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Abstract. Let U(RG) be the group of units of a group ring RG over a commutative
ring R with 1. We say that a group is an SIT-group if it is an extension of a group which
satisfies a semigroup identity by a torsion group. It is a consequence of the main result
that if G is torsion and R = Z, then U(RG) is an SIT-group if and only if G is either
abelian or a Hamiltonian 2-group. If R is a local ring of characteristic 0 only the first
alternative can occur.

1. Introduction. Let R be a commutative ring with 1, G be a group and U(RG) be
the group of units of the group ring RG. It has been intensively investigated that if
U(RG) satisfies some group theoretical condition, then G is somewhat restricted and a
nontrivial ring theoretical property of RG holds. See [1], [2], [3], [9] for example. In this
direction there is the following conjecture, which we attribute to Brian Hartley.

CONJECTURE. Let K be a field and let G be a torsion group. If U(KG) satisfies a group
identity, then KG satisfies a polynomial identity.

In an earlier work [3] addressed to this question, it was shown that the conjecture is
true if K is an infinite field and U(KG) satisfies a semigroup identity. Let (a, b) be the free
semigroup (group) freely generated by a and b, and let w^(a,b), w2{a,b) be two distinct
words in {a, b). We say that a group G satisfies the semigroup (group) identity
wx(a, b) = w2(a, b), if it holds true for every substitution of the variables by elements of G.
Certainly, if a group G satisfies a semigroup identity, then it satisfies a group identity. But
the converse is not true, as can be seen in [8]. We say that a group H is an SIT-group if H
is an extension of a group satisfying a semigroup identity by a torsion group.

The main question considered in this paper is: when is the group of units U(ZG) of an
integral group ring 1G an SlT-group? We prove the following:

THEOREM. If the torsion elements t(G) of a group G form a subgroup and U(1G) is
an SIT-group, then any torsion subgroup of G is normal in G and t(G) is either abelian or
a Hamiltonian 2-group.

An immediate consequence is:

COROLLARY. / / G is torsion then U(ZG) is an SYT-group if, and only if, G is either
abelian or a Hamiltonian 2-group.

In view of Passman's Theorem ([7, Theorem 5.37]) we can also conclude that if G is
torsion and U(ZG) satisfies a semigroup identity, then ZG satisfies a polynomial identity.

Let us note that a free (noncyclic) group is never an SIT-group. We shall use this
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observation together with the Hartley and Pickel Theorem [4], throughout the paper. In
fact, our result can be considered as an attempt to extend this theorem to torsion groups.

We end up our work answering our main question for local rings of characteristic 0.

2. Preliminary results. Rosenblatt [8] describes a class of group identities that is
very convenient to handle. Let i = ( / , , . . . , is), j = ( / , , . . . ,js) be {0, l}-valued sequences.
Let F = (X, Y) be the free group generated by X and Y. An #-equation is an expression
of the form

A",'At ...X'i = X'fX'i... X';, (2.1)

where Xk = Y~kXYk, and £ ir = £ ;,.

Certainly, an /?-equation is a nontrivial group equation if /' and / are distinct
sequences. Furthermore, we observe that after some obvious cancellations, it reduces to a
nontrivial semigroup equation.

The result below, which is implicit in [8], and proved in [3], will be necessary in the
sequel.

LEMMA 2.2. / / a group satisfies a nontrivial semigroup identity, then it satisfies a
non-trivia! R-equation.

Let G be a group and let x and g be elements of G, with \(g)\ = n > 5 , n ^ 6 and
x g Nc(g). Here Nc(g) denotes the normalizer of (g) in G. Moreover, let <p be the Euler
phi function, and let 1 < / <n, (i,n) = 1, m = <p(n),

/=0

Then u = Am - kg and v are units of infinite order in U(ZG) (see [10, pages 2 and 32]).
For a positive integer r we have

i - 1
where ax = — — - and £ is the augmentation function on ZG. If / is a positive integer we

set uJ = v~'uTv'. For a {0, l}-sequence i = ( / , , . . . ,/,.) we define a new sequence i* =
( / i , . . . , / ,-]) , and a polynomial pi{X) e Z[X] by

Pi(X) = i, + 2/2A"' + 3/3A"1+'2 + . . . + sisX
ii+-+i'-\

LEMMA 2.3. With the notation above we have
(i) pl(A

Tm) = pi.(A
m) + sisA

mli>+"+i->)

(ii) u?>. . . u? = MT('1+ +/') + pi(A
m')(Am - l)(g - \)xg.

Proof. We obtain (i) easily from

https://doi.org/10.1017/S0017089500031839 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031839


UNITS OF INTEGRAL GROUP RINGS 3

We shall prove (ii) by induction on the length of i. Since gur = ge(uT) = g, we have

»W«V = [1 - l(g ~ l)xg]u*[l + l(g - l)xg]

= K - l(g - l)xg[l + l(g - l)xg] = «r + l(Am - \)(g - l)xg.
Hence

and the Lemma is proved for a {0, l}-sequence (/,) of length 1.
Now we prove the induction step. Note that

Therefore

«?• . . . u?±-:u* = [u^ + -+'-^+pi.(A
m)(Ami ~ l)(g - l)xg]

= M»('.+-+'-l+<.) + [p , . ^ " " ) + is. ^""('1+-+'.-.)]

X (A™ - l)(g - l)xg.

Now, using (i) we get (ii). The lemma is proved. •

For a subgroup H of (g) we denote by AZ(A,>(//) the kernel of the natural ring
homomorphism

The next lemma generalizes a well known argument about normalizers.

LEMMA 2.4. Let \{g)\ = n, u e Z{g), x g NG(g), and let H be the largest subgroup of (g)
such that x e NC(H). Then uxg = 0 implies u e AZ<J,}(H). In particular, if H = {1} then
11=0.

Proof. Let & be the smallest nonnegative integer such that // = (gk), and let

K=flo + «ig + ---+fl*-ig*~\

where o, E Z//. Then we have

(flo + a1g + ...+fl4_1g*-')jc|=0. (2.5)

We want to show that for every i, i = 0 , . . . , k - 1 we have

fl/.£=0. (2.6)

Assume that arg¥"Q for some /' e {0,1,. ..,k- 1}. Note that a ' eZW, where #?• =
jr"'fl,x. If flr|=0 then a* e Az<s)(//) and a,, e A2(w>(W), because ( l - g ' ) ' e A w ( W ) .
Therefore a,g = 0, contrary to hypothesis. Consequently «*§ ^ 0 and arxg # 0. Hence, if /
is a positive integer such that gkl e suppar, it follows from (2.5) that

Yx=g*'W (2-7)
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for some /" e {0,1, . . . , k - 1}, i"^/', some integer t' and s e {0,1,.. . ,n - 1}. By (2.7), it
is easy to see that xgsx~l e (g), and so s =0(mod k). From (2.7), in view of x e NG(H), we
obtain gk'g' x = gk'g' x, for some integer t, where

gk7 = gk'{gs)x".

Consequently, gk'gr = gk'g'\ which implies /' = /", a contradiction.
Now, from (2.6) we conclude that a, e Az<g>(//), and u e AZ(s>(//), as required. •

LEMMA 2.8. Suppose that the set of torsion elements t(G) of a group G forms a
subgroup, which is either Abelian or a Hamiltonian 2-group. If U(ZG) is an SIT-group,
then any subgroup of t(G) is normal in G.

Proof. Let g e t(G) and x e G. Let us denote by H' the first commutator subgroup
of H = (g,x) and [g,x] = g~*x~]gx. By the assumption (g,gx) = (g, [g,*]) is finite, and
therefore [g,x]e t(G). Hence H' = ([g,x]h \h e H) is torsion and, consequently, H' is
either Abelian or a Hamiltonian 2-group. In both cases H is solvable. Since U(ZG) does
not contain a free noncyclic subgroup, by Hartley and Pickel's Theorem [4], we conclude
that x E Nc(g). Since x is arbitrary (g) is normal in G. The lemma is proved. •

3. The proof of the theorem. In view of Lemma 2.8 we can assume that G is a
torsion group. Let geG, \(g)\ =pe = n ^ 5 , p a prime and xeG, x & Nc(g). Let
N<iU(ZG) be such that U(ZG)/N is torsion and N satisfies a semigroup identity. Define
elements u and v as in Lemma 2.3. Then uT, v' e N for some positive integers T and /,
and, by Lemma 2.2, N satisfies an /?-equation (2.1). For a positive integer r' =0(mod r)
put X = ur and Y = v' in (2.1). Then, by Lemma 2.3, we get

[Pj(A
rm) -Pi{Arm)Wm - l)(g - l)xg = 0. (3.1)

Suppose that x does not normalize any nonidentity subgroup of (g). Then, by Lemma
2.4, we obtain that

[Pi(A<m) -Pi{Arm)]{A"" - \){g - 1) = 0. (3.2)

Since (/,,... ,is) and (;',,... ,/v) are distinct {0, l}-sequences, then Pj(X) - pi(X) is not
identically zero. Let n'\n, n'^5, and £ be a primitive complex n'-th root of unity.
Applying the map g >-» £ we see that B = (1 + £ + £3 + . . . + £,'~x)m is the image of Am. By
[6, Theorem 3.3.3(i)], B is a unit of infinite order in Z[£]. Hence Br also has infinite order,
and by (3.2) BT, B2\ B3\... are distinct zeros of pj(X) - Pi(X), a contradiction.
Therefore x normalizes a nonidentity subgroup of (g).

Let (gp>) be the largest subgroup of (g) which is normalized by x. It follows from (3.1)
and Lemma 2.4 that

[Pj(A
rm) -Pi(A

rm)Wm - l)(g - 1 ) = (gpl -

If p' 2:5, then for a complex p;-th root of unity £ we have

where B is obtained from Am by applying the map £>-»£. Again, BT, B2*, B3 T , . . . are
distinct roots of Pj{X) - Pi(X), which is impossible. Hence p' < 5. In particular, if p > 3,
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then (g)OG. Since U(Z(x,g)) does not contain a free noncyclic subgroup, it follows from
Hartley and Pickely [4] that (x,g) is abelian. Consequently, we have shown that

\<g)\=p*,p>3, ^gez(G), (3.3)

where z(G) denotes the center of G.
If p' = 3, then (g3, x) is finite and, by [4] again, we get that x e Cc(g

3), where Cc(g
3)

denotes the centralizer of g3 in G. Thus

(3.4)

Let now p = 2 and p' e {2,4}. We claim that

g4ez(G). (3.5)

Indeed, if p' = 2, then, by [4], (g2, x) is either abelian or a Hamiltonian 2-group. In both
cases [gA,x] = 1. If p' = 4 and [g4, x] ¥= 1, then (g4, x) is the quaternion group of order 8. It
is easy to see that

x2 = [g\
and

Therefore (g2, x)' = (x2, [g2, x]} is abelian, and applying [4] for U(Z(g2,x)) we conclude
that (g2,x) is the quaternion group of order 8. This is impossible, since g R ^ l , and we
have proved (3.5).

It follows from (3.3), (3.4) and (3.5) that expG/z(G) divides 12. By [5, Theorem
IX.4], G is locally finite. Again by [4], G is either abelian or a Hamiltonian 2-group. The
theorem is proved. •

4. Semigroup identities on units of group rings over local rings. Our main result
allows us to answer for Z(p) the same question raised for Z in the introduction. Here Z(/j)

denotes the localization of Z at the prime ideal (p).
Let H be the usual rational quaternion algebra, i.e.,

U = {a +pi+ yj + 8k \i2 = j 2 = - 1 , ij = -ji = k, a, /3, y, 5 e Q}.

We define

H ( p ) = {a + pi + yj + 8keH\a,p,y,8e Z{p)}.

We need

LEMMA 4.1. t/(H(p)) contains a free noncyclic group.

Proof. Let us denote by zU(M{p)) the center of U(Hip)). In view of [2, Lemma 2.3], it
is enough to show that U(Uip))/zU(Mip)) contains no nontrivial abelian normal
subgroups. To do this we mimic the proof of [2, Lemma 2.5]. By Tits Alternative [10],
l/(H(p)) contains a free noncyclic group.

LEMMA 4.2. Let Ks = {a,b\a4 = 1, a2 = b2, b'^ab = fl"1) be the quaternion group of
order 8. Then L/(Z(p)/C8) contains a free noncyclic group.

Proof We consider two cases:
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(i) p¥=2. Then
4

© Z(p),
1=1

and the proof follows directly from Lemma 4.1.
(ii) p = 2. We have that

QK8 & H © © Q,
/ = i

where for the central idempotent e = \{\- a2) e <Q/L8 we have QK8e = H. Hence
2(2)^8 — H(2), and applying the same reasoning as in [2, Lemma 2.1], we obtain that

[U(Z(2)K8e):(U(Zi2)K8))e]<cc.

By Lemma 4.1 the result follows. •

From Lemma 4.2 and from our main theorem we immediately obtain

THEOREM 4.3. Let R be a local ring of characteristic 0. Suppose that the set of torsion
elements t(G) of a group G forms a subgroup, and suppose that U(RG) forms a
SYI-group. Then t(G) is abelian, and any subgroup oft(G) is normal in G.
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