
LE JOURNAL CANADIEN DES SCIENCES NEUROLOG1QUES 

Neural Networks and Parkinson's Disease 
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ABSTRACT: A closed-loop or recurrent neural network was taught to generate output discharges to reproduce the 
prototypical activations in agonist and antagonist muscles which produce the displacement of a limb about a single 
joint. By introducing a generalized decrease in the excitability of the pre-output layer in the network, the network made 
the displacement more slowly and also showed an inability to maintain a repetitive movement. These concepts can be 
applied to the human nervous system in the understanding of the physical basis of movement and its disorders. It is 
suggested that a movement represents the output of a closed-loop network, such as the cortical-basal ganglia-thalamic-
cortical motor loop, which iterates repetitively to its end point or attractor. The model provides an explanation of how 
the state of thalamic inhibition seen in Parkinson's disease physically may produce bradykinesia and the inability to 
maintain a repetitive movement. 

RESUME: Reseaux neuronaux et maladie de Parkinson. Nous avons enseigne a un reseau en boucle fermee, ou 
reseau neural recurrent, a generer des decharges de sortie pour reproduire les prototypes d'activation dans les muscles 
agonistes et antagonistes qui produisent le deplacement d'un membre impliquant une seule articulation. En introduisant 
une diminution generalised de l'excitabilite de la couche cellulaire precedant la sortie du reseau, le reseau effectuait le 
deplacement plus lentement et manifestait egalement une incapacite a maintenir un mouvement repetitif. Ces concepts 
peuvent etre appliques au systeme nerveux humain afin d'aider a la comprehension des phenomenes physiques responsables 
du mouvement et de ses desordres. Nous suggerons qu'un mouvement represente la sortie d'un reseau en boucle fermee. 
tel le circuit moteur cortex - moyaux gris centraux - thalamus - cortex, qui procede par iteration vers son point 
d'attraction ou terminal. Ce modele fournit une explication physique de la facon dont l'etat d'inhibition thalamique que 
Ton observe dans la maladie de Parkinson peut produire de la bradycinesie et une incapacite a maintenir un mouve­
ment repetitif. 

Can. J. Neurol. Sci. 1993; 20: 107-113 

The concept of a dynamical disease was introduced by 
Mackey and Glass to describe how a change in a control param­
eter of a physiological system can lead to a pathological state.1 

They applied the techniques of analysis of nonlinear dynamical 
systems to such areas as hematopoiesis and respiratory control, 
and were able to model specific pathological conditions by 
introducing alterations in the value of a control parameter.2-' A 
major difficulty in any similar attempt to model a movement 
disorder, such as Parkinson's disease, is a currently inadequate 
conceptualization of the physical basis of normal movement 
generation. The current view of a movement as the behavioural 
correlate in time and space of the discharge of neurons in motor 
cortex and other motor-related regions follows directly from 
basic and clinical observations, but proves to be incomplete 
when one asks how the nervous system physically determines a 
specific neuronal discharge pattern to produce a particular limb 
trajectory. The concept of a hierarchical motor program or 
motor plan4'5 to guide the discharge of lower-order neurons has 
been introduced to address this dilemma. A motor program, 
however, is an abstract entity and, although useful conceptually, 
does not have a physical correlate in the nervous system at the 

present time. In this paper, we introduce an alternative concep­
tualization of a movement based on the formalism of neural net­
works and nonlinear dynamics. It will be shown that this con­
ceptualization of a movement is fruitful not only in addressing 
how the nervous system may physically determine a specific 
discharge in producing a normal movement, but also in suggest­
ing a simple underlying mechanism by which some symptoms 
of Parkinson's disease may arise. 

Neural networks are computational structures consisting of 
individual processing elements (analogous to neurons) and 
weighted connections between them (analogous to synapses). 
Architecturally, these networks contain an input layer, hidden 
layers and an output layer. The objective in most neural network 
modelling is to determine the set of synaptic weights which will 
result in a desired output vector upon presentation of a given 
input vector. If the output of the network, however, feeds back 
into the input layer with the value of the output layer becoming 
the new input vector, the network adopts a closed-loop architec­
ture and the computation is repeated. The feedback of the output 
layer onto the input layer makes the network a discrete-time 
dynamical system which, if stable, computes in an iterative 

From the Division of Neurology, Department of Medicine, Toronto East General Hospital, Toronto (D.S.B.); Department of Electrical Engineering. 
University of Ottawa, Ottawa (T.H.Y.); and Department of Physiology, University of Toronto, Toronto (H.C.K.) 
Received May 5, 1992. Accepted in final form November 25, 1992 
Reprint requests to: Dr. Hon C. Kwan, Department of Physiology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada 
M5S 1A8 

107 

https://doi.org/10.1017/S0317167100047648 Published online by Cambridge University Press

https://doi.org/10.1017/S0317167100047648


THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES 

fashion until it reaches an equilibrium state. Three possible out­
comes may occur which are of physiological significance. The 
first possibility is that the output of the network evolves from its 
initial state to a final fixed unchanging state. In this case, the 
dynamics of the network are said to be characterized by a fixed-
point attractor. The second possibility is that the system evolves 
to an equilibrium where the output repeats a series of state val­
ues over a fixed period of time or a fixed number of iterations. 
In this case, the system is said to relax into a periodic attractor. 
The third possibility is that the development of the output state 
is governed by what is referred to as a strange or chaotic attrac­
tor, in which the network state becomes unpredictable.6 

Parametric changes may be introduced into the network and 
may result in an alteration of the dynamics of the network. 
Excitability is a network parameter which is relevant to the ner­
vous system, and is related to the input-output relationship of 
the individual elements of the network. It is a property of non­
linear dynamical systems that the attractor dynamics remain 
unchanged over a range of parametric values. At a critical para­
metric value, however, a qualitative change in network dynam­
ics may be induced (e.g., from a periodic attractor to a fixed-
point attractor). This qualitative change in dynamics is referred 
to as a bifurcation.3'67 

If the output of the network not only feeds back onto the 
input layer but also projects to lower order structures directly 
responsible for movement generation, then a mechanism is 
established whereby the repetitive iterations of the network can 
produce a physical movement. As the network relaxes into the 
attractor, the descending collateral projections drive the physical 
limb to its end point. 

In modelling the execution of a movement about a single 
joint, the well-defined sequence of EMG activation must be 
employed. This sequence is principally characterized by an ini­
tial agonist activity which brings about acceleration of the limb, 
followed by antagonist activation leading to deceleration of the 
limb to the target position, and then a smaller, second agonist 
burst.8-9 In Parkinson's disease, it has been suggested that the 
biphasic or triphasic agonist-antagonist burst does not generate 
sufficient limb momentum to reach the desired end point and 
additional bursts are required.10 Several hypotheses have been 
proposed to explain this abnormality. Hallett and Khoshbin10 

proposed an explanation of this phenomenon by introducing the 
concept of energization of specific muscles to facilitate move­
ment and postulating a defect in energization in Parkinson's dis­
ease. Similarly, the inability of Parkinsonian patients to maintain 
repetitive movements may be postulated to be secondary to a 
defect in energization. The introduction of the concept of ener­
gization, however, still leaves open the question of its physical 
correlate. As we have previously suggested,"12 a movement can 
be conceptualized as the physical correlate of the output of a 
recurrent neural network, such as the cortical-basal ganglia-tha-
lamic-cortical loop, as it relaxes into a fixed point attractor. With 
this conceptualization, bradykinesia and inability to maintain 
repetitive movements can be seen to arise from the increased 
inhibitory input to the thalamus13 seen in Parkinson's disease. 

METHODS 

Since the neural network is required to generate a temporal 
sequence of output discharge appropriate for the movement, we 

employed a triphasic temporal sequence (Figure 1A) for single 
movement generation, and an alternating sequence (Figure 1B) 
for repetitive movement generation. The simplifying assumption 
was that these temporal patterns of discharge frequency from the 
output nodes of the network (Figure 2) would produce the same 
pattern of muscle activation necessary for the production of 
movements. It should be noted, however, that this is not a neces­
sary assumption. More complex nonlinear relation between the 
output discharge and muscle activation could be employed, at a 
cost of additional computational load during simulation. 

The desired output of the network is shown in Figure 1A. 
There is an initial agonist burst, followed by an antagonist burst 
and then a final smaller agonist burst which accompanies the 
displacement shown. This triad of activity at the output nodes 
(Figure 2) will produce the appropriate muscle activation for a 
movement about a single joint. The desired activities shown in 
Figure 1A are displayed as a trajectory in phase space with the 3 
axes representing agonist node activity, antagonist node activity 
and displacement (Figure IB). This trajectory was divided into 
12 segments. With the first 2 points of this trajectory as its ini­
tial input, a learning algorithm (see below) would permit the 
network to find a set of synaptic weights that resulted in an out­
put equal to the 3rd point in the trajectory. Then with the second 
and 3rd point in the trajectory, the algorithm had to search for 
the synaptic weights that resulted in an output equal to the 
fourth point in the trajectory. This procedure was repeated to 
encompass the entire trajectory, shown in Figure IB, including 
the fixed-point attractor "a" (cf. ref. 11). The final set of synap­
tic weights chosen had to satisfy all these input-output pairings. 
The use of two previous points as the input resulted in a network 
model which can be described analytically as a second-order 
difference equation. 

A four layer network was employed in the modelling. The 
network consisted of an input layer, 2 hidden layers and an out­
put layer as illustrated in Figure 2. Each processing element or 
node in one layer interacted with every processing element of 
the next layer. To form a closed-loop architecture to allow repet­
itive iterations, each element of the output layer fed back onto 
its corresponding element in the input layer. At this level of 
feedback, discrete delays (T) were introduced so that the input 
to the network consisted not only of the last output state but also 
the output just prior to the last. In the output layer were three 
elements whose activities represented those of the agonist node, 
antagonist node and the displacement node. The input layer was 
composed of six nodes to receive the corresponding delayed 
feedback. The two hidden layers consisted of three elements 
each. The output layer not only fed back onto the input layer but 
also projected to elements physically responsible for the move­
ment (e.g., at the brain stem and spinal cord levels). As well, to 
reduce the network dimension and complexity, the initial value 
for the limb angular velocity variable was always zero in the 
movements to be learned. 

The total input, u;, to element i from the other elements is 
given by: 

u ^ i w ^ - e , (i) 
j 

where yj is the output of element j , w^ is the synaptic weight 
from element j to element i, and 9| is the threshold of the i-th 
processing element. Each element has an output defined by the 
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Figure I — A . Triphasic discharge pattern 
for the output agonist node (Ag) and 
antagonist node (An) necessary for 
muscle activation for the generation of 
movement of angular displacement (9). 
Each division in the abscissa represents 
25 ms. Unless otherwise indicated, in 
this and subsequent figures, ordinate is 
in arbitrary units of firing frequency of 
an output node encoding that variable. 
As well, data points were fitted to a 
standard cubic-spine procedure to pro­
duce a continuous tracing. B. Phase 
space diagram of Figure I A. The evolu­
tion of these changes describes a trajec­
tory to the fixed-point attractor "a". C. 
Pattern of agonist and antagonist activ­
ities that produces a repetitive displace­
ment about a single joint. Each 
abscissal division represents 150 ms. D. 
Phase space diagram of Figure IC. The 
closed loop reflects the agonist and 
antagonist, activations, and the accom­
panying cyclic or periodic angular dis­
placement. 

sigmoidal function: 
I 

yi = 1 + <rui (2) 

This input-output relationship models the firing frequency pat­
tern of a single neuron14 and is shown in Figure 3. 

Once the synaptic weights were determined and the values of 
the input layer were set at the initial state, then the values of the 
remaining elements were calculated including the values in the 
output layer. The output state was fed back onto the input layer, 
and the computation was repeated in an iterative fashion. 

The determination of the synaptic weights was made through 
the technique of back propagation.15 The set of synaptic weights 
that minimized the mean square error between the ideal trajec­
tory and that produced by the network was chosen for the final 
synaptic weights. 

The same procedure was adopted in modelling a repetitive 
movement about a single joint with a second network. As shown 
in Figure IC, a periodic displacement was accompanied by 
alternating agonist and antagonist activity. These changes were 
then described as a closed-loop trajectory in phase space (Figure 
ID). The trajectory was divided into 12 segments for network 
simulation. Again, with the backpropagation method, the set of 

weights that minimized the mean square error between the ideal 
trajectory and that produced by the network was chosen as the 
final synaptic weight. 

Once the networks had learned the simple single-joint move­
ment and the repetitive movement, a generalized decrease in the 
excitability in the pre-output processing elements of the network 
was introduced. This was accomplished by increasing the 
threshold term in equation (1) causing a shift to the right in the 
sigmoidal function in Figure 3. With the network for a single 
non-repetitive movement, the pre-output layer was subjected to 
a generalized decrease of excitability. In the network for repeti­
tive movements, a moderate decrease in the excitability was first 
imposed to see its effect on the network output. The excitability 
was then further decreased to simulate the effects of a failure to 
maintain excitability within functional limits, a failure which we 
assume to exist for the modelling of an inability to perform 
repetitive movements in Parkinson's disease. 

The behaviour of the network subjected to these generalized 
decreases in the excitability in the pre-output layer was then 
compared to the changes in motor behaviour seen in a typical 
Parkinsonian patient (Hoehn and Yahr stage 316) who gave 
informed consent to the neurophysiological study approved by 
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Figure 2 — Network Architecture. The three output nodes for the con­
trol of agonist (Ag). antagonist (An) and displacement (8) activi­
ties. In the input layer, there are 2 nodes for each of these variables 
reflecting both the state transmitted from the output layer through 
the closed loop plus the state from the precious iterations. 
Activities in the descending projection may be viewed as those 
which are required to produce the appropriate EMG activations. T 
represents a discrete temporal iteration delay. 

the Review Committee on the Use of Human Subjects of the 
University of Toronto. Surface electrodes were placed over the 
forearm finger flexors (flexor digitorum superficialis) and 
extensors (extensor digitorum communis) and EMG activity 
was recorded during simple flexion and extension movements of 
the index finger, and during repetitive flexion-extension tapping 
with the index finger. A potentiometric goniometer was used to 
measure the angular displacement about the metacarpopha­
langeal joint. To obtain an estimation of the temporal pattern of 
muscle activation, the EMG was full-wave rectified and 
smoothed1718 to yield a demodulated signal (Figures 4C and 
5C). 

input 

\y y 

1 _y 

_̂_ \ 

•• output 

UiJ 

Figure 3 — The input-output relationship of the nodes. The weighted 
sum of inputs «. produces an output given by the sigmoidal func­
tion shown. A shift to the right in this curve represents a decrease 
in the excitability of the node. 
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Figure 4 — A. Network output after learning a normal movement. The output nodes reproduce the desired activity shown in Figure. I A. B. Network 
output after a 30% decrease in the excitability of all nodes in the pre-output layer was introduced. The network shows repetitive agonist and 
antagonist activation resulting in a displacement which reaches its end point more slowly. In both A and B. each abscissal division represents one 
iteration, or 25 ms in real lime. C. Recording from a Parkinsonian patient performing a rapid finger flexion. The first two tracing are rectified and 
smoothed surface EMG recorded over flexor digitorum superficialis (Ag) and extensor digitorum communis (An) respectively. The third trace rep­
resents the angular displacement of the metacarpophalangeal joint of the right index finger. The top tracing shows 2 prominent agonist bursts 
whereas the 2nd tracing shows 2 unequal antagonist bursts. Abscissa: 50 msldiv. Ordinates: 1.5°/div.for 9; arbitrary integrated EMG units for Ag 
and An. 
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Figure 5 — A . Response of a network after teaming a repetitive movement to a moderate decrease in excitability. The first three cycles were generat­
ed at normal (100%) excitability, which reproduces the desired output in Figure IC. When excitability was decreased to 90% of normal (horizon­
tal bar), no substantial changes in the network outputs can be observed. B. Network output with a further decrease in the excitability of all nodes 
of the pre-output layer from 90% to 50% in 4 iterations (horizontal bar). Collapse of the periodic behaviour to a fixed-point attractor results, after 
which the network outputs do not change with time. In both A and B, each division on the abscissa represents 10 iterations, or 150 ms in real 
time. C. Recording from a Parkinsonian performing repetitive finger flexion and extension. After several cycles, the patient fails to maintain the 
repetition, compatible with the interpretation of a collapse of a periodic attractor to a fixed-point attractor shown in B. Abscissa: 150 ms/div. 
Ordinates: arbitrary units of integrated EMC for Ag and An, and 1.5°/div.for 6. 

RESULTS 

The network (Figure 2) was first trained to produce the 
triphasic pattern of activation (Figure 1A) necessary for the gen­
eration of a single-joint movement. Figure 4A shows the net­
work output after training, which is in close correspondence to 
the original pattern (Figure 1A). In Figure 4B is the output of 
the same network, but in which the excitability of pre-output 
last layer was decreased by 30%. It can be seen in the displace­
ment tracing that the time to reach the endpoint is longer than in 
the normal condition in Figure 4A. The displacement itself 
shows small oscillations rather than the smooth configuration in 
the normal condition. The slower displacement was accompa­
nied by three agonist and two antagonist bursts rather than the 
normal triphasic pattern. 

We also observed that for small decreases in excitability, the 
slowing of movement was insignificant. Significant slowing 
occurred only when the excitability approached a 30% decrease. 
Figure 4C shows the typical results produced by finger exten­
sion in a Parkinsonian patient. The displacement shows a promi­
nent alteration in slope approximately halfway to the endpoint 
of the displacement (cf. Figure 4B). This displacement was the 
result of three agonist and two antagonist bursts, similar to the 
behaviour of the neural network model for bradykinesia shown 
in Figure 4B. 

Figure 5A shows the response of a second network trained to 
reproduce the repetitive movement when excitability of the pre-
output layer was reduced by 10%. The beginning three cycles 
show the normal learned output at 100% excitability. A 10% 
decrease in excitability, as indicated by the horizontal bar below 
the displacement trace, did not substantially alter the output 
dynamics of the network except for a minor reduction in the 
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amplitude of AG, and a slight change in the durations of the two 
phases of displacement (9). 

Figure 5B shows the output of the network in which the 
excitability of the pre-output layer was systematically decreased 
further from the 90% level to 50% over four iterations (horizon­
tal bar). It can be seen that the alternating agonist-antagonist 
activation occurs in association with the repetitive displacement 
but at a critical level of excitability diminution, to 60% in this 
instance, repetitive displacement and agonist and antagonist 
activation cease. In the language of nonlinear dynamics, at a 
critical value of the excitability parameter, the dynamics of the 
network changed qualitatively, or collapsed, from a periodic 
attractor to a fixed-point attractor. 

In Figure 5C are the results produced by repetitive flexion-
extension finger movements in a Parkinsonian patient. As 
demonstrated in the network model, the patient's alternating 
agonist-antagonist activation accompanying the repetitive dis­
placement ceases after several alternations despite encourage­
ment to continue moving. 

DISCUSSION 

Neural network modelling has been successfully applied to 
the neurosciences, cognitive psychology and artificial intelli­
gence.19 In clinical medicine, neural network models of lan­
guage abnormalities20 and seizure activity21 have been devel­
oped, and provide support for hypotheses concerning 
pathophysiological mechanisms. Similarly, the techniques in 
analysis of nonlinear dynamical systems have been applied to 
such diverse areas as meteorology,22 physics2-1 and physiol-
ogy.1-1'6'24 With a recurrent or closed-loop structure, the present 
network evolves dynamically over time, and can be subjected to 
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analysis by nonlinear dynamical techniques. This dynamical 
configuration seems most plausible for modelling movement 
and movement disorders. Once the synaptic weights of the net­
work are learned, the network output evolves in a predetermined 
fashion with no moment-to-moment supervisory entities 
required to control its evolution. It is suggested that with this 
conceptualization of movement generation, a motor program 
can be embedded by an attractor and the configuration of its 
basin of attraction in phase space, which, in turn, are determined 
by the configuration of synaptic weights within the network. 
Changes in the input values or parametric changes to the net­
work itself (e.g., excitability in the present case) may be suffi­
cient to allow the network to demonstrate a diversity of output 
characteristics such as speed, direction or force of movement. If 
a parametric change reaches a critical level, network stability 
may no longer be guaranteed, and a pathological dynamic may 
emerge allowing the modelling of movement disorders. In our 
case, bradykinesia was modelled as a near-bifurcation phe­
nomenon with the excitability of the pre-output layer represent­
ing the parameter that was varied. In the case of repetitive 
movement, the Parkinsonian abnormality represented a true 
bifurcation in network dynamics with a periodic attractor col­
lapsing into a fixed-point attractor once a critical parametric 
value was exceeded. 

In the present and many other neural network models, a num­
ber of features found in biological neurons, such as membrane 
channel dynamics, compartmental characteristics of dendritic 
arborizations, dendritic spikes and differential excitability of 
neuronal membrane, are not explicitly taken into consideration. 
For this reason, it may be argued that these neural networks, 
with simple properties of excitation and inhibition, synaptic 
modification, sigmoidal input-output relations, and feedback, 
are not relevant to biological computation. However, as elo­
quently stated by Hopfield and Tank,14 these latter properties are 
not the results of approximation. They are real properties of bio­
logical networks, and a neural network with these properties 
"retains two important aspects for biological computation: 
dynamics and nonlinearity".14 Additional neuronal features, 
though not essential for computation per se, will certainly enrich 
the computational capacity of neural networks. 

It should be emphasized that the network model should not 
be interpreted as an attempt at establishing exact correspon­
dences between components in the model with specific anatomi­
cal regions of the CNS. Rather, it is employed to examine quali­
tative correspondences between the generic behaviours of the 
biologically-relevant network model and movement generation. 
Despite these reservations, the suggestion that the cortical-basal 
ganglia-cortical motor loop may be responsible for the iterations 
that generate a movement is a plausible hypothesis, and repre­
sents a starting point in the development of a biologically realis­
tic neural network model of movement generation. This sugges­
tion is consistent with findings in the basic and clinical sciences. 
There is increasing evidence that the circuitry of the basal gan­
glia maintains a parallel and modular architecture throughout 
the cortical-basal ganglia-thalamic-cortical loop and that the 
loop structure may be defined more precisely as being com­
posed of "mini-loops" emanating and ending in a single cortical 
column or possible a small subset of columns.2528 This anatomi­
cal substrate, plus the physiological observation that there is vir­
tually complete overlap of neuronal discharge activity at the 

cortical and basal ganglia29 levels is consistent with the interpre­
tation that repetitive iterations in the loop co-evolves with the 
movement. 

The generalized alteration in excitability of the pre-output 
layer of the network introduced to model Parkinsonism is con­
sistent with experimental evidence. Experimental studies sug­
gest that dopamine deficiency produces symptomatology by 
causing increased inhibition at the thalamic (pre-output) level of 
the cortical-basal ganglia-cortical loop. The globus pallidus 
interna (GP^, the main output nucleus of the basal ganglia, 
exerts a predominantly inhibitory effect on its target nuclei in 
the thalamus.2730 MPTP (l-methyl-4-phenyl-l,2,3,6-tetrahy-
dropyridine) treated primates with Parkinsonian symptoms show 
increased tonic neuronal discharge in GP; and this is felt to be at 
least partially due to increased activity in the subthalamic nucleus 
which exerts an excitatory drive on GPj.31 The fact that lesions 
of the subthalamic nucleus in MPTP-treated primates reverse 
their Parkinsonism13 suggests that dopamine deficiency pro­
duces its symptomatology because of the increased inhibitory 
output from GP: to the thalamus. This is consistent with the 
decreased excitability introduced to the pre-output layer of the 
present neural network to model Parkinsonism. 

Neural network modelling teaches us that any observable, 
behavioural variable of a movement is a network phenomenon, 
and cannot be reduced to the activity of a single neuron or a par­
ticular group of neurons (also cf. ref. 14). This suggests the need 
for a shift in emphasis in studies of motor physiology and patho­
physiology. Rather than attempting to correlate the activity of a 
neuron or group of neurons to a single observable movement 
variable, a more fruitful approach may, ironically, be that of 
classical neurology, the clinico-pathological correlation. By 
observing the behavioral deficits resulting from a structural or 
biochemical lesion to the motor system, and reproducing these 
deficits in a network model, the actual neural network architec­
ture and dynamics in the human nervous system may be devel­
oped. For example, in this study, we have evidence that if a 
recurrent or feedback structure, such as the cortical-basal gan­
glia-cortical loop, iterates to produce a movement, then the 
bradykinesia and inability to maintain a repetitive movement in 
Parkinson's disease can be understood in terms of an increased 
inhibitory input, or a generalized excitability change to a com­
ponent, such as the thalamus, in the loop. This strengthens the 
plausibility of the proposed model and suggests that the model 
can be successfully expanded further. 

The present study also suggests a conceptualization of move­
ment disorders in general. We may hypothesize that the CNS 
symptomatology is a manifestation of near-bifurcation network 
behaviour. In our network simulation we have observed that 
stable output behaviour of the network can be sustained over a 
moderate range of excitability change (Figure 5A). This is an 
important property for biological networks since parameters 
such as excitability are constantly influenced by factors such as 
electrolyte and neuromodulator concentrations. However, when 
parametric variation approaches a critical value, as may be the 
case in disease states, network stability can no longer be guaran­
teed. This instability is illustrated by the collapse of the periodic 
attractor into a fixed-point (Figure 5B) and the emergence of 
damped oscillatory or repetitive agonist-antagonist bursts 
(Figure 4B). Thus, in the context of nonlinear network dynam­
ics, a disease state would not produce frank symptomatology 
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until the parametric change induced by the disease state 
approaches a critical value for bifurcation. The use of recurrent 
neural networks in the conceptualization of movement genera­
tion would thus allow the important idea of dynamical disease1 

to be extended to movement disorders. 
Certainly, much work is needed in the further development 

of these nonlinear dynamical models. Issues concerning postural 
tone and movement initiation as well as the explicit incorpora­
tion of a physical manipulandum or limb which is driven by the 
network need to be addressed, and will add increased complexity 
to the architecture and dynamics of the network used. The role 
of the bereitschaftspotential32-n in this model of movement gen­
eration and its disorders, the mechanisms of learning and the 
role of the cerebellar motor loop4 in this formulation are further 
problems which need to be pursued. The hope is that with fur­
ther study, a more comprehensive network model of the motor 
system may be developed, which not only demonstrates the 
physical basis of many features of movement generation, but 
may also bridge the gap in our understanding between cellular 
or molecular pathology and the spectrum of movement 
disorders. 
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