ON A RESULT OF M. HEINS

by JAMES A. JENKINS[†] (Received 1st April 1974)

Some years ago Heins (1) proved that a Riemann surface which can be conformally imbedded in every closed Riemann surface of a fixed positive genus g is conformally equivalent to a bounded plane domain. In the proof the main effort is required to prove that a surface satisfying this condition is schlichtartig. Heins gave quite a simple proof of the remaining portion (1; Lemma 1). The main part of the proof depended on exhibiting a family of surfaces of genus g such that a surface which could be conformally imbedded in all of them was necessarily schlichtartig. Another proof using a different construction was recently given by Rochberg (2). We will give here a further proof based on the method of the extremal metric and using a further construction which is in some ways more direct than those previously given.

2

Theorem 1. A Riemann surface \mathcal{R} which can be conformally imbedded in every closed Riemann surface of a fixed positive genus g is schlichtartig.

We begin the proof by constructing a family of closed Riemann surfaces of genus g. Let S denote the domain on the sphere bounded by the circles |z-(4n+1)| = 1, |z+(4n+1)| = 1, n = 1, ..., g. Let $\Delta_t^{(n)}$ denote the ring domains $t < |z_n| < 1$, n = 1, ..., g. Let \mathscr{G}_t be the Riemann surface whose elements are the points of Cl S and $\Delta_t^{(n)}$, n = 1, ..., g, with topology to correspond to identifying $z = -(4n+1)+e^{i\theta}$ with $z_n = -te^{-i\theta}$, $0 \le \theta < 2\pi$ and $z = (4n+1)+e^{i\theta}$ with $z_n = e^{i\theta}$, $0 \le \theta < 2\pi$ and with the evident choice of local uniformising parameters so that S, $\Delta_t^{(n)}$, n = 1, ..., g, are conformally imbedded in \mathscr{G}_t and the curves \mathscr{G}_t corresponding to the $\Delta_t^{(n)}$, n = 1, ..., g, will be called handles, the curves in them corresponding to $|z_n| = r, n = 1, ..., g, t < r < 1$, level lines.

If \mathscr{R} were not schlichtartig it would have a finite subsurface of positive genus $\widehat{\mathscr{R}}$ with analytic boundary curves c_j , j = 1, ..., N. Let c'_j , j = 1, ..., N, be disjoint analytic curves on $\widehat{\mathscr{R}}$ so that c_j , c'_j bound a doubly-connected subdomain D_j of $\widehat{\mathscr{R}}$ and c'_j , j = 1, ..., N, bound a finite surface \mathscr{R}^* in $\widehat{\mathscr{R}}$. If \mathscr{R} is conformally imbedded in \mathscr{S}_i we may use all the same terms for the images there. It is clear that the module of a doubly-connected domain nontrivially imbedded in $\widehat{\mathscr{R}}$ is bounded.

† Research supported in part by the National Science Foundation.

The level lines λ on each handle belong to one of the disjoint categories given by the following conditions:

- (i) λ contains an open subarc lying in and joining distinct boundary components of some D_j, j = 1, ..., N;
- (ii) λ lies in $\hat{\mathcal{R}}$;
- (iii) λ does not meet \mathscr{R}^* .

If each handle contained a level line in (iii), \mathscr{R}^* would lie in a schlichtartig subdomain of \mathscr{S}_i and thus be itself schlichtartig, a contradiction. Thus there is at least one handle, say $\Delta_t^{(n)}$, for which the level lines all belong to (i) or (ii). Those in (i) can be distributed into disjoint classes Λ_j , j = 1, ..., N, such that for $\lambda \in \Lambda_j$, λ contains an open subarc in D_j joining the two boundary components. A priori a certain ambiguity might be present but since $c_j, c'_j, j = 1, ..., N$, are analytic the choices could be made so that each Λ_j would be composed of level curves corresponding to values of r in a finite number of intervals in (t, 1). On a set T of level curves with the corresponding set of values of r, τ , we have the logarithmic measure $L(T) = \int r^{-1} dr$. Let

 $M_j, j = 1, ..., N$, be the module of D_j . At the points in $\lambda \in \Lambda_j$, we define the metric $\rho_j(z) |dz|$ by $\rho_j(z) |dz| = (L(\Lambda_j))^{-1} |z_n|^{-1} |dz_n|$ provided Λ_j is not void. Then defining on D_j the metric $\rho(z) |dz|$ by

$$p(z) = \rho_j(z), \quad z \in \lambda, \ \lambda \in \Lambda_j$$

= 0, otherwise

we obtain an admissible metric for the problem determining the module M_j of D_j . Thus

$$M_i \leq 2\pi (L(\Lambda_i))^{-1}$$

or (a result trivially valid also if Λ_i is void)

ł

$$L(\Lambda_j) \le 2\pi M_j^{-1}. \tag{1}$$

Adding (1) for $1 \leq j \leq N$ we have

$$L(i) \leq 2\pi \sum_{j=1}^{N} M_{j}^{-1}$$

the right-hand side being a bound independent of t. Thus a set of level lines on $\Delta_t^{(n)}$ of logarithmic measure at least

$$\log(1/t) - 2\pi \sum_{j=1}^{N} M_j^{-1}$$

consists of curves in $\hat{\mathscr{R}}$. Consider the components of the union of this set of level lines in $\hat{\mathscr{R}}$. Two level lines can belong to different components only if the domain they bound on $\Delta_t^{(n)}$ contains a boundary contour of $\hat{\mathscr{R}}$. Thus there are

372

at most N+1 such components and one of them has logarithmic measure at least

$$(N+1)^{-1}\left(\log(1/t)-2\pi\sum_{j=1}^{N}M_{j}^{-1}\right).$$

For small positive t this gives a contradiction. Hence \mathcal{R} must be schlichtartig.

3

Both Heins and Rochberg remarked that for the result of Theorem 1 it is sufficient for \mathcal{R} to admit an imbedding only in a certain subclass of closed Riemann surfaces of genus g. The same is evidently true in the present proof. Further, it is clear that in the construction of Section 2 we could have taken S as bounded by any 2g disjoint mutually exterior circles and could have allowed their radii to vary in diverse ways with t.

REFERENCES

(1) M. HEINS, A problem concerning the continuation of Riemann surfaces, *Contributions to the Theory of Riemann Surfaces* (Annals of Mathematics Studies, No. 30, Princeton University Press, 1953), 55-62.

(2) R. ROCHBERG, Continuation of Riemann surfaces, to appear.

THE INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY 08540

WASHINGTON UNIVERSITY ST LOUIS, MISSOURI 63130