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Abstract

Bandit processes and the Gittins index have provided powerful and elegant theory and
tools for the optimization of allocating limited resources to competitive demands. In
this paper we extend the Gittins theory to more general branching bandit processes,
also referred to as open bandit processes, that allow uncountable states and backward
times. We establish the optimality of the Gittins index policy with uncountably many
states, which is useful in such problems as dynamic scheduling with continuous random
processing times. We also allow negative time durations for discounting a reward to
account for the present value of the reward that was received before the present time,
which we refer to as time-backward effects. This could model the situation of offering
bonus rewards for completing jobs above expectation. Moreover, we discover that a
common belief on the optimality of the Gittins index in the generalized bandit problem
is not always true without additional conditions, and provide a counterexample. We
further apply our theory of open bandit processes with time-backward effects to prove
the optimality of the Gittins index in the generalized bandit problem under a sufficient
condition.

Keywords: Open bandit process; generalized bandit process; Gittins index; priority
scheduling
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1. Introduction

Bandit processes and the Gittins index (see, e.g. Gittins and Jones (1974) and Gittins et
al. (2011)) have played a crucial and prominent role in stochastic scheduling and other areas
involving allocating limited resources to competitive demands. The extension to branching
bandit problem (also known as the open bandit or arm-acquiring bandit problem) was first
investigated in Nash (1973) and then in Whittle (1981). Thereafter, this topic was further
discussed in Varaiya et al. (1985), Weiss (1988), Weber (1992), Tsitsiklis (1994), and Bertsimas,
and Niflo-Mora (1996), among others. In particular, Whittle (1981) presented an elegant
and interesting proof for the optimality of Gittins index policies. Other proofs based on
interchange arguments were presented in Varaiya et al. (1985), Weiss (1988), and Tsitsiklis
(1994). Moreover, Bertsimas and Nifio-Mora (1996) discussed an achievable region method,
which is particularly useful for the algebraic computation of the Gittins indices. Another line
of proof uses an intuitive deduction from the economical notion, as presented in Weber (1992)
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and Ishikida and Varaiya (1994). Under certain stability conditions, Lai and Ying (1988) also
showed that Gittins indices for open bandit processes are equivalent to those of traditional
(closed) bandit processes if the discount rate approaches 1.

A recent work by Denardo et al. (2007) discussed a utility-based closed multiarmed bandit
process with finite states, which includes a risk-seeking model that is proved to be equivalent to
the generalized bandit model of Nash (1980). Sonin (2008) investigated a multiarmed bandit
problem and presented a recursive algorithm to calculate a generalized version of the Gittins
index for a given bandit. This problem actually falls into the framework of closed bandit
processes discussed in Gittins ef al. (2011).

The main purpose of this paper is to extend Gittins’ theory to more general branching
bandit processes that allow uncountably many states and time-backward effects (negative time
durations) for discounting the rewards. More specifically, the key contributions of the paper
are summarized below.

(1) The theory of the Gittins index for generalized branching bandit processes in the existing
literature has so far been limited to finite state spaces. In this paper we establish the
optimality of the Gittins index with uncountably many states or arms, which is needed
in such problems as dynamic scheduling with continuous random processing times.

(i) We allow time-backward effects (negative durations) for discounting a reward in the
sense that the reward was received sometime ago and its present value is higher than
its original value (due to income earned from the reward, such as interest). This could
model the situation of offering a bonus reward for completing a job above expectation
(cf. Remark 2.2 below). We prove the optimality of the Gittins index with real-valued
durations under certain conditions.

(iii) Following the theorem in Nash (1980) on a generalized bandit problem, it has been
widely believed that the Gittins index rule remains optimal if the arms with negative
Gittins indices are operated before the arms with positive Gittins indices. In this paper,
however, we discover that such a common belief is not always true without additional
conditions, and provide a counterexample (Example 4.1), which overturns a long-held
belief in the literature.

(iv) We identify a sufficient condition for the optimality of the Gittins index in the generalized
bandit problem and prove this optimality under the sufficient condition by applying our
theory on open bandit processes with time-backward effects (Theorem 4.2).

The rest of the paper is organized as follows. In Section 2 we formulate the problem and
provide some preliminaries. In Section 3 we prove our main theory on the optimality of the
Gittins index policy for open bandit processes with time-backward effects. In Section 4 we
discuss the generalized bandit problems by applying the theory of Section 3.

2. Formulation and preliminaries

In a bandit problem, there is a server and a set of arms of different types that can be operated
by the server. Traditionally, each arm may have more than one state. However, we here follow
the notation of Whittle (1981) to consider an arm with a different state as a different arm (or
different arm type). This enables each arm to take exactly one state without loss of generality.
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The system is modeled as the following Markov decision setting.

e States. There are many types of arms (possibly uncountable), labeled by the elements
u of an arbitrary abstract space S, which is equipped with a certain o -algebra to ensure
the measurability of involved functions of the states, especially the rewards. The state
of the process at any nonnegative integer time ¢ is indicated by the numbers of arms at
every type: n, = (n;(u): u € S) fort € Nt = {0, 1,2, ...}, which is a collection of
maps from S to NT, where n; («) is a nonnegative integer indicating the number of arms
of type u at time . While each arm has one type, different arms may share a type with
the same probabilistic features. On the other hand, a generic state n = (n(u): u € S)
can also be considered a set of n(«) arms of type u for all u € §. In this sense, we refer
to these arms as being presented in state n.

For any fixed v € S, define e(v) to be the particular value of n = (n(u): u € S) such
that n(u) = 1(,—y), where 1 denotes the indicator of a set E.

At time 0, the initial state nq is known with ng(«) = O for all but finitely many u € S,
indicating a finite number of arms available at the starting point.

e Actions. At any time with the process in state n, if an arm of type u from the action space
An) ={u:n() = 1}

is operated, then the server can collect an immediate reward R (u#) and the operation gives
rise to

e a random variable V (u), referred to as the duration, which may take negative
values with positive probabilities, and affects the value of the discounted reward
(referred to as time-backward effects when V (u) < 0); and

e anew set of arms replacing the arm operated, referred to as the descendants of the
replaced arm.

The motivation for a possibly negative duration is presented in Remarks 2.1 and 2.2
below. The numbers of descendant arms at each type are represented by a random map
ww) = (w(u,v): v € §), where w(u, v) indicates the number of the descendants of
type v, which is also subject to the condition that w(u, v) > 1 for at least one but only for
finitely many v € S. Generally, for each fixed u, w (1) is actually a stochastic process with
‘time parameter’ u, whose distribution can be routinely identified by finite-dimensional
distributions. The condition w(u, v) > 1 for at least one v € § is to ensure that n}
is nonempty under any policy 7. This is in turn to ensure the easy exposition in the
definition of Gittins indices and the later proof of the optimality of the Gittins index rule
when we need an infinite time horizon to make easy exposition of stopping times. The
case of w(u, v) = 0 for all v € § (no descendants) can be modeled by adding a dummy
arm of absorbing type and sufficiently small reward on operation.

On a selected arm of type u, the joint distribution of V (u) and w(u) is assumed
independent of the history of all operations and the corresponding realization of the
decision process up to the current time #. Moreover, it is implicitly assumed independent
of the time ¢ so that we essentially obtain a time-homogeneous feature of (V (), w(u)).

e Idle (unoperated) arms are unaffected.

e Policies and resulting processes. A policy, generally denoted by 7, is a decision rule
governing arm selections such that the server can select one and only one available arm

https://doi.org/10.1239/jap/1371648948 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1371648948

Open bandit processes with uncountable states and time-backward effects 391

of certain type to operate and then obtains an instant reward at any integer time ¢. It
is based on the up-to-date information represented by a filtration (see the next item for
details). More specifically, under a specified policy =, at any time ¢,

the state is written as n] = (n] (u): u € S); the assumptions described above
on the descendants ensure that n} must satisfy n (1) < oo for all u € S and
ni () > 0 for only finitely many u € S, so that ¢ 4, 17 () < 00;

the type of the selected arm is denoted by u] ;

the reward for selecting this arm to operate is R’ = R(u});
the duration processes are denoted by V" = V (u});

the arm-acquiring process is denoted by w = w(u}); and

the cumulative duration is defined by

t
DI =0, Df =3V t=1.2... 2.1)
j=1

Then (n}, R}, DJ) forms a triplet stochastic process in discrete timet =0, 1, ....

e Filtrations. The natural filtrations generated by {(n, DJ): t = 0, 1, ...} under policy 7
aredenotedby F " (n) = {7 (n): t =0, 1, .. .},orsimply F* ={F7:¢t =0, 1, .. .}if
no confusion arises, where n is the initial state of the system. Clearly, {R} = R(uf): t >
0} is F7-adapted. Conditional on the information at time ¢ (i.e. the o-algebra F;7),
the pair (V(u), w(u)) are mutually independent between the arms presented in a7 .
Note that ;' = o (ng) is policy independent, written Fy. In addition, in the terms
of stochastic processes with filtrations, 7 is a policy if and only if {u] : u} € A(n])}2,
is £ -adapted. For simplicity in expositions, we focus on the natural filtrations in this
paper. Itis not difficult to alter the framework below to other filtrations that are generally
refinements of the natural filtrations and may allow for side information.

e Final objectives. Over the infinite time horizon, the server can finally obtain a total
. T . .
discounted reward Y 2 B RT, where B € (0, 1) is the discount factor. Denote the
expectation under policy 7 by E, i.e. the expected total reward is expressed by

o
Ex [Z BP R,
t=0

o0
n0:| = ]E[Z BT RT
t=0

m].

The objective is to find a policy 7* to maximize the expected total reward:

o
n0:| = mj;ax E, |:Z ,BD’ R,

t=0

By [i BP R,

t=0

m].

Remark 2.1. Here the integer time ¢ indicates the action rounds such that the term ‘at time
0,1,2,...” does mean the first, second, third, ..., rounds of action, rather than a real calendar
time. Therefore, if V (1) > 0 with probability 1 for all « then this model reduces to the classical
branching bandit problem discussed in Weiss (1988). In particular, when the total number
of arm types is finite and V(#) = 1 is independent of u, this model further reduces to the
arm-acquiring bandit process introduced in Whittle (1981).
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Remark 2.2. A positive V = V(1) can be interpreted as an ordinary ‘duration’ for calculating
the discounted value in the sense that 8" is the present value of 1 received V units of time
later. In this paper, however, we allow V < 0 with a positive probability, and still refer to 8"
as the discounted value of 1. When V < 0, 8" represents the present value of 1 received —V
units of time ago. It is in that sense that a negative V is referred to as a ‘negative duration’ for
the purpose of discounting. Thus, if a type u arm is operated at round ¢ under a policy = and
if V(u) < 0, then Df+1 is less than D by —V (u). Because D is in effect the true time for
reward discounting at the ¢th round of operation of this system of arms, the reduction of D] to
Df, | by —V corresponds to turning the clock back by —V units of the calendar time Df". In
this sense, a negative duration V < 0 indicates a time-backward effect. This may arise in the
following scenario. Suppose that an operation is completed at a given time ¢. If the operation
meets certain criteria, then a 20% bonus reward will be paid to all future operations, which has
an effect of a multiplier 1.2 for all future rewards. If we write 1.28 = B and consider the
situation with 8 > 0.9, then V = (log 1.2/log ) + 1 < (log 1.2/10g0.9) + 1 = —0.73 < 0.
This is effectively a discounting factor with negative duration V < 0.

The Gittins index involves not only the data from this arm but also the data from its
descendants as well. For the bandit with initial state e(u), due to the presence of descendants
at the operation of this arm, from time 1 onwards, there may be more than one arm available to
select and thus a certain policy 7 is needed to govern the selection among arms. The Gittins
index of an arm at type u is defined by

=1 pD,
M = sup ErlZizo B2 R | u]

s 2.2
S T Ex P | ul 2.2)

which has the same form as the traditional Gittins index, where

o the u-conditioning means the total discounted reward is collected from the system starting
with a single arm u;

e 1 is any policy governing the selections among the descendants of arm u from time 1
onwards; and

e 7 is any stopping time with respect to the filtration ¥ = {F (e(u)): t =0,1,2, ...}
in the standard sense that {t <t} € " forallt =0,1,2, ....

Due to the possibility of negative V (1) for arm type u, one may have E, [8P7 | u] > 1, so that
the denominator in (2.2) takes zero or negative values. This can be prevented by satisfying the
following assumption.

Assumption 2.1. sup, . E[pY®] < 1.
This assumption is satisfied in two obvious cases.

(i) The number of arm types is finite and E[8Y® | u] < 1 for all types u. This in particular
covers the traditional case of a finite state space with positive durations.

(i) The number of arm types is infinite and there exists a € > 0 such that V(u) > ¢ for all
types u. This in particular covers the Markov bandit processes in which V (1) = 1.

Proposition 2.1. Under Assumption 2.1, DT, = 400 almost surely and E (BP* | u]l < 1 for
any policy w and F 7 -stopping time t.

https://doi.org/10.1239/jap/1371648948 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1371648948

Open bandit processes with uncountable states and time-backward effects 393

Proof. Under policy m, the stochastic process {ﬂDf :t=1,2,...} is a supermartingale
because E, [P+ | Frl= ,BDf” E[BY] < (x,BD;T under the proposition assumption. Hence, the
martingale convergence theorem states that 82~ = lim,_, o, A" almost surely. An application
of Fatou’s lemma shows that

0 < E.[BP> | u) :En[lim BP ) u] <liminf E;[B? | u] < lim o' = 0.
11— 00 11— 00 11— 00

This implies that P> = 0 almost surely, and, hence, D, = 400 almost surely. Moreover,
for any 7™ -stopping time 7, Doob’s optional stopping time theorem states that

Er(BP | u]l < Ex[BP' | u]l = E-[BY™ | u] < 1.

Letting t+ — oo yields E,,[,BDf Tircooy lul < En[ﬂv(”) | u] < 1. Therefore, for any
F 7 -stopping time t,

Ex[B7 | ul = Ex[B” Lir<oo) | ul + Ex[B”™ Lirmoo) | ul < B[V | ul < 1.
This completes the proof.

Having defined the Gittins indices M (1) in (2.2), we define, for a generic state n of a bandit
process, B
M(n) = max{M(u): u € A(n)}

for the maximum Gittins index of the currently available arms.

For a bandit with initial state e(u), let us operate the arms according to the Gittins indices
rule (written as policy G): at any time activate an arm with the highest Gittins index. At
any time ¢ > 0, the running states n; = (n,(x): x € S) are such that no(x) = 1{,—,) and,
for t > 1, n;(x) = 0O for all but finitely many x € S. Define 7(u) to be the first time to
clear out all arms in the descendants of an arm of type u with their Gittins indices no less
than M (u) (so that all remaining ones have Gittins indices below M (u)); in other words,
(1) = min{t € Nt: M(n,) < M)}, with t(u) = oo if M(n;) > M(u) for all r € N*.
Also, write W, for the discounted rewards collected in the interval [0, T(u1)). Then (1) is a
stopping time and W (u) € ?TG(M) (u), where J"-’,G (u) is the filtration corresponding to the Gittins
policy applied to this bandit with initial state e(«) and J‘Z'T?u) (1) the o -algebra at stopping time
T (u). It is not difficult to see that

_ ]E[W‘L'(u)]
M(u) - 1 . ]E[IBDT(”)]

(cf. Varaiya et al. (1985) for a general treatment or Bertsimas and Nifio-Mora (1996) for the
case of finite types). Expression (2.3) indicates that the Gittins indices are achievable in the
sense that we have a policy (the Gittins index rule policy) and a stopping time 7 (z) such that
M (u) is achieved at their combination.

(2.3)

3. Optimality of the Gittins index

The Gittins index rule selects at any time an arm with the highest Gittins index to operate.
In Theorem 3.1 below, we prove the optimality of the Gittins index for the problem formulated
in Section 2. This theorem and its proof differ from the existing literature as follows.

(1) Itextends the proof invented in Whittle (1981) to the situations with infinitely many states,
either countable or uncountable, whereas the results of Whittle (1981) on the optimality
of the Gittins index rule are limited to finite state spaces.
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(i1) It covers for the first time the case of allowing negative durations for discounting effects
(see Remark 2.2 for more discussions).

(iii) In the case of finite states and nonnegative durations, our proof is new and simpler than
previous ones. In particular, the proof of Whittle (1981) needs the assistance of Doob’s
optional stopping theorem (referred to as Wald’s equality there). This is no longer needed
in our proof, which presents a simpler and straightforward treatment by introducing the
discounting function (see (3.2) below).

The complication in the following proof mainly arises from the treatment of uncountable
arm types and negative time durations associated with every pull of an arm, which correspond
to certain generalized bandit problems proposed in Nash (1980) and will be further discussed
in Section 4.

Theorem 3.1. For the problem formulated in Section 2, a policy 1 is optimal if it operates the
arms according to the Gittins index rule, provided Assumption 2.1 is satisfied.

Proof. Because the proof mainly involves the Gittins index rule, the symbol to indicate the
policies as in the previous section is dropped to simplify the notation, except where confusion
may arise, we will clearly specify it. More specifically, we use {(n;, R;, D;): t =0, 1, ...} for
the stochastic process generated under the Gittins index policy, where any tie (a type with more
than one arm) can be broken arbitrarily. Denote further by # (n) the natural filtration generated
by the process {(n;, R;, D;): t =0, 1, ...}. The initial state is denoted by ny.

Define T (x, n) to be the smallest time (or the first time) needed to clear out all arms
(including originals and descendants) with Gittins indices above x from an initial state ny =
n = (n(u): u € S) following the Gittins index policy. It can be expressed by

T (x,n) = min{t > 0: M(nt) < x;ng=nj}.
We can also define )
T(x—,n) =min{t > 0: M(n;) < x;ng = n}

to be the time at which all the arms with Gittins indices at or above x have been operated. For
T (x,n) and T (x—, n), we have the following facts.

1. T(x, n) is right continuous, T (x—, r) is left continuous, and T (x, n) < T (x—, n).

2. Both T (x, n) and T (x—, n) are stopping times with respect to the filtration ¥ (r), and
may thus allow positive probabilities to take the value +o0.

3. Itis apparent that

n(s) n(s)

T(x.m)= > Y Ti(s,x,n)= > > Tis. x.m), 3.1)

seAn) I=1 (s€eAm): M(s)>M )} I=1

where T (s, x, n) indicates the smallest time needed for the /th type s arm to clean up all the
arms with Gittins indices above x. For fixed s and u, the T;(s, x, n) are independent and
identically distributed over! = 1, 2, ..., n(s) as arepresentative T (x, e(s)), provided the
bandit begins with the initial state e(s). Here we take the convention that 7' (x, e(s)) = 0
if M(s) < x. Clearly, for T (x—, n), the relationship displayed in (3.1) also holds but
with u— in place of u.
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Suppose that we are now at the time instant 7' (x, n) and write W (x, n) for the total discounted
reward during the interval working period to clean up all arms with Gittins index x and their
descendents with Gittins indices no less than x, valued at time 7' (x, r). Then the total discounted
reward valued at time 0 is B2®™ W (u, n), where D(x, n) = Dr(x ny as defined in (2.1).

We now examine the whole process of the bandit under the Gittins index policy. Starting
with the initial state n, the server operates one arm at each operation and thus at most countably
many types of arms can be operated over the whole time horizon.

1. Firstlet x; = M (n) and so T (x1,n) = 0. The arms with Gittins indices x; and their
descendants with indices no less than x; will be operated from time O to 7' (x;—, n).

2. Next take xp, = M(nT(xl_,,,)). Then T (x2,n) = T (x1—, n). At T (x», n), one selects an
arm of type u» such that M (1) = x» and then operates up to time 7 (x2—, n).

Continue this way to obtain x3, x4, .... Then we generate a strictly decreasing (random)
sequence of indices {x; : i > 1} such that

0= T(X],n) < T(xl_’n) = T(x21n) << T(xifl_’n) = T(-xl"n) < v

fori = 2,3,.... Moreover, T(x,n) = T (x;,n) for any x € [x;,x;—1) and T(x—, n) =
T (xi—1, n) for any x € (x;, x;_1], thatis, T (x, n) and T (x—, n) are both step-down functions
in x and T (x—, n) is indeed the left limit of 7 (x, n) in the usual sense that T (x—, n) =
lim,p, T(x', n).

Given a state n, T'(x,n) itself can be considered as a stochastic process with ‘time
parameter’ x. Consequently, by (2.1),

T (x,n)
D(x,n) := Dr.n = Z Vi
=0

is also a stochastic process. Therefore, for given n, any path of 1{7(x,n)<oco} BPOM s a step
function in x.

Under the notation just described, the total discounted reward is given by

o0
R(m) =" BPU" W (xi. m) 17y <o) -

i=1
Furthermore, similar to (2.3), we have
1 E[W (x; F =x1 E[l — pP@imm=Dlim | g
(T Gim)<ooy BIW (xi, 0) | Fr,m] = Xi i1 (3 ,m)<c0) E[1 — B | F7(xim))-

Let Va(n) = E[Ié(n)] denote the expected total discounted reward, also referred to as the
value function.

Because T (x;—,n) = oo implies that g% =" = g = ( by Proposition 2.1, the step
function 147 (x,n)<oo} AP has jumps 17 (x; ) <o0} (BPGi—m _ gDi:m)y (may be positive or
negative) at x;, i = 1,2, .... Note also that T (x, n) = 0 for x > x| (recall that 7' (x1, n) = 0);
hence, D(x, n) = 0 and 50 1{7(x.ny<c0} B2E™ = 1 for x > x;. Combined with the fact that
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x; is F7(x; n)-measurable, it can be readily verified that

Va(n) = E[R(n)]

r OO

=E in L7 (i.my<o0) E[ﬂD(xi’n)E[l — ﬂD(x"_’”)—D(xi,n) | ?T(x,',n)]]:|
—i=1

- 00

=K in l{T(xz',n)<oo}(,3D(x"’”) _ ‘BD(x,-_,,,))i|

—i=1

o0
_E / xd(lmx,n)m}ﬂ’)“’"))}
0

r o0
=E / (1—1{T<x,n)<oo}ﬂ”x’">)dx}.
LJO

Define a function, referred to as the discounting function of the bandit process, by
g m) = Ellr e m<oe) B7" | mo=nl,  x €[0, 00). 3.2)

Then we have
gx;ny +ny) = g(x;np)g(x; na) (3.3)

due to the facts that
(i) T(x,n; +n2) =T(x,n)+T(x,n2);

(1) 7 e,y +n2)<o0) = 17 (x,n1) <00} 1T (x,m2) <00} and
(iii) the arms presented in n] + n, are independent.

If n() > 1 then Va(n) can be expressed as

Va(n) = /00(1 —g(x;n))dx
0

= /Oo xdg(x;n)
0
:/o xg(x;e(u))dg(x;n —e(u)) +/0 xg(x;n —e(u))dg(x; e(u)).
For any reward function v (r), define

Ly (n) = R(u) +E[BY Wy (n — e(u) + ww)) | ul, (3.4)

where the expectation E[- | u] is with respect to the random variables V (u) and w(u).

As previously mentioned, the model setting ensures that A(n,) is a finite set. By the theory
of dynamic programming, the Gittins index policy is optimal if its value function Va(n) satisfies
the optimality equation Va(n) = max,ca ) L, Va(n). Define

A, (n) = Va(n) — L,Va(n).
Then the optimality of the Gittins index is equivalent to the statement

Au(n) =0 << M) =M@, (3.3)
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where ‘<’ represents ‘if and only if’. To prove (3.5), we modify the bandit process by
introducing an auxiliary arm of a specific type (say oo) that, once operated, gives an instant
reward (1 — B)m, constant duration V (co0) = 1, and descendants of the same type co. We use
a superscript m to indicate relevant items in this modified bandit. Then,

(1) this arm of type oo and all its descendants have Gittins index m; and

(i1) under the Gittins index rule, once an arm of type oo is operated, one inevitably keeps
operating arms of type oo forever, with the effect of finishing with a final reward m
(i.e. T™(x,n) = T (x,n) for x > m and T"(x, n) = oo for x < m).

For this new bandit, the corresponding discounting function (cf. (3.2)) is
8" (x:m) = E[1(7 ey <o0) BT = g (i 1) Lz -

Hence, it is easy to verify that the value function for this new bandit under the Gittins index
rule is

o0
Va(m; n) = / (1—g"(x;n))dx
0
o0
=m+f (1—g(x;n))dx
o0 " m
=/ a —g(x;n))dx+/ g(x; n)dx
0 0
m
= Va(n) + / g(x; n)dx. 3.6)
0
It follows immediately that

Va(0; n) = Va(n) and = g(m; n). (3.7

dVa(m; n)
3
Moreover, let A, (m; n) = Va(m; n) — L, Va(m; n). Then, by (3.4),
Ay(m;n) = Va(m; n) — R(u) — E[BY“Va(m; n — e(u) + w(u)) | ul, (3.8)
and, consequently,
Ay (m; e(w)) = Va(m; e(u)) — R(u) — E[BY“ Va(m; w(u)) | ul. (3.9)
Applying (3.6), it follows that

Ay(m;n) — Ay(m; e(u))
= Va(m; n) — Va(m; e(u)) +E[BY“[Va(m; w(u)) — Va(m; n — e(u) + wu))] | ul

Ay(m;n) — A,(m; e(n)) =0 form > M(n) (3.10)

= Va(m; n) — Va(m; e(u)) — E[ﬁw”) /OO gr; w)[1 — g(x; n — e(u))] dx

m

This gives

because Va(x; n) = Va(x; e(u)) = x and g(x; n — e(u)) = 1 for x > M(n).
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Differentiate (3.8) with respect to m and combine it with (3.3), (3.7), and (3.9) to obtain

W =g(m;n) —E[BV“Wg(m;n — e(u) +w(w)) | u]
= g(m;n — e(u){g(m; e(w)) — E[BY W g(m; w(u)) | ul}
AN, (m; e(u))

om

Integrating this equation over the interval (0, M(n)) gives the expression

=g(m;n —e(u))

Au(M(n); n) — Ay (0 n) = Ay (M (n); e(w)g(M(n); n — e(u))
— Ay (0; e(u))g(0; n — e(u))

M(n)
—/ Aulx: e@) dg(rn—e@).  (u1D)
0

By (3.10) togetherwithg(M(n); n —e(u)) = land A,(0; e(n)) = 0, weseethat (3.11) implies
that
Ay(n) = A, (0; n)

M(n)
:/ Ay(x; e(u))dg(x; n —e(u))
0

M(n—e(u))
_ / Au(x: () dg(x: n — e(w)). (3.12)
0

Since Ay, (x; e(u)) = 0 for x € [0, M(u)] and A, (x; e(u)) > O for x > M (u), (3.12) shows
that
A,n)=0 < Ayx;ew) =0 forallx € [0, M —ew))]

& M@ —e() < Mu)
— M®u) = MMn).

This proves (3.5) and thus the theorem.

Remark 3.1. While Theorem 3.1 has so far been proved under the setting of Markov models,
it actually holds more generally under the semi-Markov setting or under even more general
branching processes if we define the state of a stochastic process at any time ¢ as its filtration
history at that time.

4. Generalized branching bandit problems

The generalized bandit problem was first discussed in Nash (1980), under a discrete-time
setting with closed bandit processes (i.e. fixed number of arms, ) Ay 11 (X) = d for some
d that is independent of time ¢, if we use the notation in the previous section) in which the state
of every arm evolves according to a Markov fashion and the immediate reward from an arm
being operated is not only a function of its state but also influenced by the states of the other
frozen arms. This problem under the branching bandit setting appeared to be first investigated
in Crosbie and Glazebrook (2000) by means of the popular framework of achievable region
methods. In their work, however, only a finite type of arms can be treated, as in all papers with
achievable region methods. In this section we apply the general theory for the branching bandits
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with time-backward effects to deduce the corresponding results of generalized branching bandit
problems with arbitrary arm types. The deduction is based on the equivalence between the
generalized bandits and the bandits with durations (which are semi-Markov bandit problems
in the case of positive durations). For easy reference, we first recall the results of Nash (1980)
and then apply Theorem 3.1 to the generalized branching bandits.

4.1. Nash’s generalized bandit problem

We here follow the notation of Nash (1980) to present the model on a discrete-time process
setting and thus the term ‘states’ in this subsection correspond to arm types in the previous
sections. Specifically, we have fixed d arms that are modeled by d stochastic processes
{X;(@): t+ = 0} to indicate the state evolving in discrete time on the filtered probability
spaces (2, ¥ (i), P(-)) with filtration ¥ (i) = {F@): ¢t > 0}, i = 1,2,...,d. For each
i=1,2,...,d, X,(i) represents the state of arm i, taking values in certain abstract space, say
Q; C 2, equipped with a o -algebra, such that {X;(i): ¢t > 0} is ¥ (i)-adapted. The state space
; of arm i is also assumed to be the support of X;(i) in the sense that it is the smallest set
such that P(ﬂ;’il(Xt (i) € ©2;)) = 1. The reward process of X; (i) is given by R(X;(i)).

Atany calendar time 7, under a policy 7, suppose that arm i has been operated for 7' (¢, i) times
(Z?zl T, i)y=t,T(t,i)—T@—1,i)=0ifarmiisidle,and T (z,i)—T (t —1,i) = 1 ifitis
operated at time ¢ — 1), and is thus at state X7(;,;y(i), i =1,2,...,d . Instead of R(X7(,;)())
alone, the rewards in this generalized bandit problem are R(X7(;,;)(i)) multiplied by the factors
OXr,j)(j)) for j # i, where Q is a strictly positive function of states. We should note that
QO and R may depend on the arm for which the rewards and multiplication factors are being
computed. For ease of notation, however, we have implicitly used the simplified notation Q(x)
and R(x) instead of the more precise Q(x, i) and R(x, i). Hence, the real reward is determined
by the states of all arms, rather than just the currently activated arm i. Consequently, the value
of a policy 7 is computed by

00 d
v(r) = E[Z B Z{]‘[ Q(Xm,,»)(j»}R(XT(I,,»)G)){T(z +1,0) = T, i)}]. (4.1)
=0 =l "j#i
For fixed arm i and nonnegative integer s, denote by 75 (i) the set of all positive ¥ (i)-stopping
times strictly larger than s and write

T/ (@) = {r € T5(): E[Q(Xs (1) — BT Q(X () | F5(D)] < O}

At a time instant when arm i has been operated for s times, define the index by

. E[Y52) B/R(X () | F5()]
G4 (i) = esssup - . —,
rei. ELQ(Xs() — BT QX< (D)) | F5()]

where T, = T, (i) if T/() =2 or T = 7, (i) otherwise. Nash (1980) claimed that at any
calendar time ¢, the optimal policy is to play arm i other than arm j if either sgn(G7(,i)(i)) <
sgn(Gr, jy(j)) or sgn(Gr,i)(i)) =sgn(Gr,j)(j) and Gr¢ i) (i) > Gr,jy(j), where in
the case of G4(i) = 0, sgn(G,(i)) is defined as 1 if 7 = @ or —1 otherwise. This result is
proved by Nash using an interchange argument.

We can reformulate Nash’s model as one similar to the typical closed bandit problem. To
this end, define a new reward function ﬁ(x) = R(x)/Q(x). Let

Vi) =1+ log Q(X (1)) —log Q(X; 1) .~ 0.

log B

4.2)
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and define

t d
Do(i) = 0, D)= _Vi(i), and D;=» Drgi) fort>0.
=1 i=1

Then (4.1) can be rewritten as

d oo d
v =[] Q(Xo(j))E[Z B Y RXraiyONT @ +1,i) = T, i)}}. (4.3)

j=1 =0 i=l

Since ]_[?: 1 O(Xo(j)) is independent of the policy 7T,~the performance measure v(7) is the

same as that of a Markov bandit problem with reward R and durations V;(i), i = 1,2,...,d,
t =0, 1,.... Recall that ; is the support of X,(i). If
1 i : Q;
max o) < —, or, equivalently, min{Q(x): x € $4) > B, 4.4)
x,yeQ Q(y) B max{Q((x): x € Q;}

then V;(i) > O for all i and ¢, and hence the generalized bandit model can be reduced to
the classical closed multiarmed bandits with a Markov structure and positive durations if the
evolution of X, (i) follows a multiarmed bandit process with semi-Markovian arms. This model
has been discussed in Section 3 and its Gittins indices thus coincides with (and can be deduced
by) that in (4.2). This correspondence has been pointed out in Gittins et al. (2011, Section 3.5.1,
pp. 65-66) and Glazebrook and Owen (1991).

If (4.4) fails, however, some V; (i) may take strictly negative values with a positive probability,
so that in the induced model, a pull of arm i at time ¢ has the time-backward effect as explained
before. This is the most interesting part of the Nash’s model. In such a case, the classical
result in closed bandit problems cannot produce a solution for Nash’s problem, and the solution
claimed in Nash (1980) appears invalid.

We provide a counterexample below, in which (4.4) is not satisfied and the Gittins index
policy claimed in Nash (1980) fails to optimally solve the bandit problem.

Example 4.1. Consider a closed bandit problem with two deterministic arms. Arm 1 always
has a fixed state, say 0, and thus a fixed reward R(0) = m with Q(0) = 1. Arm 2 is initiated
at state 1 and subject to deterministic state transition 1 — 2 — .. with Q(u) = g~2@~D
and the reward sequence R(u) = 2=y =12 ..., for some fixed o € (0, /B). Clearly,
the Gittins index for arm 1 is positive and the Gittins index for all states of arm 2 are negative
because, for any stopping time 7 > 0,

Q(bt) _ /31' Q(M + ‘L’) — 1372(1471) _ ﬁrﬁ72(u+rfl) — ’372(1471)(1 _ ﬁir) <0.

According to Nash (1980), the ‘optimum’ is the Gittins index rule that operates arm 2 at all
times 0, 1, 2, ..., which gives the total discounted reward as Y >, B~'a* = B/(8 — a?). On
the other hand, a policy that operates arm 1 all the time would have a total reward m /(1 — §).
Therefore, if m/(1 — B) > B/(B — a?), which can be easily achieved by taking a sufficiently
large m, then the Gittins index rule is not optimal.

This example can also be converted to the model with a negative constant duration V = —1
(cf. (4.3)), which violates the condition of Proposition 2.1 since E[g"] = ! > 1.

To avoid the situation in Example 4.1, Nash’s theorem should be modified to the following
narrower version, which is deduced from Theorem 3.1. It can be easily checked that Assump-
tion 2.1 corresponds to the following assumption in the setting of the generalized bandit.
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Assumption 4.1. There exists a constant § € (0, 1) such that

(1 =80X;() —E[BQ(Xs+1() | Fs@] >0
almost surely forall s andi = 1,2, ...,d.

By Proposition 2.1, Assumption 4.1 implies that E[Q (X (i)) — BT OQ(X:(@)) | F5()] > 0
for any integer time s and ¥ (i)-stopping time 7 > s,i = 1,2,...,d.

Theorem 4.1. Under Assumption 4.1, the generalized bandit can be optimally operated under
the Gittins index rule with the indices defined by

t—1 om . a /s
G (i) = esssup E[)_,,—s B"R(Xpm (D)) | F5(i)]

- - —, s=0,1,...,i=1,2,...,d,
> E[Q(Xs(0) — BT QX (D)) | F5(i)]

4.5)
where s represents the number of times that arm i has been operated.

The Gittins indices in (4.5) are expressed in terms of conditional expectations on filtration.
In the special case where the state X;(i) evolves according to a time-homogeneous Markov
fashion such that the time instant plays no role in the definition of Gittins indices, they can be
equivalently expressed by

M; () = sup E[Y[Z) B'R(X, (i) | Xo(i) = u]
l >0 E[Q(X0(1)) — BT Q(X: () | Xo(i) = u]

(4.6)

in terms of conditional expectations on the current state of the arm and the notation introduced
in the previous sections.

4.2. Generalized branching bandit problem

Now we return the meaning of ‘states’ back to what we used in Sections 2 and 3. Here
we discuss a straightforward extension of the model in Nash (1980) to the generalized
branching bandit problems by applying Theorem 3.1, which covers the model analyzed in
Crosbie and Glazebrook (2000) for finite arm types. Compared with the branching bandits
discussed in Sections 2 and 3, without loss of generality, we can take V(u) = 1 and treat
the Markov model without extra durations. Any branching with positive durations can be
easily translated to the one we are to discuss here. In this model, at any time ¢ with state n;
governed by a policy m, if the server operates an arm u = u} € A(n}), it will receive a
discounted reward ﬂtl_[veA(nr)[Q(v)]”(”)R(uZ)/Q(uf) and the state evolves to n; — e(u) +
w(u). This corresponds to an instant reward R(u}) = R(u})/Qu]") with di~scounting factor

BT lveam) Q@I Define Q(n) = [Tyepm[Q)]"™). In particular, Q(e()) = Q(u).

At the next time point ¢ + 1, the discount factor then changes to B Om, —e(u) +wu)) =
B M oA et +wiuy [ Q)" Note that

B O, — e(u) + w(n)) _ ﬂt+lnv€A(nt—e(u)+w(u))[Q(U)]n(v)

BrOm, —eu) +wu)) BT lheam)[Q@)1"®
'3 n(v)
=—— [Q()]
o) UGAI(_WI(M))

_ ﬁlHZveA(w(u»”(”) log Q(v)—log Q)]/log
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where the exponential part indicates the duration caused by operating an arm of type u.
Therefore, this generalized branching bandit problem corresponds to a semi-Markov branching
bandit model with instant rewards R(u) = R(u)/Q(u) and durations

~ 1
V(u>=1+1—[ 3 n(v)logQ(v)—logQ(u)]
Og'B veA(w(u))

In this sense, Assumption 2.1 can be translated to the following.

Assumption 4.2. There exists a constant § € (0, 1) such that

1=8)Qw) = E[ I1 [Q(v)]’““)]

veA(w(u))

As previously stated, this assumption ensures that E;[Q(u) — 5 Q(r;) | ng = e(u)] > 0
for any branching bandit process with an initial state e(#) under any policy 7. To define
the Gittins indices, consider the branching bandit process initiated by a single arm of type u.
Similar to (4.6), by inserting R(u) and V (1) into (2.2) for R(u) and V (), respectively, the
Gittins index for this arm can be defined by

ME(u) = sup ]EJT[ZtT:_()1 B'R; | no = e(u)]
71>0 Ex[Qu) — BT Q(ne) | no = e(u)] ’

where the superscript ‘g’ stands for the ‘generalized’ branching bandit and the supremum is
over all policies 7 and positive ™ -stopping times t. Thus we have the following theorem.

4.7

Theorem 4.2. Under assumption 4.2, the Gittins index rule based on (4.7) is optimal for the
generalized branching bandit problem just described.
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