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Through boundary integral simulations and asymptotic analysis, we investigate the effect
of a finite Navier slip length on the rheological proprieties of a dilute two-dimensional
suspension of plate-like particles in the creeping flow limit. Specifically, we study the
effects of Navier slip, particle thickness and Péclet number on the effective shear viscosity
and average normal stress difference of an isolated two-dimensional plate-like particle in
an unbounded shear flow field. We find that Navier slip induces a significant reduction in
the effective viscosity and increases the average normal stress difference. The effect of slip
becomes more enhanced as the thickness of the particle decreases and as the Péclet number
increases. Remarkably, the analysis suggests that it is theoretically possible for a dilute
suspension of slip plate-like particles at high Péclet numbers to have a shear viscosity
smaller than that of the suspending fluid.
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1. Introduction

The rheology of plate-like particles is of interest in many industrial and environmental
applications, such as the transport of clay particles in rivers (Tawari, Koch & Cohen
2001), the dispersion of two-dimensional (2-D) nanomaterials in liquid-based composites
(Kumar, Sharma & Dixit 2019) and the development of new-generation lubricants (He
et al. 2014a,b; Xiao & Liu 2017; Xiao et al. 2019; Shah et al. 2021). As for rod-like
particles, shape anisotropy in plate-like particle suspensions induces preferred orientations
in flow. The change in orientational microstructure affects both the rheological response of
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the suspension and the occurrence of flow instabilities (Gillissen & Wilson 2018; Gillissen
et al. 2020; Assen et al. 2022).

At high rotational Péclet numbers, a no-slip plate-like particle suspended in a simple
shear flow tumbles, rotating with the same sense of rotation as the undisturbed vorticity
vector. While rotating, each particle spends most of the time aligned in the flow
direction (Jeffery 1922), so that, in a time-average or ensemble-average sense, the average
orientation of the particle is in the flow direction. In the opposite limit of zero Péclet
number, Brownian noise induces a random particle orientation. The average particle
orientation angle, and its dependence on the Péclet number Pe, directly affect the
macroscopic properties of the suspension, such as the effective viscosity ηeff (Leal &
Hinch 1971; Hinch & Leal 1972; Okagawa, Cox & Mason 1973; Rallison 1978; Yamamoto
& Matsuoka 1997; Pozrikidis 2001, 2005; Meng & Higdon 2008; Guo, Zhou & Wong
2021) and the average normal stress difference (Okagawa et al. 1973; Rallison 1978). For
example, because of the change in average orientation angle with Pe, a dilute suspension
of plate-like particles shows a shear-thinning behaviour as Pe increases. Changing the
thickness of the particle alters both ηeff and the average normal stress difference. In
particular, for dilute suspensions of no-slip particles at concentration c → 0 and fixed Pe
suspended in a fluid of viscosity η, the intrinsic viscosity σ ′

xy = (ηeff − η)/ηc is predicted
to increase as the thickness-to-length particle aspect ratio k decreases (Leal & Hinch 1971;
Hinch & Leal 1972; Singh et al. 2014).

Two-dimensional nanomaterials such as graphene, Molybdenum disulfide (MoS2) and
boron nitride can display considerable surface hydrodynamic slip (Kamal, Gravelle &
Botto 2021b), i.e. the fluid does not completely ‘stick’ to the solid as assumed in the no-slip
condition. Conditions for a molecularly smooth surface to display large hydrodynamic slip
are discussed, for example, in Tocci, Joly & Michaelides (2014) and Voeltzel et al. (2018).
The slip lengths, typically a few tens of nanometres, are small compared with microscopic
scales but are still much larger than the thickness of 2-D nanomaterial particles. What is
the effect of hydrodynamic slip on the rheological properties of a dilute suspension of
plate-like particles?

We have recently shown through molecular dynamics and continuum simulations that
surface slip can cause plate-like particles (platelets) to align indefinitely near the flow
direction at high Pe (Kamal, Gravelle & Botto 2020; Gravelle, Kamal & Botto 2021; Kamal
et al. 2021b; Crowdy 2022). The stable alignment occurs due to surface slip reducing the
hydrodynamic traction over the slender surface of the platelet when the platelet is oriented
in the flow direction and is in stark contrast to the tumbling motion observed for no-slip
platelets.

This article aims to investigate theoretically and numerically the effect of surface slip on
the intrinsic viscosity and normal stress difference of a dilute 2-D suspension of plate-like
particles suspended in an unbounded shear flow field in the creeping flow limit. In the
dilute limit, the intrinsic viscosity σ ′

xy is well approximated by evaluating the contribution
from an isolated particle. The effect of surface slip on σ ′

xy in the case of a dilute suspension
of particles has been studied in both the continuum limit for spherical and prolate and
oblate ellipsoidal particles (Allison 1999; Luo & Pozrikidis 2007, 2008), and at the atomic
scale through molecular dynamics simulations of plate-like molecules/particles (Gravelle
et al. 2021). These studies observed a reduction in σ ′

xy compared with no-slip particles of
identical shape. For example, Allison compared σ ′

xy for isolated perfect-slip and no-slip
ellipsoidal particles for Pe → 0 (Allison 1999). Allison found that, for an oblate ellipsoid,
the flatter the ellipsoid, the greater the reduction in σ ′

xy compared with a no-slip ellipsoid of
identical shape, figure 1. The minimum reduction in σ ′

xy between a perfect-slip and no-slip
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Figure 1. Intrinsic viscosity vs the inverse of the particle thickness-to-length aspect ratio k for Pe → 0,
comparing oblate ellipsoids with perfect slip or no-slip surfaces (black squares, from Allison 1999) and
molecular dynamics data for a dilute suspension of disk-shaped nanoplatelets for Pe = 1.0 (blue circles, from
Gravelle et al. 2021).

ellipsoidal particle occurs for a sphere. Assuming a Navier slip surface, this reduction in
σ ′

xy can be calculated analytically (Luo & Pozrikidis 2008). A decrease by a factor of 2/5
in σ ′

xy for an isolated perfect-slip spheroid compared with a no-slip spheroid is found (Luo
& Pozrikidis 2008). In a previous study (Gravelle et al. 2021) we explored the effect of
surface slip on plate-like particles through molecular dynamics simulations for a range
of Pe. Owing to the relatively large thickness-to-length aspect ratio k of the plate-like
molecule (k ≈ 0.33), the change in σ ′

xy as Pe increased was found to be small. However,
a significant change in σ ′

xy was observed compared with no-slip molecules of equivalent
shape.

Whilst these studies show a significant effect of surface slip on σ ′
xy, the effect of surface

slip on the macroscopic properties of suspensions containing ultra-thin platelets remains
to be analysed. This article investigates this effect theoretically and numerically for model
2-D slip platelets suspended in a 2-D flow and featuring a Navier slip boundary condition at
their surfaces. More specifically, we shall focus on calculating σ ′

xy and the average normal
stress difference of the suspension, 〈N〉. Our methodology for calculating σ ′

xy and 〈N〉 is
based on using the boundary integral method (BIM) and its mathematical formulation.
The BIM is used to calculate the surface traction over a particle under the continuum
Stokes flow assumptions. The advantage of a BIM formulation is that its surface integral
formulation can be asymptotically expanded for small k (Singh et al. 2014; Kamal et al.
2020), allowing one to develop simplified equations for the hydrodynamic traction acting
on the particle’s surface. Therefore, the hydrodynamic traction on platelets with aspect
ratios similar to 2-D nanomaterials can be calculated to high accuracy numerically and, in
some cases, analytically.

The outline of the article is as follows. In § 1, we describe the set-up of our problem
and the BIM formulation governing the traction distribution. The numerical scheme for
solving the boundary integral equations is also given. In § 2, we provide an asymptotic
analysis of the boundary integral equations. Finally, in § 4, we use our numerical and
analytical results to calculate σ ′

xy and 〈N〉 for a dilute suspension of 2-D slip particles and
examine their dependence on the slip length, aspect ratio and Pe.
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êx

γ
.yêx
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.ŝ sin2 φêt γ

.
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Figure 2. Sketch of a 2-D platelet in an external shear flow field. For a given orientation φ, the external flow
field can be decomposed into two shear components (acting parallel and perpendicular to the major axis of the
particle) and an extensional component.

2. Stresslet, viscosity and normal stress difference for a 2-D platelet

We consider a platelet free to rotate in an external linear shear flow field. In a coordinate
system (x, y), with x along the flow direction and y along the flow gradient direction,
the undisturbed flow field is u∞ = γ̇ yêx, where êx is the unit vector along x (left-hand
side sketch in figure 2). We assume that the platelet has an infinite extent in the vorticity
direction, so that the problem is effectively two-dimensional, and the cross-section of the
body rotates in the êx, êy plane. We assume that the platelet’s cross-section is symmetric
about two orthogonal lines passing through its geometric centre. The angle from êx to
the line of symmetry along the major axis of the particle is φ. The size of the platelet
is characterised by its half-length a and half-thickness b. We assume that the geometric
aspect ratio k = b/a � 1. Furthermore, we assume the fluid satisfies the linear Navier slip
boundary condition on the platelet’s surface. The Navier slip velocity usl = usl

x êx + usl
y êy

is expressed in terms of the surface traction f as (Kamal et al. 2021b)

usl
x = λ

η
(n2

y fx − nxny fy), usl
y = λ

η
(n2

x fy − nxny fx), (2.1a,b)

where λ is the Navier slip length, n = nxêx + nyêy is the unit surface normal pointing out
of the particle and η is the viscosity of the fluid.

The velocity field u, the stress tensor field σ and the pressure field p are assumed to
satisfy the incompressible Stokes equations

∇ · σ = 0, ∇ · u = 0, σij = −δijp + η

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.2a–c)

The contribution to the bulk stress from a torque-and-force-free particle can be found
by calculating the stresslet tensor (Batchelor 1970). The stresslet tensor is defined as
(Pozrikidis 1992)

Sij(φ) = 1
2

∫
L

[
fi(φ)xj + fj(φ)xi − 2

3δijxk fk(φ) − 2η(usl
i nj + usl

j ni)
]

dL, (2.3)

where xi is the position vector with respect to the platelet’s geometric centre, the integral
is over the boundary L of the platelet’s cross-section and dL is a boundary element.
When the boundary of the particles satisfies the no-slip boundary condition, the integral
involving the slip velocity is zero, and the stresslet depends only on f . When the Navier
slip boundary condition is instead applied, the slip velocity makes an additional finite
contribution to the stresslet tensor. This term, containing the integral of the slip velocity
along the particle surface, is the viscous stress associated with the volume-averaged
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velocity gradient inside the particle (Batchelor 1970). In general, the stresslet tensor has
a hydrodynamic contribution, which depends on the traction produced by a torque-free
particle in an external shear flow field (measured in the laboratory frame), and a Brownian
contribution, which depends on the traction due to a random rotation of the particle.
From here onwards we will use Sh

ij to denote the hydrodynamic stresslet tensor and Sb
ij

to denote the Brownian stresslet tensor.
The boundary integral formulation provides a closed expression for f . In this

formulation, the velocity of the fluid at a point x1 on L is related to f through the following
integral equation:

1
4π

∫
L

n(x) · K(x, x1) · usl(x) dL(x) − 1
4πη

∫
L

G(x, x1) · f (x) dL(x)

= usl(x1)

2
+ urg(x1) − u∞(x1), (2.4)

where urg = Ω êz × x is the rigid body motion of a body centred at the origin. Here, Ω is
the particle angular velocity and êz = êx × êy.

The first term on the left-hand side of (2.4) is the double-layer potential, and the
second term is the single-layer potential (Pozrikidis 1992). It can be shown that the term
containing the slip velocity in the definition of the stresslet tensor given in (2.3) originates
from the double-layer potential, and the remaining term originates from the single-layer
potential (Pozrikidis 1992).

Since the flow is two-dimensional, the tensors G and K in (2.4) are tensors associated
with the 2-D Stokeslet and stresslet, respectively (Pozrikidis 1992). We parametrise L as
L = {asês ± bh(s)êt : −1 ≤ s ≤ 1}, where s is the non-dimensional arc length running
through the particle’s major axis, bh(s) is the thickness of the particle and ês and êt are
unit vectors parallel to the platelet’s major and minor axes, respectively, as sketched in
figure 2. The non-dimensional thickness of the platelet h(s) has maximum value h(0) = 1
and satisfies h(±1) = 0 at the edges. In the manuscript, we will denote vectors in the
(s, t) coordinate system with a subscript. For instance, the coordinates of f along ês and
êt are denoted fs and ft, respectively. The symbols ŝ and t̂, as used in figure 2, denote the
dimensional coordinates along ês and êt i.e. ŝ = as and t̂ = at.

The effective viscosity of a dilute suspension of identical particles can be expressed as
(Leal & Hinch 1971)

ηeff /η = 1 + σ ′
xyc + O(c2). (2.5)

Here, σ ′
xy is the intrinsic shear viscosity, a coefficient related to Sh

xy(φ) and Sb
xy(φ) (Kim

& Karrila 2013). For a 2-D system, c corresponds to the areal fraction of the solid, and
for a 3-D system, c corresponds to the volume fraction. In general σ ′

xy depends on the
shape of the particle (Leal & Hinch 1971), the Péclet number Pe (Hinch & Leal 1972)
and λ (Allison 1999). The Péclet number describes the ratio Pe = γ̇ /Dr, where Dr is the
rotational diffusion coefficient of the particle (Hinch & Leal 1972; Kamal et al. 2021b).

For a 2-D particle, σ
′
xy is given by

σ
′
xy =

〈
Sh

xy + Sb
xy

〉
γ̇ ηAp

= A 〈1 − cos 4φ〉 + B + C
Pe

〈sin 2φ〉 . (2.6)

Here, A, B and C are dimensionless coefficients which depend on λ and the particle shape
(Rallison 1978) and Ap is the cross-sectional area of the particle. The angled brackets 〈 〉
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represent an average over the steady-state orientation distribution function p(φ). Equation
(2.6) can be obtained from the corresponding 3-D stress tensor for an asymmetric particle
(see, for example, Batchelor 1970) by assuming that the particle axis of rotation is always
perpendicular to the êx–êy plane.

In this article, we focus on calculating the coefficients A, B and C in (2.6). The evaluation
of 〈1 − cos 4φ〉 and 〈sin 2φ〉 is described in Kamal et al. (2021b), where these quantities
were calculated by solving the 1-D Fokker–Plank equation numerically to obtain p(φ), and
using this function to calculate the angular average of cos 4φ and sin 2φ.

The average normal stress difference due to the hydrodynamic traction can be calculated
from the diagonal components of the stresslet (Okagawa et al. 1973). For a 2-D system,
the normal stress difference is

〈N〉 = 1
γ̇ ηAp

〈
Sxx − Syy

〉 = 2A 〈sin 4φ〉 . (2.7)

The normal stress difference is a key quantity to characterise the non-Newtonian features
of a suspension of particles (Tanner 2000).

2.1. Decomposition of Sij for arbitrary φ

Owing to the geometric symmetry of the platelet for any given orientation φ, f and thus
Sh

xy(φ) can be expressed in terms of the traction at φ = 0, π/4 and π/2 (Masoud, Stone
& Shelley 2013; Kamal et al. 2020). The equation for f at these orientations can be
simplified by evaluating (2.4) in the particle frame (ês, êt). In the particle frame, L can
be decomposed into an upper curve L+ = {(as, bh(s)) : −1 ≤ s ≤ 1} and lower curve
L− = {(as, −bh(s)) : −1 ≤ s ≤ 1} located symmetrically with respect to the centreline
t = 0. Taking advantage of this symmetry, f , u∞, usl and urg can be decomposed into
symmetric and anti-symmetric parts with respect to t = 0. Given a generic vector quantity
αi, the anti-symmetric part of αi is

Asym{αi(s, h)} = 
αi(s, h) = αi(s, h) − αi(s, −h)

2
, (2.8)

and the symmetric part of αi is

Sym{αi(s, h)} = ᾱi(s, h) = αi(s, h) + αi(s, −h)

2
. (2.9)

With this decomposition, the normal and tangential components of (2.4) result in the
following four scalar equations.

Symmetric part, normal component:

− 1
4πη

Gt[
fs, f̄t] + 1
4π

K t[
usl
s , ūsl

t , λ] = ūsl
t

2
+ a

(
γ̇ sin2 φ + Ω(φ)

)
s1. (2.10)

Symmetric part, tangential component:

− 1
4πη

Gs[ f̄s, 
ft] + 1
4π

K s[ūsl
s , 
usl

t , λ] = ūsl
s

2
− aγ̇ s1 sin φ cos φ. (2.11)

Anti-symmetric part, normal component:

− 1
4πη

Gt[ f̄s, 
ft] + 1
4π

K t[ūsl
s , 
usl

t , λ] = 
usl
t

2
+ bγ̇ h(s1) sin φ cos φ. (2.12)
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Anti-symmetric part, tangential component:

− 1
4πη

Gs[
fs, f̄t] + 1
4π

K s[
usl
s , ūsl

t , λ] = 
usl
s

2
− b

(
γ̇ cos2 φ + Ω(φ)

)
h(s1). (2.13)

Here, we have used the fact that the reference point x1 on L in (2.4) is x1 =
(as1, bh(s1)). The integrals Gs and Gt are defined as

Gs[
fs, f̄t] =
∫
L+

[
G−

ss
fs + G+
ts f̄t

]
dL, (2.14)

Gt[
fs, f̄t] =
∫
L+

[
G+

nnf̄t + G−
st 
fs

]
dL, (2.15)

Gs[ f̄s, 
ft] =
∫
L+

[
G+

ssf̄s + G−
ts 
ft

]
dL, (2.16)

Gt[ f̄s, 
ft] =
∫
L+

[
G−

tt 
ft + G+
st f̄s

]
dL, (2.17)

where
G+ = G(s′, h′) + G(s′, ĥ), G− = G(s′, h′) − G(s′, ĥ), (2.18a,b)

and s′ = a(s − s1), h′ = b(h(s) − h(s1)) and ĥ = −b(h(s) + h(s1)). The integrals K s and
K t are defined as

K i[
us, ūt, λ] =
∫
L+

[
ns
us

(
K −

itt − K −
iss

) + (nt
us + nsūt) K +
ist

]
dL, (2.19)

K i[ūs, 
ut, λ] =
∫
L+

[
nsūs

(
K +

itt − K +
iss

) + (ntūs + ns
ut) K −
ist

]
dL, (2.20)

where i = {s, t}, K+ = K(s′, h′) + K(s′, ĥ) and K− = K(s′, h′) − K(s′, ĥ). Under this
decomposition, for any orientation φ, the flow field acting on the particle in the
particle frame can be decomposed into two simple shear flows, u∞

S = γ̇ bh cos2 φês and
−γ̇ as sin2 φêt (with streamlines parallel and perpendicular to the particle’s major axis,
respectively), and an extensional component u∞

E = γ̇ (as cos φ sin φês − bh cos φ sin φêt),
as sketched in figure 2. The compressional axis of the extensional flow component is
parallel to the major axis of the particle. Equations (2.10) and (2.13) are equations for the
hydrodynamic tractions 
fs and f̄t due to u∞

S . Equations (2.12) and (2.11) are equations for

ft and f̄s due to u∞

E . Under this decomposition, for any orientation φ, f can be calculated
exactly by solving (2.10) and (2.13) for φ = 0 and φ = π/2, and (2.12) and (2.11) for
φ = π/4. Therefore, to calculate Sij(φ), one only needs to calculate f at φ = 0 and
φ = π/2 for the ‘shear’ components of the flow field and at φ = π/4 for the ‘extensional’
component.

2.2. Calculation of the stress coefficients
For a force-and-torque-free body, the angular velocity of the platelet satisfies (Bretherton
1962; Kamal et al. 2021b)

Ω(φ) = − γ̇

1 + k2
e
(k2

e cos2 φ + sin2 φ), (2.21)

where ke = √
T(0)/T(π/2) is the square root of the ratio between the torques exerted on

a particle held fixed parallel (T(0)) and perpendicular (T(π/2)) to the flow. The torque
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acting on a particle fixed at an orientation angle φ is

T(φ) = êz ·
∫
L

f × x dL. (2.22)

The parameter ke is commonly called the ‘effective-aspect ratio’ because, at least for
the case of no-slip particles (Singh et al. 2014; Abtahi & Elfring 2019), it ‘effectively’
describes the rotational behaviour of an equivalent no-slip axisymmetric ellipsoidal
particle with geometric aspect ratio k = ke (Jeffery 1922; Bretherton 1962).

Noting that Ω(0) = k2
eΩ(π/2) = −γ̇ k2

e/(1 + k2
e), we use this expression to simplify

(2.10) and (2.13) for φ = 0 and φ = π/2, respectively. Upon simplification, one finds the
resulting equations for φ = 0 and φ = π/2 are identical except for the sign. It follows that
the hydrodynamic stresslet tensor evaluated in the particle frame is

Sh
st(0) = −Sh

st(π/2) =
∫
L+

[
b
fsh + af̄ts − 2η(
usl

s nt + ūsl
t ns)

]
dL, (2.23)

where 
fs and f̄t are evaluated for φ = 0. Also, it follows that Sh
st(π/4) = Sh

st(0) cos φ +
Sh

st(π/2) sin φ = 0, Sh
ss(0) = Sh

tt(0) = 0 and

Sh
ss(π/4) − Sh

tt(π/4) = 2
∫
L+

[
af̄ss − b
fth − 2η(ūsl

s ns − 
usl
t nt)

]
dL, (2.24)

where f̄s and 
ft are evaluated for φ = π/4. Hence, the stresslet tensor can be written in
the particle frame as

Sh
ij(φ) = (δsiδtj + δtiδsj)S

h
st(0)(cos2 φ − sin2 φ) + 2δijS

h
ii(π/4) cos φ sin φ. (2.25)

Therefore, one only needs to calculate f for φ = 0 and π/4 to evaluate Sh
ij(φ).

Transforming Sh
ij back to the laboratory frame by use of a rotation matrix Rij(φ), one

finds

Sh
xy(φ) = RxiRyjS

h
ij(φ) = γ̇ ηAp (B + A(1 − cos (4φ))) , (2.26)

where

B = Sh
st(0)

γ̇ ηAp
, A = 1

γ̇ ηAp

(
Sh

ss(π/4) − Sh
tt(π/4)

4
− Sh

st(0)

2

)
. (2.27a,b)

The coefficient C in (2.6) can be found by calculating, in the particle rest frame, the
stresslet tensor for a particle rotating due to Brownian motion with an angular velocity
êzPe = −êz(∂φp)/p, transforming back to the laboratory frame and then averaging over
the probability distribution function p(φ) (Kim & Karrila 2013). The result is

C = 3Sb
xy

|Ω|ηAp
. (2.28)

Here, Sb
xy represents the Brownian stress due to a particle rotating with Ω/γ̇ = −1.

Equation (2.28) can also be obtained from the corresponding 3-D version for an
asymmetric particle (Kim & Karrila 2013) by assuming that the rotational axis of the
particle is perpendicular to the êx–êy plane at all times.
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Figure 3. The intrinsic viscosity σ ′
xy vs number of computed grid points Np for k = 0.005 and for selected

values of λ/b. The dashed straight line corresponds to the value of σ ′
xy computed for Np = 384 for each selected

slip length.

2.3. Numerical method
We obtain numerical solutions of (2.4) by discretising f on L as a piecewise constant
function over Np line elements. The boundary integral equation for each element is
evaluated numerically using a 20-point Gauss–Legendre quadrature. If the element is
singular, the logarithmic singularity in G is subtracted off and evaluated using a 5-point
quadrature suitable for integrals with logarithmic singularities (Pozrikidis 2002). The
singularity in K is evaluated by subtracting the identity (1/4π)

∫
L n · K · usl(s1) dL =

−usl(s1)/2 (Pozrikidis 1992). The discretised equations form a system of linear equations
for the discrete traction vectors and for Ω . This system of equations is solved by Gaussian
elimination.

In our numerical model, the cross-sectional shape of the particle is a rectangle of
length 2(a − b) with semi-circular edges of radius b. This shape has been found to best
approximate from a hydrodynamic point of view a single-layered graphene particle in
water (Kamal et al. 2021b). To discretise f , we use a non-uniform grid with a higher
density of discretisation points in the plate’s circular edge region, where f varies most
rapidly (Kamal et al. 2021b). In what follows we set Np = 288. The grid convergence study
in figure 3 demonstrates that this value of Np is sufficient to have a converged calculation
even for the very small aspect ratio k = 0.005.

We validate the code by solving the case a = b, which corresponds to a 2-D circular
cylinder of radius a with its planar end perpendicular to the direction of the vorticity. For
this case, the intrinsic viscosity can be calculated analytically as (see Appendix A)

σ ′
xy = 2(a + 2λ)

a + 4λ
. (2.29)

The numerical tests confirm spatial convergence with respect to the grid spacing ds.
For example, for a = 1 and for the number of discretised points Np = 48, 92, 186,
the difference between (2.29) and the computational value of σ ′

xy is 6.5 × 10−5, 8.2 ×
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10−6, 0.10 × 1.0−6, respectively, for λ/a = 0, and 2.3 × 10−3, 6.0 × 10−4, 1.6 × 10−4 for
λ/a = 1.

3. Analytical evaluation of the stresslet tensor

Equation (2.4) can be solved analytically in the limit k � 1 for a force-and-torque-free
body. The method is similar to that used in Kamal et al. (2020) for a body held fixed in
a shear flow, except that now the angular velocity Ω êz is not zero. The idea is to evaluate
(2.4) to leading order in k by an asymptotic expansion of (2.4) at points sufficiently far
away from each edge, i.e. for 1 − |s| � k. We evaluate the case φ = 0 and φ = π/4 since
these orientations are sufficient for finding the hydrodynamic stresslet tensor (2.25) at any
orientation.

3.1. Stresslet tensor for φ = 0
Evaluating Sh

st(0) requires solving (2.10) and (2.13) for φ = 0 to find 
fs and f̄t. To do so,
the integrands in these equations are expanded for small k and small λ/a for points away
from the edges. To find 
fs and f̄t, we use the expression derived in Kamal et al. (2020)
for a particle held fixed at φ = 0 and valid to leading order in k


fs = ηγ̇ (1 − 4λ/(πa)) + O(k), f̄t = k
fs/s + O(k2). (3.1a,b)

To leading order in λ/a, the torque due to the traction in (2.1a,b) is exactly zero. Therefore,
the leading-order traction is identical to that required for the evaluation of Sh

st(0). An
alternative derivation of this leading-order result, based on solving (2.10) and (2.13)
directly, is given in Appendix B. Inserting the O(1) traction into (2.23) gives

Sh
st(0) ≈ a2

∫ 1

−1

[
f̄ 0
t s + 
f 0

s k
]

ds − 2aλ
∫ 1

−1

f 0

s ds

= 4ηγ̇ a2
(

k − λ
a

)
+ O(λb, b2), (3.2)

where we used the superscript ‘0’ to denote the leading-order contributions 
f 0
s = ηγ̇

and sf̄ 0
t = ηγ̇ k and used the fact that nt = 1, ns = 0 and h(s) = 1 over the slender region

of the particle surface (for the rectangular cross-section used in our boundary integral
computations). Furthermore,

∫
L+ ds = a

∫ 1
−1 ds. In (3.2) the leading-order term 4ηγ̇ k is

the same as for a no-slip platelet, and the term proportional to λ/a is the leading correction
due to usl in (2.23). Inserting (3.2) into (2.27a,b) gives

B =
(

1 − λ
b

)
+ O(λ/a, k), (3.3)

for Ap = 4ab. Figure 4 compares B = 1 − λ/b with numerical values of B vs λ/a for
selected values of k. As expected, a good agreement is seen for λ/a � 1.

For λ/b ≥ 1, Sh
st(0) and thus B become negative. A negative B means that, when

an isolated torque-free particle with λ/b ≥ 1 is oriented at φ = 0, the viscosity of the
corresponding suspension is smaller than the viscosity of the suspending fluid.

In the limit λ/a → ∞, our numerical analysis shows that Sh
st(0) (and thus B) decreases

to a minimum value in this limit, as shown in figure 4 for k = 0.05 and k = 0.02. Since
the tangential traction distribution vanishes along the slender surface of the platelet as
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Figure 4. Coefficient B vs λ/a for k = 0.05, 0.02 and 0.01. Comparison of numerical solutions (full line)
with the analytical approximation given in (3.3) (dashed line).

λ/a → ∞, the minimum value depends on the traction distribution over the edges. This
result is discussed by Kamal et al. (2020, 2021b). Therefore, λ can cause Sh

st(0) to become
negative due to both the direct effect of usl (which results in the λ/b term in (3.3)) and to
the reduction in the tangential traction over the particle’s planar surface.

3.2. Stresslet tensor for φ = π/4
Calculating Sh

ss(π/4) − Sh
tt(π/4) for φ = π/4 requires calculating f̄s and 
ft in (2.11) and

(2.12). We will show that these two equations are equivalent to leading order at each point
away from the edges.

We will start by considering the case λ = 0. Away from each edge, h varies slowly for a
slender particle, thus h′ = 0 and ĥ = 2b to leading order. For the particular cross sectional
shape used in our numerical computations (§ 2.3), h(s) = 1 exactly away from the edges.

The integrand in (2.17) for Gt[ f̄s, 
ft] is singular when s′ = 0. To evaluate Gt[ f̄s, 
ft]
asymptotically for k � 1, we thus consider

Gt[ f̄s, 
ft] = I∗
s′∼O(k) + I∗∗

s′�k. (3.4)

Here, I∗
s′∼O(k) represents the integration over s′ ∼ O(k) which contains the singular part of

the integral, and I∗∗
s′�k represents the remaining part of the integral. In I∗, the integrand is

evaluated by Taylor expanding f about the singular point s = s1 to leading order, and then
evaluating the integral analytically. The integrand I∗∗ is evaluated by Taylor expanding
the tensor G in the integrand of (2.17) for k � 1 and for s′ � k. Since on the flat surface
the only singular term is proportional to ln |s′|, independent of k, I∗ is subdominant with
respect to I∗∗ to leading order in k. Therefore, Taylor expanding the contributions from the
tensor G in I∗∗ for s′ � k and k � 1 one finds

Gt[ f̄s, 
ft]
4πηa

= 1
4πη

∫ 1

−1

[
−2k2h(s)2
ft

s′2 − 2kh(s)f̄s
s′ + O(k2 f̄s, k3
ft)

]
ds, (3.5)

for a generic point s1 away from the edges. To evaluate this integral we take advantage of
the fact that 
ft(±1) = 0. Using this condition to integrate by parts the term containing
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ft, the leading contribution to (2.12) is

Gt[ f̄s, 
ft]
4πηa

= − 1
4πη

∫ 1

−1

[
2kh(s)

s′ ḡ + O(k2)

]
ds = − γ̇ kh(s1)

2
, (3.6)

where
ḡ = ∂s(kh(s)
ft) + f̄s. (3.7)

Similarly, Taylor expanding the contributions from the tensor G in Gs[ f̄s, 
ft] as given
in (2.14) and integrating by parts the term containing 
ft(±1), one finds that the leading
contribution to (2.11) is

Gs[ f̄s, 
ft]
4πηa

= − 1
2πη

∫ 1

−1

[
ln |s′|ḡ + O(k)

]
ds = γ̇ s1

2
. (3.8)

Either (3.6) or (3.8), can be solved to find ḡ. Integrating by parts the term containing h
ft
in (2.24) gives

Sh
ss(π/4) − Sh

tt(π/4) = 2a2
∫ 1

−1
s( f̄s + ∂s(kh
ft)) ds = 2a2

∫ 1

−1
sḡ ds. (3.9)

Therefore, Sh
ss(π/4) − Sh

tt(π/4)) requires the calculation of ḡ.
We find ḡ using the mathematics software MAPLE as follows. First we express ḡ =∑∞
i=1 αis2(i−1). We evaluate (3.6) and (3.8) by truncating the series expansion of ḡ at a

value i = imax:

ḡ ≈
imax∑
i=1

αis2(i−1). (3.10)

Next, we substitute the truncated series of ḡ into (3.6) and (3.8) and evaluate the integrals
analytically. We then Taylor expand each integral about s1 = 0 up to O(s2(imax−1)

1 ) for (3.6)
or O(s2imax+1

1 ) for (3.8). The coefficients for each order s2( j−1)

1 or s2j+1
1 are then collected

for (3.6) or (3.8), respectively for j = 1 : imax. These coefficients give a closed system of
imax equations for α1, . . . , αimax . We solve this system of equations for each αi by using
Gaussian elimination. Finally, we substitute the truncated expression for ḡ into (3.9) to
find Sh

ss(π/4) − Sh
tt(π/4). Solving for either (3.6) or (3.8) gives

Sh
ss(π/4) − Sh

tt(π/4) = γ̇ ηa2
(

2imax

2imax+1
π + O(k)

)
−−−−−→
imax→∞

γ̇ ηa2 (π + O(k)) . (3.11)

This leading-order approximation corresponds to the solution for a 2-D plate with zero
thickness oriented at φ = π/4. The O(k) terms depend on the traction distribution at
each edge of the platelet and the next leading-order distribution over the flat surface. We
evaluate this next-order term numerically for our specific geometry and find Sh

ss(π/4) −
Sh

tt(π/4) ≈ γ̇ ηa2(π + 21.2k). Substituting (3.3) and this value of Sh
ss(π/4) − Sh

tt(π/4)

into (2.27a,b) and using Ap = 4ab, gives

A = π

16k
+ 0.82 + O(k), (3.12)

for λ = 0. Figure 5(a) compares A = π/(16k) + 0.82 with the numerical solution as
a function of k. An excellent agreement is seen for k → 0. Figure 5(b) compares our
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Figure 5. (a) Value of A vs k for λ = 0. Comparison of numerical solution (black full line) and analytical
equation (3.12) (red dashed line). (b) Comparison of ḡ(s) from the numerical solution (full lines) for k =
0.05, 0.02 and 0.01 with the polynomial representation given in (3.10) for imax = 20 (red dashed line) and for
λ = 0.

polynomial representation of ḡ for imax = 20 with computed values for selected values
of k. Good agreement is seen as k → 0, as expected, for points away from the edges.

The case λ /= 0 requires the evaluation of the terms K s and K t in (2.11) and (2.12). These
terms are defined in (2.19) and (2.20), respectively. Using (2.1a,b) to evaluate usl in terms
of f , the only non-zero contributions to K s and K t for s1 away from the edges are

K s[ūsl
s , 
usl

t , λ]
4π

= λ

4πη

∫
L+

K −
sst f̄s dL ≈ − λ

ηπ

∫ 1

−1

2khs′2

(s′2 + 4k2)2 f̄s ds, (3.13)

K t[ūsl
s , 
usl

t , λ]
4π

= λ

4πη

∫
L+

K −
stt f̄s dL ≈ λ

ηπ

∫ 1

−1

4k2h2s′

(s′2 + 4k2)2 f̄s ds. (3.14)

Here, we have used the fact that ns = 0, nt = 1 over the planar surface of the particle.
Unlike for G[ f̄s, 
ft], the leading contribution to these integrals comes from the singular
region s′ ∼ O(k). We thus evaluate these integrals to leading order in k by Taylor
expanding f̄s about s = s1 to find

K s

4π
= −λf̄s

ηπ

∫ 1

−1

2khs′2

(s′2 + 4k2h2)2 ds + O(s2
1) = −λ

η

(
f̄s
2

+ O(s2
1, k)

)
, (3.15)

K t

4π
= λ

ηπ

∂s( f̄s)
2

∫ 1

−1

4k2h2

(s′2 + 4k2h2)
ds + O(s2

1) = λ
η

(
kh∂s( f̄s) + O(s2

1, k)
)

. (3.16)

In the equation for K t, we have first integrated by parts and then Taylor expanded ∂s( f̄s).
The leading-order contributions to (2.11) away from the edges are thus

1
2π

∫ 1

−1
ln |s|ḡ ds = − γ̇ ηs1

2
+ λ

a
f̄s + O(k), (3.17)
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Figure 6. Value of Sh
ss(π/4) − Sh

tt(π/4) vs λ/b. Comparison of numerical solution of the boundary integral
equation given in (2.4) for (i) the full version (full lines) and (ii) the leading-order approximation for small k as
given in (3.17) and (3.18) (dashed line).

and the corresponding ones for (2.12) is∫ 1

−1

2
s′ ḡ ds = γ̇ η

2
− λ

a
∂s( f̄s) + O(k). (3.18)

Following a procedure similar to that used in the case λ = 0, we substitute series
expansions for both ḡ and f̄s into (3.17) and (3.18). We have used the comparison with the
numerical solutions of f̄s and 
ft, as shown for selected λ/b and for k = 0.05 in figure 7,
to justify our choice of series expansion of ḡ and f̄s in the slender region of the surface.
Taylor expanding the two equations about s1 and equating coefficients, one finds the two
equations are equivalent away from the edge. Since these equations are equivalent, they
alone do not provide a closed system for solving both ḡ and f̄s uniquely. Therefore, the
condition for f̄s from the region near and at the edge must also be considered to close the
system.

The contributions for f̄s from the region near and at the edges cannot be easily
solved analytically. We thus evaluate (3.17) and (3.18) numerically by substituting these
equations directly into the boundary integral equation over the region sufficiently far from
the edge, so that f̄s is still solved numerically in the edge region. Figure 6 compares
the approximation resulting from using (3.17) and (3.18) vs using the full (2.4) for
the computation of Sh

ss(π/4) − Sh
tt(π/4) for k = 0.05 and k = 0.02. We find that, for

λ/b � 1, the approximation fails. The reason for this failure is as follows. In our boundary
integral equation approximation given by (3.17) and (3.18), at a generic point s on the
slender surface of the particle, the contribution to the integrands from over the edge region
has been ignored. However, for large λ/b, the contribution to the integrands from these
regions actually becomes important. Equations (3.17) and (3.18) depend on the values of
f̄s at locations away from the edges. In figure 7(a), the distribution of f̄s for a torque-free
platelet orientated at φ = π/4 is given for selected values of λ/b. As λ/b increases, f̄s
decreases in the slender region towards zero. This result is expected since surface slip
causes the tangential traction to vanish as λ/a → ∞ over the planner surface of the
particle. The traction distribution at the edges, on the other hand, as given in figure 7(a) for
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Figure 7. Traction distribution obtained from the boundary integral simulations for f̄s(s) (a) and 
ft(s) (b) for
λ/b = 0 (black), λ/b = 1 (red), λ/b = 8 (blue) and λ/b = 80 (green) and for a torque-free particle orientated at
φ = π/4 and k = 0.05. The dotted dashed line represents the boundary between the slender and edge regions.
The insets are a zoomed-in version of f̄s and 
ft near and at the edge region, respectively.

f̄s and figure 7(b) for 
ft, increases significantly, inducing an almost singular but integrable
distribution of 
ft at h = 1 − b. Therefore, the contribution to the integrand over the
edge surfaces actually dominates as λ/b becomes large. From figure 6, we see that the
contribution to the slender region from the edge region can no longer be ignored when
λ/b ∼ O(1).

The overall effect of slip for k � 1 is to reduce Sh
ss(π/4) − Sh

tt(π/4), figure 6. As
λ/a → ∞, Sh

ss(π/4) − Sh
tt(π/4) converges to a finite value that depends on k. The

smaller k, the smaller Sh
ss(π/4) − Sh

tt(π/4). Physically, this result confirms that the leading
dependence on Sh

ss(π/4) − Sh
tt(π/4) for λ/a � 1 is due to the traction distribution in the

edge region, which scales linearly with k to leading order. Moreover, Sh
ss(π/4) − Sh

tt(π/4)

becomes negative for sufficiently small k and sufficiently large λ/a. This result shows that
the contribution from Sh

ss(π/4) − Sh
tt(π/4) to A, as given in (2.27a,b), decreases due to λ.

3.3. Brownian stress coefficient C
The Brownian stress coefficient C is calculated by evaluating (for λ = 0 and γ̇ = 0) (2.10)
and (2.13) for a body rotating with a uniform angular velocity Ω

ês : Gs[
fs, ft]/(4πη) = Ωbh(s1), êt : Gt[
fs, ft]/(4πη) = −Ωas1, (3.19a,b)

where Gs and Gt are defined in (2.14) and (2.15), respectively. For k → 0, the leading-order
contributions to Gs and Gt are given in (B5) and (B6) of the Appendix. Substituting these
equations into (3.19a,b), one finds to leading order

ês :

fs
η

− 1
2πη

∫ 1

−1

1
s′ ft ds = Ω + O(k), (3.20)

êt :
1

2πη

∫ 1

−1
q̄ ln |s| ds = Ωs1 + O(k), (3.21)
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Figure 8. Value of Sb
xy vs k for λ/b = 0, 1 and 8. Dashed line: analytical prediction given in (3.22).

where q̄ = f̄t − k∂s(h
fs). For these equations to have an identical solution for Ω = −γ̇ ,
q̄ must have the form q̄ = f̄t + O(k). Comparing (3.21) with (3.18) gives

Sb
xy ≈ a2

∫ 1

−1
sq̄ ds = 2a2

∫ 1

−1
sḡ ds = γ̇ ηa2π. (3.22)

Inserting (3.22) into (2.28) and using Ap = 4ab, we find that C converges to

C = 3π

4k
(3.23)

as k → 0. This result can be compared with the 3-D case of a thin axisymmetric oblate
ellipsoid for which Sb

xy = (16/3)γ̇ ηa3 and C = 12/k (Kim & Karrila 2013). Equation
(3.22) can also be used to calculate the rotational resistance coefficient Fr of the particle.
The rotational resistance coefficient is related to Pe = γ̇ /Dr via Dr = kBTA/Fr, where kB
is Boltzmann’s constant and TA is the absolute temperature. The resistance coefficient is
solved by computing the total torque (2.22) exerted by the particle for Ω/γ̇ = −1. We
obtain Fr/γ̇ = 2πηa2, in agreement with the calculation of Sherwood for a 2-D plate of
zero thickness (Sherwood & Meeten 1991).

Since slip does not enter in (3.20) and (3.21) away from the edges to leading order (both
K t[
usl

s , ūsl
t , λ] = 0 and K s[
usl

s , ūsl
t , λ] = 0 over the flat surface since ns = 0 and nt = 1,

and the integrand involving K +
sst is zero by symmetry), the asymptotic results for C and

Fr are independent of λ to leading order. This result is in agreement with the analysis of
slip on a 2-D plate of zero thickness (Sherwood & Meeten 1991) and a thin axisymmetric
disk (Sherwood 2012). The independence of Sb

xy on λ for k → 0 is confirmed in figure 8,
which shows for selected values of λ that the error between the numerical solution for
Sb

xy and γ̇ ηa2π decreases as k → 0. The figure confirms, for selected values of λ, that the
amplitude of the error between the numerical Sb

xy and (3.22) decreases as k → 0.
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Figure 9. Value of σ ′
xy vs Pe for different values of λ/b and k.

4. Effects of surface slip on the intrinsic viscosity and normal stress difference

We begin by discussing σ ′
xy as a function of λ, k and Pe. Figure 9 shows σ ′

xy versus Pe for
λ/b = 0, 1 and 8, and for different values of k. These results are based on the numerical
solution of (2.4) to calculate the stress coefficients A, B and C in (2.6) (as mentioned
before, the angular averages of cos(4φ) and sin(2φ) were calculated numerically using
the method described in Kamal et al. 2021b). For λ = 0, σ ′

xy shows a shear-thinning
behaviour with σ ′

xy decreasing with increasing Pe for all values of k. This behaviour is
in agreement with the dilute theory for thin no-slip axisymmetric disks (Hinch & Leal
1972; Brenner 1974; Rallison 1978) and with experiments with clay particles (Philippe
et al. 2011). Experimental results on ηeff for nanoparticle suspensions of graphite-oxide
(Del Giudice & Shen 2017) and hexagonal 2-D α-zirconium phosphate crystals (White
et al. 2015) also suggest a shear-thinning behaviour for dilute suspensions of plate-like
particles. The shear-thinning behaviour for λ = 0 results in each platelet becoming more
aligned in the flow direction as Pe increases and due to a reduction in the Brownian stress.

For λ/b = 1 and λ/b = 8 a shear-thinning behaviour also occurs for a large range of Pe.
This result is expected since, in the case of slip, the average orientation of the particles
also decreases as Pe increases (Kamal et al. 2021b).

In contrast to the no-slip case, however, σ ′
xy displays a minimum as a function of Pe,

which can be seen clearly for the case k = 0.2 and λ/b = 8. The difference between the
minimum value of σ ′

xy and the value of σ ′
xy for Pe → ∞ is, however, small and decreases

with k. This small difference is because the slip platelets remain approximately aligned in
the shear direction in this range of Pe.

For the parameter space considered in figure 9, slip always reduces σ ′
xy compared with a

no-slip platelet of identical shape for all Pe. This result generalises the analysis by Allison
for perfect-slip and no-slip oblate ellipsoids in the Pe � 1 limit, figure 1. The smaller the
value of k, the larger the difference in σ ′

xy between no-slip and slip platelets for all Pe.
Of particular interest is to find the value of Pe for which the ratio σ ′

xy(λ/b)/σ ′
xy(λ = 0)

is smallest. Figure 9 shows that the smallest ratio σ ′
xy(λ/b)/σ ′

xy(λ = 0) occurs for large Pe,
i.e. in the limit of weak Brownian noise.

For large Pe, slip can cause σ ′
xy to be negative. For example, σ ′

xy is negative for
λ/b = 8 and k = 0.05 or k = 0.02. Therefore our theory suggests that a suspension
viscosity smaller than the viscosity of the fluid is possible for platelets with k � 1 and
sufficiently large slip in the large Pe limit. In other words, adding slip platelets to a
suspension can reduce the resistance to a shearing flow and this can occur for values of
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Figure 10. The components of σ ′
xy vs k for Pe → ∞ and λ/b = 0, 1, 2 and 8. Dashed line in

(a) 〈1 − cos 4φ〉 ≈ 3.6k3/4. Dashed line in (c) (3.3).

λ that are not infinite (an infinite slip is a relevant condition, for example, to elongated
bubbles at high capillary numbers, see e.g. Rust & Manga 2002). For example, for
single-layer graphene, a value λ/b = 8 corresponds to a small slip length of just a few
nanometres.

4.1. Effective viscosity for Pe → ∞
For Pe → ∞ the average 〈1 − cos 4φ〉 appearing in (2.6) can be evaluated analytically in
terms of ke as (Kamal et al. 2021b)

〈1 − cos 4φ〉 =
{

4ke (ke + 1)−2 , if ke ∈ R,

1 − cos (4 arctan |ke|), if ke ∈ iR.
(4.1)

For a no-slip particle ke ∝ km, where m depends on the shape of the edges of the
particle (Singh et al. 2014) (for an elliptical cross-section, m = 1, and for a rectangular
cross-section m = 3/4). The effect of increasing λ on ke is to reduce ke so that ke = 0 at
a critical slip length λc ∼ b. This result is discussed by Kamal et al. (2021b) and analysed
in Kamal et al. (2020). The cause for this reduction is that slip reduces 
fs(s) over the
slender region of the particle surface when the particle is held fixed in the direction of
flow (φ = 0). Therefore, the total torque acting on the particle at this orientation T(0), and
thus ke, is reduced due to slip. For λ > λc, ke becomes purely imaginary (Kamal et al.
2020). As λ/a → ∞, the contribution to T(0) originating from the slender portion of the
particle vanishes to leading order, resulting in ke ∝ i

√
k (Kamal et al. 2020).

In figure 10(a), (4.1) is plotted vs k for specific values of λ. The dependence of
〈1 − cos 4φ〉 with λ/a is not monotonic. This result can be explained by the non-monotonic
dependence of |ke| on λ. As a function of λ/a, 〈1 − cos 4φ〉 attains a local maximum
for λ = 0. Our simulations suggest ke(λ = 0) ≈ 0.9k3/4 and thus 〈1 − cos 4φ〉 ≈ 3.6k3/4

(dashed line in figure 10a). Since ke(λ = λc) = 0, 〈1 − cos 4φ〉 → 0 as λ increases from
λ = 0 to λ = λc. As λ increases further to λ/a → ∞, 〈1 − cos 4φ〉 increases towards
another local maximum 〈1 − cos 4φ〉 ∝ k for ke → i

√
k. As a result, the dependence of

the term A 〈1 − cos 4φ〉 with λ/a is also non-monotonic, attaining a minimum value for
λ = λc.

Physically, the maxima and minimum of A 〈1 − cos 4φ〉 correspond to distinct rotational
behaviours. The minimum value corresponds to a situation where the platelet does not
rotate and is aligned in the flow direction. One maximum, occurring for λ/a → ∞,
corresponds to a situation where the platelet is aligned at the maximum constant value
of φ. The second maximum, occurring for λ = 0, corresponds to a rotating particle.
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Figure 11. (a) Value of σ ′
xy vs k−1 for Pe → ∞, comparing the analytical solutions in (4.2) (black dashed

line) and the approximation σ ′
xy = 1 − λ/b (red and blue dashed line) and the numerical solution (full line).

(b) Value of σ ′
xy vs λ/a for Pe → ∞. The ‘kinks’ in the curve corresponding to the value of λ for which ke = 0.

To evaluate σ ′
xy for λ = 0 and Pe → ∞, we use our numerical approximation of

ke(λ = 0), (4.1) and the analytical expressions for A and B given in (3.12) and (3.3).
Substituting these values into (2.6) gives, with an O(k3/4) error,

σ ′
xy ≈ 0.70k−1/4 + 1. (4.2)

Here, the leading dependence on k comes from the term A 〈1 − cos 4φ〉. A good agreement
between (4.2) and the simulation values for λ = 0 is found, figure 11(a). This result is
identical up to the prefactor for an axisymmetric disk with rectangular edges (Singh et al.
2014).

Figure 10(b,c) shows A and B versus k for λ/b = 0, 1, 2 and 8. As k → 0, the most
significant influence of λ/b is on B and 〈1 − cos 4φ〉. The coefficient B compares well
with (3.3) as k → 0 (dashed line) because, for a fixed λ/b, λ/a → 0 in this limit. Moreover,
ke � k(λ = 0) provided that λ/a � 1. Thus, in general, A 〈1 − cos 4φ〉 � B. Therefore,
for λ/a � 1 and fixed λ/b, we have

lim
Pe→∞

σ ′
xy ≈ B = 1 − λ/b, (4.3)

where we have used for B the analytical solution developed in § 3.1. This result is because
in the slip case the particle is almost aligned in the flow direction. Hence, the suspension
stress is well approximated by Sh

st(φ = 0). Figure 11(a) compares (4.3) with numerical
simulations for λ/b = 1 and λ/b = 8. An excellent agreement is seen in the limit k → 0.

Equation (4.3) is independent of k, suggesting that for λ/a � 1, σ ′
xy depends on λ/b

rather than k. Most hydrodynamic quantities of interest, such as the rotary diffusion
coefficient or sedimentation rate, depend primarily on the particle length. We have
identified a measurable quantity that depends instead primarily on the thickness of the
particle.

If λ/b � 1 and λ/a � 1, (4.3) becomes negative. The negative value of B is due to the
term containing usl in (2.3). As seen in (3.2), this term causes Sh

st(0) to become negative.
The remaining term in (2.3) is in contrast positive for all λ.
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Figure 12. (a) Value of 〈N〉 vs k−1 for Pe → ∞. (b) Value of 〈N〉 vs λ/b for Pe → ∞.

Figure 11(b) shows σ ′
xy versus λ/a for selected values of k and Pe → ∞. The ‘kinks’

in the curve correspond to values of λ for which ke = 0. As λ/a → ∞, σ ′
xy approaches

a minimum value. This minimum value decreases towards σ ′
xy = −1/c as k → 0 where

c is the solid fraction. The limit λ/a → ∞ and k → 0 corresponds to a perfect-slip wall
parallel to the x-axis for which fx = 0, and uy = 0 on its surface. A perfect-slip wall acts
like a mirror, reflecting the imposed shear velocity field (Lauga & Squires 2005). As a
result, the imposed velocity field is annihilated and ηeff = 0. The condition λ/a → ∞ is
of course an idealisation. However, this idealisation helps rationalise how a suspension can
make a negative particle contribution to the viscosity.

Our analysis on ke and σ ′
xy for Pe → ∞ can also be used to explain the range of Pe for

which the shear-thinning behaviour of σ ′
xy occurs. As shown in figure 9, the shear-thinning

behaviour for λ/b = 1 occurs for a larger range of Pe than for λ/b = 0 and λ/b = 8. The
range for which the shear-thinning behaviour occurs depends on the ratio between the sum
of the first two terms and the final term on the right-hand side of (2.6). The smaller the
ratio, the larger the range of Pe for which the shear-thinning behaviour of σ ′

xy occurs. For
large Pe, the ratio is much smaller for λ/b = 1 than for λ/b = 0 or λ/b = 8. This result is
shown in figure 10 for Pe → ∞. The combined magnitude of the first two terms in (2.6)
is much smaller than for λ/b = 0 and λ/b = 8 for λ/b = 1, is because A 〈1 − cos 4φ〉 is
smallest for λ/b = 1 and |B| ≈ 0.

4.2. Normal stress difference for Pe → ∞
For Pe → ∞, 〈sin 4φ〉 can be evaluated as

〈sin 4φ〉 =
{

0, if ke ∈ R,

sin (4 arctan |ke|), if ke ∈ iR.
(4.4)

We use this result to calculate 〈N〉 from (2.7) for Pe → ∞, see figure 12. For ke ∈ iR,
we find 〈N〉 > 0. The dependence of 〈N〉 with k−1 can be non-monotonic, as shown in
figure 12(a) for λ/b = 8. As k → 0, ke decays faster than A increases with k, causing 〈N〉
to decrease if k is smaller than a threshold value.
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Figure 12(b) shows 〈N〉 vs λ/b for k = 0.2, 0.05 and 0.02. The ‘kinks’ in the curve
correspond to the values of λ for which ke = 0. For λ/b � 1, ke is purely imaginary.
Hence 〈N〉 > 0, and increases as λ/b increases. For λ/b → ∞, 〈N〉 attains a maximum
value, as shown for k = 0.2. Similar to σ ′

xy, the maximum value is due to the effect of
the traction distribution over the edge of the torque-free platelet and hence depends on
k. For sufficiently small k and large slip lengths, the maximum value of 〈N〉 is O(10).
In comparison, a no-slip platelet of identical shape has 〈N〉 = 0 by the symmetry of N
with respect to φ = 0. Therefore, depending on k and λ/b, surface slip can significantly
affect 〈N〉.

5. Conclusion and discussion

We have evaluated the effect of a Navier slip boundary condition on the particle stress,
effective viscosity ηeff and normal stress difference 〈N〉 for a dilute suspension of 2-D
plate-like particles suspended in an unbounded shear flow. The theoretical and numerical
analysis is based on the stress distribution around a single particle with semi-circular
edges.

The main result is that when the Navier slip length λ is larger than the particle
half-thickness b and the particle is sufficiently thin in comparison with the particle
half-length a, ηeff is smaller than η for Pe → ∞ (4.3). Slip is therefore predicted to cause
the shear viscosity of the suspension to decrease for increasing particle concentration c in
the dilute regime c � 1. There is an interesting analogy with the case of elastic bodies
presenting thin fractures, or the rheology of suspensions of bubbles at high capillary
numbers, for which a reduction in the two-phase macroscopic transport coefficients with
respect to those of the continuous matrix has been reported (Dahm & Becker 1998; Rust &
Manga 2002). In these cases, however, the slip length is infinite and in the case of fracture,
the orientational microstructure is approximately independent of the applied deformation.
Our prediction holds not only for large slip lengths, but also for finite and relatively
small slip lengths compared with the particle length, as λ ∼ b means λ� a for b/a � 1.
For very thin particles of micrometric lateral size, the critical slip length can be a few
nanometres.

An intuitive explanation for this result is as follows. The suspension viscosity is
minimised when the particles in the suspension are oriented in the flow direction. We
have previously shown (Kamal et al. 2020) that, for Pe � 1, slip causes a slip platelet
to stop rotating and to align instantaneously at a small angle φ with respect to the flow
direction. When the particle is oriented almost parallel to the flow direction, the presence
of a finite slip length reduces the friction between parallel fluid layers, leading to a smaller
macroscopic stress than if the particle was not present in the fluid. The lateral disturbance
to the undisturbed streamlines, caused by the particle’s finite thickness and by the fact that
φ is small but not identically zero, causes a small viscous dissipation, but this contribution
is evidently subdominant with respect to the reduced dissipation on the flat portion of the
particle surface. The edges do make a contribution that decreases as a/b increases and is
particularly important when λ is large.

Our analysis shows that for λ/a � 1 the leading-order effect of a finite slip velocity
usl on the high-Pe stress, which we evaluate in terms of the intrinsic viscosity σ ′

xy, can be
approximated as σ ′

xy = Sh
st(0)/(γ̇ ηAp) ≈ 1 − λ/b (4.3). This asymptotic expression shows

immediately that the particle contribution to the suspension stress is negative when λ > b.
On the other hand, as λ/a → ∞ the tangential stress over the flat surface of the particle
vanishes and the main contribution to σ ′

xy originates from the surface traction at or near the
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edges. In previous studies we have considered a rectangular platelet with rounded corners.
The smaller the radius of curvature of the corners, the larger the contribution to the
edge traction (Kamal et al. 2020, 2021b; Kamal, Gravelle & Botto 2021a), which directly
affects the threshold value of σ ′

xy in this limit. In this limit, the contributions Sh
st(0) and

Sh
ss(π/4) − Sh

tt(π/4) are both important for the calculation of σ ′
xy (see § (3)), and σ ′

xy
attains a minimum value with respect to λ.

In the limit Pe → ∞, the normal stress difference 〈N〉, depends on whether the
particle attains a stable orientation (λ > λc ∼ b) or rotates following the classical Jeffery’s
dynamics. For λ > b, 〈N〉 is positive and, for a fixed aspect ratio k, increases as λ/b → ∞,
reaching a plateau. For our range of simulated parameters, b/a from 0.02 to 0.2 and λ/b
from 1 to 8, in the plateau region 〈N〉 ranges from 5 to 20, in units of ηγ̇ . For λ/b = 0, the
no-slip platelet, 〈N〉 is zero because of the symmetry of N with respect to φ = 0. Small
amounts of slip can therefore result in a large difference.

While we analyse a 2-D system, we expect the argument leading to σ ′
xy ≈ 1 − λ/b to

hold also for 3-D particles, except for a different prefactor in front of the λ/b term. A
derivation for an axisymmetric disk with a slip surface (see Appendix C) shows that
Bretherton’s equations of motion predict that at high Pe the disk will reach a configuration
with the disk’s flat side lying almost parallel to the flow–vorticity plane regardless of the
initial orientation (this behaviour has been observed in molecular dynamics simulations
of a nanographene sheet with surface slip (Gravelle et al. 2021)). The calculation of the
corresponding particle-induced suspension stress, which is presented in Appendix C, then
suggests an expression of the form

σ ′
xy ≈ 1 − c1

λ

b
, (5.1)

where c1 is a constant dependent on the specific geometry of the particle. Thus, the
qualitative behaviour is similar to the 2-D system, but the slip length’s precise thresholds
may differ.

Particles that satisfy the conditions required by (5.1) do exist. Two-dimensional
nanomaterial particles such as few-layer graphene colloids have typical lengths a ∼
1 μm, nanometric thickness (<0.3 nm for single-layer graphene) and, depending on the
type of liquid solvent, slip lengths in the range 1–100 nm (Kamal et al. 2021b). For
example, for graphene in water, experiments (Maali, Cohen-Bouhacina & Kellay 2008;
Ortiz-Young et al. 2013) and ab initio calculations (Tocci et al. 2014) suggest a value of
λ of several tens of nanometres. The slip length can be even larger in certain solvents,
such as NMP (Gravelle, Kamal & Botto 2020), in which graphene is fully dispersible.
While extremely small from a macroscopic observation and in comparison with the
particle’s lateral size, even a slip length of 10 nm is more than 30 times larger than the
thickness of single-layer graphene. Other 2-D materials also seem to have significant slip
lengths (Kamal et al. 2021b) (a heuristic explanation for when significant slip lengths are
expected with 2-D materials is a molecularly smooth surface, the absence of chemical
heterogeneities and weak liquid–solid interaction; see e.g. Tocci et al. 2014; Kamal et al.
2020). Therefore a reduction in ηeff /η is, in principle, possible for a dilute concentration
of single or few-layered 2-D materials. Whether this condition can be obtained in the
presence of elements of non-ideality, such as surfactants, functionalised surfaces, particle
polydispersity or finite particle concentration remains an open question which will require
accurate data from rheological experiments with real or model slip particles. Obtaining
sufficiently large Péclet numbers is also a challenge. Accurate rheological measurements
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with real or model slip particles in the regime of high Pe numbers will be needed to
ascertain whether the reduction in viscosity we predict is measurable and important.
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Appendix A. Effective viscosity for a circular cylinder of infinite extent

The traction over a 2-D circular cylinder of radius R with its planar end perpendicular to the
direction of the undisturbed vorticity vector can be solved analytically (see Supplementary
Material of Kamal et al. 2020). Applying this method to a cylinder rotating with angular
velocity Ω êz, the traction distribution is

fx/η =
(
8γ̇ λ (R + 2λ) cos2 φ + ((γ̇ + 2/3Ω) R + 8/3λ (γ̇ + Ω)) R

)
sin φ

(R + 2λ) (R + 4λ)
, (A1)

fy/η = cos φ
(
48γ̇ λ2 − 24λ

(
γ̇ (R + 2λ) cos2 φ + R (γ̇ − Ω/3)

) + R2 (γ̇ − 2Ω)
)

(R + 2λ) (R + 4λ)
.

(A2)

The torque due to this traction (2.22) is

T = 2πη
R2 (γ̇ + 2Ω)

R + 2λ
. (A3)

Inserting f into (2.3) for Ω = −γ̇ /2 (zero torque) yields

Sh
st = 2πR2γ̇ η

R + 2λ
R + 4λ

. (A4)

This stresslet corresponds to σ ′
xy = 2(R + 2λ)(R + 4λ). Since the Brownian stresslet

coefficient C = 0 in (2.6) due to the isotropic cross-section of the cylinder, this result
is valid for all Pe. In the limit of no slip we get σ = 2, as reported previously for the 2-D
cylinder (Belzons et al. 1981; Brady 1983). In the perfect-slip limit (λ/R → ∞), σ ′

xy = 1.

Appendix B. Asymptotic expansions of the boundary integral equation

The torque (2.22) can be expressed as

T = 2a2
∫ 1

−1

(
sf̄t − kh
fs

)
ds = 2a2

∫ 1

−1
sq̄ ds, q̄ = f̄t + k∂s(h
fs). (B1)

Here, we have used integration by parts on the integrand containing 
fs, with the condition

fs(±1) = 0 imposed by symmetry. We will show that as k → 0 (2.10) and (2.13) can
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be re-expressed in terms of q̄ and 
fs to leading order. Doing so requires evaluating
Gs(
fs, f̄t) and Gt(
fs, f̄t) to leading order in k for s1 sufficiently far from the edges.
Here, the equations for Gs(
fs, f̄t) and Gt(
fs, f̄t) are given in (2.14) and (2.15),
respectively. In this limit,

Gi(
fs, f̄t) = G∗
i,s′∼O(k) + G∗∗

i,s′�k. (B2)

Here, G∗
i,s′∼O(k) represents the ‘singular’ portion of the integral in Gi(
fs, f̄t) over the

surface when s′ ∼ O(k), and G∗∗
i,s′�k represents the remaining integral. On examination of

Gs(
fs, f̄t) and Gt(
fs, f̄t), the only (dominant) contribution enters from the integrand of
(Gss(s′, h′) − Gss(s′, ĥ))
fs in G∗

s,s′∼O(k). To evaluate this term, one thus Taylor expands

fs about s = s1 to obtain

G∗
s,s′∼O(k)/(4πηa) = −1

η
kh(s1)
fs + O(k2). (B3)

All the other terms can be obtained to leading order by Taylor expanding G∗∗
i,s′�k for

s′ � k. In doing so, one obtains

Gs(
fs, f̄t)/(4πaη) ≈ 
fskh(s1)

η
− k

2ηπ

∫ 1

−1

f̄t
s′ ds + O(k2), (B4)

Gt(
fs, f̄t)/(4πaη) ≈ − 1
4πη

∫ 1

−1

[
2 ln |s′|f̄t − 2kh

s′ 
fs

]
ds + O(k). (B5)

Here, the dominant term in G∗∗
s,s′�k that depends on 
fs is proportional to k2a, and thus

subdominant with respect to the leading contribution from G∗
s,s′∼O(k). Integrating by parts

the integrand containing 
fs in Gt(
fs, f̄t) one obtains

Gt(
fs, f̄t)/(4πaη) ≈ − 1
2πη

∫ 1

−1
ln |s′|q̄ ds + O(k). (B6)

For a torque-free body, q̄ = O(k), and thus Gt(
fs, f̄t) ∼ O(k) and Gs(
fs, f̄t) ≈

fskh(s1)/η to leading order in k. Using these leading-order results, (2.10) and (2.13) are
thus

ês : 
fskh(s1) = kη(γ̇ cos2 φ − Ω(φ))h(s1) + O(k2),

êt : 0 = sη(γ̇ sin2 φ + Ω(φ)) + O(k).

}
(B7a,b)

Solving (B7a,b) gives Ω(φ) = −γ̇ sin2(φ) and 
fs = γ̇ η, to leading order. This solution
agrees with (2.21) to leading order in k. Since usl

t = 0 along the flat surface, the leading
contribution due to λ can likewise be added to the governing equation for 
fs in the ês
direction. By doing so, one obtains the leading correction to 
fs given in (3.1a,b).

Equations (B7a,b), (3.6) and (3.8) represent the leading ‘slender body theory’
approximations (cf. Johnson 1980) for a flat plate-like object with infinite depth in the êz
direction for λ = 0. That is, the leading-order dynamics of the body can be approximated
by a line integral, which, to leading order in k, is independent of the effect of the edges.
For finite λ, the effect of the edges becomes important for calculating ḡ and q̄, and thus
needs to be accounted for in a slender body approximation (Kamal et al. 2021a).
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Appendix C. Analytical approximation of σ ′
xy for an axisymmetric Navier slip disk

For an axisymmetric disk with orientation vector d = sin θ cos φêx + sin θ sin φêy +
cos θ êz we have (Leal & Hinch 1971)

σ ′
xy = K1

〈
sin4 θ(1 − cos 4φ)

〉
+ K2

〈
cos2 θ

〉
+ K3

〈
sin2 θ

〉
(C1)

when Pe → ∞. For θ = π/2 this expression simplifies to (2.6). The coefficients K1,
K2 and K3 can be determined from the stresslet tensor corresponding to the extensional
direction (θ = π/2, φ = π/4) and the gradient direction (φ = π/2, φ = π/4) (as for our
2-D particle), and in the axis θ = 0 (Kim & Karrila 2013; Singh et al. 2014). The rotational
motion of the particle in a shear flow field is given by Bretherton’s equations (Bretherton
1962; Kim & Karrila 2013)

tan θ = Θke

k2
e cos φ2 + sin φ2 , tan φ = −ke tan

(
γ̇ t

ke + k−1
e

)
, (C2a,b)

for ke ∈ R and

tan θ = Θ|ke|
|ke|2 cos φ2 + sin φ2 , tan φ = |ke| tanh

(
γ̇ t

|ke|−1 − |ke|
)

, (C3a,b)

for ke ∈ iR. Here, Θ is a positive integration constant. We have seen that when λ/a � 1
and λ/b � 1, the particle aligns indefinitely at a small orientation φc ≈ |ke| � k � 1 with
respect to the direction of flow. It follows from (C2a,b) and (C3a,b) that, provided |ke| �
Θ , which is generally true since |ke| � 1, then θ ≈ π/2 when φ = φc. The fact that a slip
disk-like particle can reach the orientation θ = π/2 regardless of the initial orientation has
been observed in molecular dynamics simulations for a disk with surface slip (Gravelle
et al. 2021). For θ → π/2, the first two average quantities appearing in the right hand side
of (C1) tends to zero and

〈
sin2 θ

〉 → 1. Therefore σ ′
xy ≈ K3 = Sh

st(0)/(γ̇ ηV), where V is
the volume of the particle (Kim & Karrila 2013; Singh et al. 2014).

The hydrodynamic stress term Sh
st(0) on a 3-D axisymmetric disk with orientation θ =

π/2 can, as for our 2-D particle, be calculated analytically to leading order in k. When
λ/a � 1, the traction over the slender region of the particle is (Kamal et al. 2020)

fx ≈ γ̇ η

(
1 − 3λ

2a

)
, fy ≈ γ̇ η

(−k cos φ∂ρ(h(ρ))
)
, (C4a,b)

where ρ = x2 + y2. Therefore

Sh
st(0)/(γ̇ η) ≈ 1

2

∫
L

[
fyρ cos φ + k fxh(ρ)

]
dL − λ

∫
L

fxn3
y dL

≈ a2b
∫ 2π

0

∫ 1

0
ρ

(
h(ρ) − ρ cos2 φ∂ρ (h (ρ))

)
dρ dφ

− 2λa2
∫ 2π

0

∫ 1

0
n3

yρ dρ dφ

= V − 2λa2
∫ 2π

0

∫ 1

0
n3

yρ dρ dφ. (C5)

It follows that for a flat disk of radius a and thickness 2b, we have V = 2πa2b and
ny ≈ 1, and thus σ ′

xy ≈ Sh
st(0)/(γ̇ ηV) ≈ 1 − λ/b, assuming the platelet to have perfectly
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sharp edges. This result is identical to our 2-D approximation, given in (4.3). This example
suggests that in general, a prefactor in front of the λ/b term will depend on the specific
geometry of the platelet.
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