ON A RESULT OF M. HEINS

by JAMES A. JENKINS \dagger
(Received 1st April 1974)

Some years ago Heins (1) proved that a Riemann surface which can be conformally imbedded in every closed Riemann surface of a fixed positive genus g is conformally equivalent to a bounded plane domain. In the proof the main effort is required to prove that a surface satisfying this condition is schlichtartig. Heins gave quite a simple proof of the remaining portion (1; Lemma 1). The main part of the proof depended on exhibiting a family of surfaces of genus g such that a surface which could be conformally imbedded in all of them was necessarily schlichtartig. Another proof using a different construction was recently given by Rochberg (2). We will give here a further proof based on the method of the extremal metric and using a further construction which is in some ways more direct than those previously given.

2

Theorem 1. A Riemann surface \mathscr{R} which can be conformally imbedded in every closed Riemann surface of a fixed positive genus g is schlichtartig.

We begin the proof by constructing a family of closed Riemann surfaces of genus g. Let S denote the domain on the sphere bounded by the circles $|z-(4 n+1)|=1,|z+(4 n+1)|=1, n=1, \ldots, g$. Let $\Delta_{i}^{(n)}$ denote the ring domains $t<\left|z_{n}\right|<1, n=1, \ldots, g$. Let \mathscr{S}_{t} be the Riemann surface whose elements are the points of $\mathrm{Cl} S$ and $\Delta_{t}^{(n)}, n=1, \ldots, g$, with topology to correspond to identifying $z=-(4 n+1)+e^{i \theta}$ with $z_{n}=-t e^{-i \theta}, 0 \leqq \theta<2 \pi$ and $z=(4 n+1)+e^{i \theta}$ with $z_{n}=e^{i \theta}, 0 \leqq \theta<2 \pi$ and with the evident choice of local uniformising parameters so that $S, \Delta_{t}^{(n)}, n=1, \ldots, g$, are conformally imbedded in \mathscr{S}_{t} and the curves \mathscr{S}_{t} corresponding to the boundary circles on S are analytic. The domains on \mathscr{S}_{t} corresponding to the $\Delta_{t}^{(n)}, n=1, \ldots, g$, will be called handles, the curves in them corresponding to $\left|z_{n}\right|=r, n=1, \ldots, g, t<r<1$, level lines.

If \mathscr{R} were not schlichtartig it would have a finite subsurface of positive genus $\hat{\mathscr{R}}$ with analytic boundary curves $c_{j}, j=1, \ldots, N$. Let $c_{j}^{\prime}, j=1, \ldots, N$, be disjoint analytic curves on \mathscr{R} so that c_{j}, c_{j}^{\prime} bound a doubly-connected subdomain D_{j} of \mathscr{R} and $c_{j}^{\prime}, j=1, \ldots, N$, bound a finite surface \mathscr{R}^{*} in $\hat{\mathscr{R}}$. If \mathscr{R} is conformally imbedded in \mathscr{S}_{t} we may use all the same terms for the images there. It is clear that the module of a doubly-connected domain nontrivially imbedded in $\hat{\mathscr{R}}$ is bounded.

[^0]The level lines λ on each handle belong to one of the disjoint categories given by the following conditions:
(i) λ contains an open subarc lying in and joining distinct boundary components of some $D_{j}, j=1, \ldots, N$;
(ii) λ lies in $\hat{\mathscr{R}}$;
(iii) λ does not meet \mathscr{R}^{*}.

If each handle contained a level line in (iii), \mathscr{R}^{*} would lie in a schlichtartig subdomain of \mathscr{S}_{t} and thus be itself schlichtartig, a contradiction. Thus there is at least one handle, say $\Delta_{t}^{(n)}$, for which the level lines all belong to (i) or (ii). Those in (i) can be distributed into disjoint classes $\Lambda_{j}, j=1, \ldots, N$, such that for $\lambda \in \Lambda_{j}, \lambda$ contains an open subarc in D_{j} joining the two boundary components. A priori a certain ambiguity might be present but since $c_{j}, c_{j}^{\prime}, j=1, \ldots, N$, are analytic the choices could be made so that each Λ_{j} would be composed of level curves corresponding to values of r in a finite number of intervals in $(t, 1)$. On a set T of level curves with the corresponding set of values of r, τ, we have the logarithmic measure $L(T)=\int_{r} r^{-1} d r$. Let $M_{j}, j=1, \ldots, N$, be the module of D_{j}. At the points in $\lambda \in \Lambda_{j}$, we define the metric $\rho_{j}(z)|d z|$ by $\rho_{j}(z)|d z|=\left(L\left(\Lambda_{j}\right)\right)^{-1}\left|z_{n}\right|^{-1}\left|d z_{n}\right|$ provided Λ_{j} is not void. Then defining on D_{j} the metric $\rho(z)|d z|$ by

$$
\begin{aligned}
\rho(z) & =\rho_{j}(z), & & z \in \lambda, \lambda \in \Lambda_{j} \\
& =0, & & \text { otherwise }
\end{aligned}
$$

we obtain an admissible metric for the problem determining the module M_{j} of D_{j}. Thus

$$
M_{j} \leqq 2 \pi\left(L\left(\Lambda_{j}\right)\right)^{-1}
$$

or (a result trivially valid also if Λ_{j} is void)

$$
\begin{equation*}
L\left(\Lambda_{j}\right) \leqq 2 \pi M_{j}^{-1} \tag{1}
\end{equation*}
$$

Adding (1) for $1 \leqq j \leqq N$ we have

$$
L(\mathrm{i}) \leqq 2 \pi \sum_{j=1}^{N} M_{j}^{-1}
$$

the right-hand side being a bound independent of t. Thus a set of level lines on $\Delta_{t}^{(n)}$ of logarithmic measure at least

$$
\log (1 / t)-2 \pi \sum_{j=1}^{N} M_{j}^{-1}
$$

consists of curves in $\hat{\mathscr{R}}$. Consider the components of the union of this set of level lines in $\hat{\mathscr{R}}$. Two level lines can belong to different components only if the domain they bound on $\Delta_{t}^{(n)}$ contains a boundary contour of $\mathscr{\mathscr { R }}$. Thus there are
at most $N+1$ such components and one of them has logarithmic measure at least

$$
(N+1)^{-1}\left(\log (1 / t)-2 \pi \sum_{j=1}^{N} M_{j}^{-1}\right)
$$

For small positive t this gives a contradiction. Hence \mathscr{R} must be schlichtartig.

3

Both Heins and Rochberg remarked that for the result of Theorem 1 it is sufficient for \mathscr{R} to admit an imbedding only in a certain subclass of closed Riemann surfaces of genus g. The same is evidently true in the present proof. Further, it is clear that in the construction of Section 2 we could have taken S as bounded by any $2 g$ disjoint mutually exterior circles and could have allowed their radii to vary in diverse ways with t.

REFERENCES

(1) M. Heins, A problem concerning the continuation of Riemann surfaces, Contributions to the Theory of Riemann Surfaces (Annals of Mathematics Studies, No. 30, Princeton University Press, 1953), 55-62.
(2) R. Rochberg, Continuation of Riemann surfaces, to appear.

The Institute for Advanced Study
Princeton, New Jersey 08540
Washington University
St Louis, Missouri 63130

[^0]: \dagger Research supported in part by the National Science Foundation.

