutive

vorticity fields as sj+1 = Msj. Therefore, the system can be arranged as SN
2 = MSN−1

1 =
CSN−1

1 + r. Here, r is the residual, which is minimized to compute the eigenvalues
(Ritz values denoted by λj) and eigenvectors (DMD modes denoted by φj) of C by the
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singular value decomposition. The DMD modes capture the coherent spatial features of
the flow field, whereas the Ritz values (λj) provide information about the growth rate
(σj = Re(log(λj/t))) and frequency (Stj = Im(log(λj)/2πt)) of these modes. The energy
contribution of each mode is quantified using the mode amplitude bj, which is obtained
by b = Φ†s1. Here, b is the matrix of amplitude vectors, Φ† denotes the Moore–Penrose
pseudoinverse of mode matrix, and s1 is the initial snapshot vector.

4. Results and discussion

We initiate the discussion by comparing the lock-in and no lock-in states between
viscoelastic and Newtonian fluids, focusing on specific combinations of A∗ and f ∗.
We provide a detailed illustration of how the associated vortex dynamics differ in
viscoelastic and Newtonian fluids for these selected combinations. We analyse vorticity
transport, Q-criterion and polymeric stretching to investigate the underlying reasons for
the discrepancies in vortex dynamics between the two fluids. Furthermore, we employ the
DMD analysis in two scenarios: (i) when both the Newtonian and viscoelastic fluids exhibit
the lock-in condition (A∗ = 0.4 and f ∗ = 0.8); and (ii) when the viscoelastic fluid deviates
from the Newtonian fluid (no lock-in) and subsequently exhibits the lock-in condition
(A∗ = 0.4 and f ∗ = 0.6). In this study, we have selected seven sets of A∗ and f ∗ based
on the work of Alam et al. (2021) to investigate the influence of fluid viscoelasticity on the
lock-in and no lock-in behaviours.

4.1. Determination of lock-in and no lock-in states
The determination of the lock-in and no lock-in states in the current flow system is based
on the criterion proposed by Kumar, Navrose & Mittal (2016), which was also utilized by
Alam et al. (2021) in their study. These authors compiled and examined various criteria
put forth by previous researchers, thoroughly discussing the discrepancies. In this study,
we adopt the subsequent criterion for the lock-in state in the current flow system: (i) the
dominant peak in the power spectrum of the lift coefficient corresponds to the cylinder
oscillation frequency ( f ∗

y ); (ii) if any additional peaks are present in the power spectrum,
they must be integer multiples of f ∗

y . This criterion was further validated by determining
the lock-in region for both forced and free vibrating cylinders, as documented in the
literature (Kumar et al. 2016).

First, the non-dimensional frequency–amplitude map exhibiting the lock-in and no
lock-in behaviours of Newtonian and viscoelastic fluids is presented in figure 4. From this
plot, one can clearly observe that at a combination of A∗ = 0.4 and f ∗ = 0.6, viscoelastic
fluid (Wi = 2 and β = 0.5) exhibits the lock-in state, whereas Newtonian fluid is in the
no lock-in state. However, as the value of f ∗ increases to 0.8 or 1 at the same value of
A∗ = 0.4, both fluids display the lock-in behaviour. On further increasing f ∗ to 1.2, both
fluids move to the no lock-in zone. This suggests a stark difference in the synchronization
behaviour of the wake structures for the value of f ∗ < 0.8 between viscoelastic and
Newtonian fluids. This is clear from the power spectral density (PSD) plot of the temporal
variation of the lift coefficient presented in figure 5(a–d). As can be seen, for f ∗ < 1
(figure 5a,b, which correspond to points 1 and 2 in the map presented in figure 4), the
viscoelastic fluid in both cases has a dominant peak at the cylinder oscillation frequency
and another peak at its integer multiple, thereby fulfilling the criteria of the lock-in
condition. Contrary to this, at a low frequency of f ∗ = 0.6, the power spectrum of the lift
coefficient of Newtonian fluids has several peaks at non-integer multiples of the cylinder
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6. (2S) Newtonian

(P + S) Newtonian
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Figure 4. A map illustrating the presence of lock-in and no lock-in states for viscoelastic and Newtonian fluids
at selected points in the non-dimensional cylinder oscillation amplitude (A∗) and frequency ( f ∗) plane. The
map focuses on the extreme case of the viscoelastic fluid with Wi = 2 and β = 0.5.
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Figure 5. Power spectral density plots of the lift coefficient at a fixed value of the cylinder oscillation
amplitude of A∗ = 0.4 and different values of the cylinder oscillation frequency, namely, (a) f ∗ = 0.6,
(b) f ∗ = 0.8, (c) f ∗ = 1, (d) f ∗ = 1.2, both for Newtonian and viscoelastic fluids with Wi = 2 and β = 0.5.

oscillation frequency, indicating a no lock-in behaviour of the wake. For f ∗ > 1 (figure 4d),
the PSD plots of both fluids are much similar.

On the other hand, at a fixed frequency of f ∗ = 1, as the oscillation amplitude increases
from A∗ = 0.4 to A∗ = 1.2, both Newtonian and viscoelastic fluids stay in the lock-in state.

975 A26-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.859


Viscoelastic fluid flow over a transversely oscillating cylinder

0

PSD

PSD

100

103

106

100

103

106

100

100

103

103

106

105

Newtonian

Wi = 2, β = 0.5

1 2 3 4 5

f/fy
* f/fy

*

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

(b)(a)

(d)(c)

Figure 6. Power spectral density plots of the lift coefficient at a fixed value of the cylinder oscillation frequency
of f ∗ = 1 and different values of the cylinder oscillation amplitude, namely, (a) A∗ = 0.4, (b) A∗ = 0.6,
(c) A∗ = 1, (d) A∗ = 1.2, both for Newtonian and viscoelastic fluids with Wi = 2 and β = 0.5.
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Figure 7. Power spectral density plots of the lift coefficient at A∗ = 0.4 and f ∗ = 0.6 both for Newtonian and
viscoelastic fluids. (a) Effect of the Weissenberg number at a fixed value of β = 0.5. (b) Effect of the polymer
viscosity ratio at a fixed value of Wi = 2.

Figure 6(a–d) shows the PSD plots corresponding to these points, where all of them
have major peaks at the cylinder oscillation frequency, and the other minor peaks are its
superharmonics.

To thoroughly investigate the effect of viscoelasticity on the lock-in state, we particularly
focus on point 1 ( f ∗ = 0.6 and A∗ = 0.4) as shown in figure 4. At this point, the
viscoelastic fluid with Wi = 2 and β = 0.5 exhibits a significant deviation from the
Newtonian fluid. To analyse the impact of fluid viscoelasticity on the lock-in state, we
introduce viscoelastic behaviour gradually into the Newtonian fluid while keeping the
oscillation parameters at fixed values. The PSD plots in figure 7(a) demonstrate that as
the Weissenberg number is increased at a fixed value of β = 0.5, the dominant peak in
the PSD spectrum shifts towards the cylinder oscillation frequency. Meanwhile, the less
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Figure 8. Vortex structures in Newtonian and viscoelastic fluids at a fixed value of A∗ = 0.4 and varying
values of f ∗ corresponding to the points 1, 2, 3 and 4 in the map as shown in figure 4. Here, the polymer
viscosity ratio is fixed at β = 0.5, while the Weissenberg number is varied from 0 (Newtonian) to 2.

prominent peaks either diminish or appear as integer multiples of the dominant frequency,
indicating the establishment of the lock-in state. This behaviour can be attributed to the
increase in the relaxation time of the polymer molecules. This is because the Weissenberg
number is increased here by increasing the polymer relaxation time. As a result, they
remain stretched for a longer time within the flow, and the elastic stresses transmitted
through these polymer chains sustain the inertial effects generated by the cylinder motion,
which will be explained in detail later with the help of other postprocessing techniques
such as the Q-criterion and polymer stretching. The consequence is the synchronization
of the wake with the cylinder motion in the viscoelastic fluid, whereas, in the Newtonian
fluid, the wake is dominated by the stationary shedding frequency. A similar trend is also
observed in figure 7(b), where the extent of fluid viscoelasticity is gradually increased
by varying the polymer contribution from 0 % (Newtonian) to 50 % (β = 0.5) while
maintaining a fixed Weissenberg number of 2.

4.2. Effect of fluid viscoelasticity on wake structures
We now analyse the effect of fluid viscoelasticity on the wake generated past the oscillating
cylinder. To do so, we first vary the value of Wi at a constant β of 0.5. Later, we vary β,
keeping the Wi number fixed at 2. Figure 8 represents the changes in the wake as we vary
f ∗ and Wi at fixed values of A∗ = 0.4 and β = 0.5. For the Newtonian fluid at f ∗ = 0.6,
it is obvious that the wake is in the non-synchronized state, with a pair of vortices (‘2P’)
being shed in one oscillation cycle. On moving towards the viscoelastic fluids, at a low
value of Wi number of 0.1, the wake is not much different from that seen in the Newtonian
fluid due to a low effect of fluid viscoelasticity. However, as we increase the Weissenberg
number (i.e. increase in the polymer relaxation time) to 1, a remarkable change in the
wake structure can be seen. The two same-signed vortices coalesce (which will also be
seen from the Q-criterion discussed in the later section), resulting in a Kármán-type wake
street with a ‘2S’ configuration. The shed vortices align along the wake centreline and
move in a synchronized fashion. Increasing the Wi number further to 2 does not affect
the synchronization state of the wake, and it continues to be in the lock-in state. This
effect is similar to that seen in the Newtonian fluid when f ∗ increases from 0.6 to 0.8.
Williamson & Roshko (1988) showed that four vorticity regions are formed in a given
cycle for an oscillating cylinder. Below the critical lock-in frequency, same-sign vortices
move away from each other and then pair with an opposite-sign vortex to form a ‘2P’
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Figure 9. Vortex structures in Newtonian and viscoelastic fluids at a fixed value of f ∗ = 1 and varying values
of A∗ corresponding to the points 3, 5, 6 and 7 in the map as shown in figure 4. Here, the polymer viscosity
ratio is fixed at β = 0.5, while the Weissenberg number is varied from 0 (Newtonian) to 2.

vortex street. As the frequency increases to 0.8, the same-sign vortices amalgamate to form
a ‘2S’ wake structure. On further moving to higher oscillation frequencies, i.e. f ∗ = 1, both
fluids exhibit the lock-in behaviour (see figure 5 for the corresponding PSD plots) with a
‘2S’ mode of vortex shedding. However, the vortex alignment is still notably different
between the two fluids. While for a Newtonian fluid, the wake at f ∗ = 0.8 resembles
the von Kármán vortex street, the vortices in the far wake organize into rows for an
Oldroyd-B viscoelastic fluid. Moreover, this trend of a viscoelastic fluid is replicated by the
Newtonian fluid at f ∗ = 1, although with a higher rate of vortex dissipation. At this point
( f ∗ = 1), with the increase in the Wi number, the row formation point moves closer to the
cylinder. Finally, at Wi = 2, the vortices are shed into two rows from the near wake of the
cylinder itself. Here, the vortices display substantial stretching in the downstream direction
before being shed with higher lateral spacing. A similar trend is observed at f ∗ = 1.2
where the non-synchronized vortices advect behind the cylinder with a ‘2P’ configuration
regardless of the fluid type. However, the Oldroyd-B vortices are noticeably stronger than
the Newtonian ones, and the narrow stretches interconnecting them also become more
prominent.

The effect of increasing cylinder oscillation amplitude at a fixed frequency is illustrated
in figure 9. The wake remains in the ‘2S’ mode for Newtonian fluids as we increase
the value of A∗ from 0.4 to 1. Finally, it shifts into a synchronized ‘P+S’ wake state, as
reported by many earlier studies as well (Williamson & Roshko 1988; Leontini et al. 2006).
However, a notable difference is again seen in the vortex dynamics for an Oldroyd-B fluid.
At A∗ = 0.4 and 0.6, the vortices are shed with a ‘2S’ mode but in parallel rows from
the near wake itself, whereas this partition occurs at some distance for a Newtonian fluid.
With the further increment in the amplitude to A∗ = 1, a marked difference appears in
the wake topology. While for a Newtonian fluid, the wake still remains in the ‘2S’ mode,
it shifts to a ‘2P’ mode for a viscoelastic fluid, for instance, see the results for Wi = 2
and A∗ = 1 or 1.2. This is a significant deviation from the Newtonian behaviour where
only ‘2S’ or ‘P+S’ modes have been observed in the primary synchronization region at
multiple Reynolds numbers in earlier studies (Leontini et al. 2006). A possible explanation
for this, as also provided by Govardhan & Williamson (2000), is that the single vortices
in the near wake split due to excess strain, forming a pair of vortices. At Wi = 1 and
A∗ = 1 or 1.2, this splitting effect is more obvious for viscoelastic fluids, where it can
be seen that the single vortices start to divide into two regions. This results in a ‘2P’
wake as we increase the Weissenberg number to 2 at the same oscillation parameters.
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Figure 10. Vortex structures in Newtonian and viscoelastic fluids at a fixed value of A∗ = 0.4 and varying
values of f ∗ corresponding to the points 3, 5, 6 and 7 in the map as shown in figure 4. Here, the Weissenberg
number is fixed at Wi = 2, while the polymer viscosity ratio is varied from 1 (Newtonian) to 0.5.
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Figure 11. Vortex structures in Newtonian and viscoelastic fluids at a fixed value of f ∗ = 1 and varying values
of A∗ corresponding to the points 3, 5, 6 and 7 in the map as shown in figure 4. Here, the Weissenberg number
is fixed at Wi = 2, while the polymer viscosity ratio is varied from 1 (Newtonian) to 0.5.

Since polymer molecules undergo considerable stretching in the cylinder vicinity in a
viscoelastic fluid, the excess straining effect enhances the breaking of the vortices at lower
cylinder oscillation amplitude and frequency values than the Newtonian fluid.

Moving further, figures 10 and 11 show the effect of changing the polymer viscosity
ratio on the wake at a constant Wi number. From figure 10, it can be seen that a decreasing
β, i.e. increasing polymer concentration in the fluid, has a similar impact as that of
increasing the Wi number in the wake irrespective of the cylinder oscillation frequency.
Similarly, as we increase A∗ and decrease β (figure 11), the same trend is again observed as
earlier seen in figure 9. Therefore, inducing viscoelasticity in the fluid either by increasing
the Weissenberg number (or increasing the polymer relaxation time) or decreasing the
polymer viscosity ratio (or increasing the polymer concentration) has the same impact on
the wake topology.

4.3. Dynamic mode decomposition analysis
Fluid flows, including the one under investigation in this study, are characterized by their
inherent flow complexity. However, despite this complexity, the transport processes in
these flows are still majorly governed by organized motions of fluid elements possessing
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Figure 12. (a) The Ritz values (λj) both for Newtonian and viscoelastic fluids at A∗ = 0.4 and different values
of f ∗, (the dashed line represents the unit circle |λj| = 1). (b) The normalized magnitudes corresponding to the
most dominant modes (excluding the mean mode) are plotted against the non-dimensional frequency of each
mode. Fundamental frequencies in the fluid flow are denoted by the dashed lines. The rest of the frequencies
are higher harmonics of these fundamental frequencies in the flow.

spatial and temporal coherence (Kutz et al. 2016). Recognizing and extracting these
features, also known as coherent structures, from the trivial background flow is crucial
for better understanding the flow system and developing effective flow models. Like
stability analyses, data-driven approaches, such as proper orthogonal decomposition and
DMD, offer valuable tools for approximating these coherent structures in terms of spatial
and temporal modes. By applying these analyses, we can gain valuable insights into the
evolution and interactions of the underlying flow features, enhancing our understanding of
the flow dynamics.

With this aim, we now utilize the DMD technique to analyse the differences in
the coherent flow structures of both fluids at f ∗ = 0.6, where they exhibit different
synchronization behaviour. We also perform the DMD analysis at f ∗ = 0.8, where both
fluids are in the lock-in state. The DMD extracts the underlying structures of dynamic
relevance from the global flow field data and their associated frequencies prevalent in the
domain. This will aid in visualizing the competition between the cylinder oscillation and
the natural vortex shedding frequencies in the wake. First, the Ritz values of all the cases
under consideration are plotted in figure 12(a). Irrespective of the fluid type and oscillation
parameters, most of these neutrally stable values are clustered around the unit circle
|λj| = 1 (zoomed view shown using a dashed line) with a few strongly damped values lying
inside it. It denotes the convergence towards a linear representation of the nonlinear flow.
Also, these values are symmetrical with respect to the real axis due to real flow field data.
In our analysis, the sorting of dominant modes is done based on the amplitude (bj), which
is determined by projecting the modes back to the original data sequence. The modes with
larger projections are more significant and are depicted by larger sizes in figure 12(a). The
largest circle shows the mode with zero imaginary Ritz value for all fluids and captures
the mean vorticity field. For other modes, the normalized magnitudes are plotted against
the associated frequencies (Stj) in figure 12(b). This plot shows that only a few modes
capture the maximum flow energy in all four scenarios, which is expected as the flow
is periodic. For the lock-in case (i.e. f ∗ = 0.8), both Oldroyd-B and Newtonian fluids
have a pronounced peak at the cylinder oscillation frequency. The rest of the frequencies
are higher harmonics of this frequency and contribute negligibly to the data sequence as
reflected from their amplitudes. Moreover, the natural vortex shedding frequency ( fst) of
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Figure 13. Visualization of the DMD modes of the vorticity fields both for Newtonian and viscoelastic
fluids (Wi = 2, β = 0.5) at the lock-in state in the non-dimensional amplitude–frequency plane (A∗ = 0.4 and
f ∗ = 0.8): (a,c) mean mode; (b,d) mode 1.

both fluids does not appear in this spectrum. It further confirms that the vortex shedding
synchronizes with the cylinder oscillation in the lock-in condition. Therefore, the cylinder
oscillation dominates while the natural shedding frequency perishes in the flow field.

Figure 13 shows the real parts of the DMD modes corresponding to the mean flow
and the cylinder oscillation frequency both for Newtonian and viscoelastic fluids. In
both fluids, the mean mode (Stj = 0) comprises two shear layer-type structures arising
behind the cylinder and extending symmetrically into the wake. However, these structures
are more prominent for a viscoelastic fluid and extend farther into the wake. Moreover,
compared with the stationary cylinder case, these structures are again larger in the
streamwise extent for both fluids; see the results of Hamid et al. (2022). This is because
the added acceleration effect in the oscillating cylinder case results in higher vorticity
flux from the cylinder wall than in the stationary cylinder case. Mode 1 provides typical
structures to capture the vortex-shedding phenomenon and its associated frequency. For
both fluids, the bubble-like structures convect in an antisymmetric fashion (with respect to
the vertical axis) away from the cylinder with its oscillation frequency. However, the two
fluids have a marked difference in the far wake structures of the two fluids.

Contrary to the flow of viscoelastic fluids past a stationary cylinder (Hamid et al. 2022)
where the strength of these structures is higher than Newtonian fluids, the opposite trend
is observed here. This is because, in a Newtonian fluid, single vortices (‘S’) sustain to
a greater distance in the wake than in a viscoelastic fluid. In this fluid, the vortex street
is partitioned into two rows in the far wake (figure 8), which is successfully captured by
the DMD structures. Furthermore, in both cases, the distance between the consecutive
bubble-like structures remains constant after moving away in the downstream direction.
However, this gap is a little bit less for viscoelastic fluids. Figure 14 depicts the modes
for Newtonian no lock-in and viscoelastic lock-in cases at A∗ = 0.4 and f ∗ = 0.6. As
seen before, in the lock-in condition, the DMD extracts only one dominant frequency
in viscoelastic flows, i.e. the cylinder oscillation frequency (figure 12b), and the other
low magnitude frequencies are its higher harmonics. However, for the Newtonian no
lock-in case, two fundamental frequencies are visible due to the non-synchronization
in the vortex formation. Hence, from the flow field data, it is obvious that these two
frequencies, i.e. the cylinder oscillation frequency and the vortex shedding frequency,
compete in the flow domain. The associated flow structures at these frequencies are
visualized in figure 14, where the mean mode for both fluids has similar structures as
explained in the earlier case, with the extent of viscoelastic DMD structures being more

975 A26-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.859


Viscoelastic fluid flow over a transversely oscillating cylinder

Newtonian Viscoelastic
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Figure 14. Visualization of the DMD modes of the vorticity field both for Newtonian (no lock-in)
and viscoelastic (Wi = 2, β = 0.5, lock-in) fluids at the deviation point in the non-dimensional
amplitude–frequency plane (A∗ = 0.4 and f ∗ = 0.6): (a,d) mean mode; (b,e) mode 1; (c) mode 2.

in the downstream direction. Moving to mode 1 in a viscoelastic fluid, again, the same
vortex-shedding structures appear; however, these resemble the DMD structures of the
Newtonian lock-in case (figure 13b), albeit more concentrated due to the viscoelastic
effect. This observation of similarity in the DMD structures is also reinforced by the vortex
topology at two points in figure 8, see the results at A∗ = 0.4 and f ∗ = 0.6, and A∗ = 0.4
and f ∗ = 0.8. It also suggests that inducing viscoelasticity in a Newtonian fluid expedites
the transition to the lock-in region for a transversely oscillating cylinder. Now looking at
the DMD mode 1 for a Newtonian fluid, which corresponds to the cylinder oscillation
frequency, the concentrated structures in the cylinder vicinity signify the dominance of
forced oscillations in the near wake zone. These structures fade as we move downstream of
the cylinder. Competing with this frequency, the antisymmetric structures in mode 2 move
with the natural shedding frequency and are more stretched in the spanwise direction than
the lock-in vortex shedding structures, figure 14(c).

4.4. Vorticity transport, polymer stretching and Q-criterion
The vorticity in the present flow field is generated only due to the interaction between
the fluid and the cylinder surface, as the flow is incompressible in nature. Therefore, the
vorticity evolves locally near the cylinder and propagates into the flow field by advection
and diffusion. The governing equation for the vorticity transport (VT) obtained after taking
the curl of the momentum equation is given as (Kundu, Cohen & Dowling 2015)

∂ω∗

∂t∗
+ ∇∗ × (u∗ · ∇∗u∗) = ∇∗ ×

(∇∗ · τ ∗

ρ

)
. (4.1)

For Newtonian fluids, the stress is only due to τ∗
s , and hence, the VT equation becomes as

follows:
∂ω∗

∂t∗
+ u∗ · ∇∗ω∗ = ν∇2∗

ω∗, (4.2)

where ν(= ηs/ρ) is the kinematic viscosity of the fluid and Dω∗/Dt∗ = ∂ω∗/∂t∗ + u∗ ·
∇∗ω∗ is the vorticity transport rate (VTR). On the contrary, the polymer molecules
suspended in the Newtonian solvent in viscoelastic fluids also contribute to the overall
stress field. Hence, the VT equation for an Oldroyd-B viscoelastic fluid becomes as follows
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Figure 15. Comparison of the VTR (Dω∗/Dt∗) for Newtonian and viscoelastic fluids having Wi = 2 and
β = 0.5. Here, the cylinder oscillation parameters are (a) A∗ = 0.4 and f ∗ = 0.6, (b) A∗ = 0.4 and f ∗ = 0.8,
(c) A∗ = 0.4 and f ∗ = 1.2, (d) A∗ = 1.2 and f ∗ = 1. The top and bottom of each panel represent the results for
Newtonian and viscoelastic fluids, respectively.

(Comminal et al. 2016):

∂ω∗

∂t∗
+ u∗ · ∇∗ω∗ = ν∇2∗

ω∗ + ∇∗ ×
(∇∗ · τ ∗

p

ρ

)
. (4.3)

The existence of this extra term on the right-hand side of the VT equation for the
viscoelastic fluids leads to an enhancement in the vorticity generation and its subsequent
transport through the domain. This can be clearly observed from figure 15, which
illustrates the contours of the VTR both for Newtonian and viscoelastic fluids at different
combinations of cylinder oscillation parameters. As already stated above, the vorticity in
both fluids is generated at the solid boundary; therefore, the VTR contours are only present
near the cylinder vicinity. Overall, the contours are more prominent for viscoelastic fluids,
which extend to larger distances in the streamwise direction at lower non-dimensional
frequencies; for instance, see the results at f ∗ = 0.6 (figure 15a) and f ∗ = 0.8 (figure 15b).
At higher frequencies, for instance, at f ∗ = 1.2, although the VTR is higher for viscoelastic
fluids, it does not extend to that much in the streamwise direction, as seen at lower
values of f ∗. This behaviour can be explained based on the competition between the
fluid deformation (due to cylinder oscillation) and polymer relaxation time scales. For
a given polymer relaxation time (or at a fixed Weissenberg number), at a lower cylinder
oscillation frequency, the fluid deformation time scale is large and sufficient enough for
the polymer molecules to stretch and relax the stresses in the fluid. In contrast, at higher

975 A26-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.859


Viscoelastic fluid flow over a transversely oscillating cylinder

tr(C)Q-criterion

(a) (b)

(c) (d)

20

2P

P + S

00.5–0.5 0

Figure 16. The Q-criterion for Newtonian and viscoelastic fluids at Wi = 2, β = 0.5. The plots are
superimposed over the polymer stretching (tr(C)) for viscoelastic fluids by reducing the opacity. Here, the
cylinder oscillation parameters are (a) A∗ = 0.4 and f ∗ = 0.6, (b) A∗ = 0.4 and f ∗ = 0.8, (c) A∗ = 0.4 and
f ∗ = 1.2, (d) A∗ = 1.2 and f ∗ = 1. The top and bottom plots in each panel represent the results for Newtonian
and viscoelastic fluids, respectively.

cylinder oscillation frequencies, the fluid deformation time scale becomes small, and as a
result, the polymer molecules are not getting enough time to relax, and smaller polymer
chains are formed. This is why the lock-in phenomenon of viscoelastic fluids deviates
substantially from the Newtonian one at frequencies f ∗ < 1, whereas not much difference
is seen above f ∗ = 1.

To quantify and visualize this stretching phenomenon and its consequences on
wake structure, we present the plots of the polymer stretching superimposed over
the Q-criterion of the flow field, figure 16. The Q-criterion is calculated as per the
equation, Q = ((‖Ω∗‖2 − ‖S∗‖2)/2), where Ω∗ is the rotation rate in the fluid given by
((∇∗u∗ − ∇∗u∗T)/2) and S∗ is the strain rate given by ((∇∗u∗ + ∇∗u∗T)/2). This criterion
is a standard technique to identify the vortical structures in a flow field. Consequently,
regions with Q > 0 are characterized as rotation-dominated regions, whereas Q < 0
indicates that the straining is in excess compared with the rotation. The stretching
of polymer molecules is quantified by calculating the trace (tr(C)) of the polymeric
conformation tensor C , which is obtained from the polymeric stress fields by the equation,
C = ((λ/ηp)τ

∗
p) + δ. For superimposition with polymer stretching, the opacity of the

Q-criterion fields is reduced in viscoelastic fluids. At cylinder oscillation frequencies of 0.6
and 0.8 (figure 16a,b, respectively), it can be seen that highly stretched strands of polymer
molecules are formed in the cylinder vicinity, which further extend to larger distances into
the downstream wake. Moreover, the positive Q-criterion structures are aligned along the
tips of these strands. The corresponding Q-criterion for Newtonian fluids is also shown
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in the same figure for comparison. In contrast, at f ∗ = 1.2, as already stated above, the
chains are shorter, less prominent and roll up very close to the downstream cylinder face.
The presence of these smaller chains between the shed vortices makes these vortices more
interconnected resulting in the elongation of the vortices and a distinct wake structure,
as already seen in the earlier vorticity plots (figure 10). On increasing the amplitude at a
given frequency (figure 15d), a different trend is observed where the high VTR zones
are spread more in the spanwise direction. The corresponding polymer stretching and
Q-criterion structures can be seen in figure 16(d). Here, long chains are oriented in a
semivertical fashion, resulting in the deviation of wake structure in viscoelastic fluids from
the Newtonian one. Two pairs of Q-criterion structures can be seen in viscoelastic fluids
as compared with a single and a pair of structures for the Newtonian fluid.

Therefore, the existence of polymer molecules in a viscoelastic fluid significantly affects
the vortex dynamics. Furthermore, the elastic stresses generated are stronger at lower
oscillation frequencies where the lock-in phenomenon is also altered. The formation of
polymer strands suppresses the vortex shedding as the polymer molecules sustain the
stresses for a longer duration of time. As a result, the inertial effects generated by the
cylinder are not dissipated but sustained in the fluid. Therefore, the cylinder oscillation
dominates the flow field in viscoelastic fluids, leading to an early transition into the lock-in
condition on a non-dimensional amplitude–frequency plane.

5. Conclusions

In this study, we conducted numerical simulations to investigate the flow characteristics
of Newtonian and viscoelastic fluids around a circular cylinder undergoing transverse
oscillations in a streaming fluid with a fixed Reynolds number of Re = 100. Specifically,
we focused on examining the influence of fluid viscoelasticity on the transition between
the lock-in and no lock-in regions and the corresponding vortex structures. Our findings
indicate that the lock-in region in viscoelastic fluids occurs at a lower non-dimensional
cylinder oscillation frequency compared with the no lock-in condition observed in
Newtonian fluids. To gain further insights into the interplay between the cylinder
oscillation frequency and the natural shedding frequency of vortices in the wake structure,
we employed a data-driven technique called DMD analysis. For Newtonian fluids in the
no lock-in regime, DMD revealed two coherent flow structures associated with each of
these frequencies in the amplitude–frequency plane. In contrast, for viscoelastic fluids at
the same point, only the cylinder oscillation frequency and its corresponding structure
were extracted, indicating the presence of the lock-in state. Additionally, we observed
significant differences in the wake structures between Newtonian and viscoelastic fluids.
In the lock-in zone, a distinct ‘2P’ vortex shedding mode, characterized by the presence of
two pairs of vortices within one oscillation cycle, was observed exclusively in viscoelastic
fluids and not in Newtonian fluids. This deviation can be attributed to the additional elastic
stresses generated by the stretching of polymer molecules present in viscoelastic fluids.
Our results are consistent with the findings obtained from Q-criterion and VT analyses,
further supporting our observations.
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